JPS6356727B2 - - Google Patents
Info
- Publication number
- JPS6356727B2 JPS6356727B2 JP57216710A JP21671082A JPS6356727B2 JP S6356727 B2 JPS6356727 B2 JP S6356727B2 JP 57216710 A JP57216710 A JP 57216710A JP 21671082 A JP21671082 A JP 21671082A JP S6356727 B2 JPS6356727 B2 JP S6356727B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- pcm
- circuit
- adpcm
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003044 adaptive effect Effects 0.000 claims description 82
- 238000013139 quantization Methods 0.000 claims description 73
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/04—Differential modulation with several bits, e.g. differential pulse code modulation [DPCM]
- H03M3/042—Differential modulation with several bits, e.g. differential pulse code modulation [DPCM] with adaptable step size, e.g. adaptive differential pulse code modulation [ADPCM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
- G06T9/004—Predictors, e.g. intraframe, interframe coding
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
Description
本発明はPCM符号化とADPCM符号化を交互
にくり返す場合のADPCM回路、特に量子化ノイ
ズを累積しないADPCM復号回路に関する。 ADPCMに関しては1980年4月IEEE発行の
“Proceedings of IEEE”488頁〜525頁に詳しく、
また、伝送路ビツト誤りに対して強い特性を持た
せた改良形ADPCMに関しては1982年5月IEEE
発行の“Proceedings of ICASSP’82”960頁〜
963頁に詳しい。以下、本発明の説明に必要とな
る範囲で、前記第2の文献に基づいてADPCMを
説明する。 第1図は従来のADPCM符号及び復号回路を示
したもので、入力信号端子1、減算器2、量子化
回路3、逆適応量子化回路4、加算器5、適応予
測回路6および符号出力端子7からなるADPCM
符号回路と、符号入力端子8、逆適応量子化回路
9、加算器10、適応予測回路11および出力端
子12からなるADPCM復号回路を示している。
適応量子化回路3は入力信号がMビツト長で表示
されている場合、出力信号としてMより小さいN
ビツト長出力信号を得る回路で、入力信号を2N−
1個の閾値を用いて判定し、判定結果をNビツト
で出力するものである。つまり、線形量子化閾値
を用いると、ある標本時刻jでの量子化幅を△j
とし、この時の入力信号xjが nj・△jxj<(nj+1)・△j、 nj∈{0、±1、±2、…、 ±(2N-1−1)、−2N-1}、 N:割当量子化ビツト数 (1) であれば、出力信号はnjであり、次の標本時刻
(j+1)での量子化幅△j+1は量子化器入力信号
レベルに応じて次式を用いて圧伸させる。 △j+1=△〓j・M(nj) (2) ただし、ここでM(nj)はnjにより一意的に定
まる乗数であり、8kHzで標本化された音声信号
を4ビツト(N=4)に符号化する場合に用いら
れる乗数の一例を表1に示す。
にくり返す場合のADPCM回路、特に量子化ノイ
ズを累積しないADPCM復号回路に関する。 ADPCMに関しては1980年4月IEEE発行の
“Proceedings of IEEE”488頁〜525頁に詳しく、
また、伝送路ビツト誤りに対して強い特性を持た
せた改良形ADPCMに関しては1982年5月IEEE
発行の“Proceedings of ICASSP’82”960頁〜
963頁に詳しい。以下、本発明の説明に必要とな
る範囲で、前記第2の文献に基づいてADPCMを
説明する。 第1図は従来のADPCM符号及び復号回路を示
したもので、入力信号端子1、減算器2、量子化
回路3、逆適応量子化回路4、加算器5、適応予
測回路6および符号出力端子7からなるADPCM
符号回路と、符号入力端子8、逆適応量子化回路
9、加算器10、適応予測回路11および出力端
子12からなるADPCM復号回路を示している。
適応量子化回路3は入力信号がMビツト長で表示
されている場合、出力信号としてMより小さいN
ビツト長出力信号を得る回路で、入力信号を2N−
1個の閾値を用いて判定し、判定結果をNビツト
で出力するものである。つまり、線形量子化閾値
を用いると、ある標本時刻jでの量子化幅を△j
とし、この時の入力信号xjが nj・△jxj<(nj+1)・△j、 nj∈{0、±1、±2、…、 ±(2N-1−1)、−2N-1}、 N:割当量子化ビツト数 (1) であれば、出力信号はnjであり、次の標本時刻
(j+1)での量子化幅△j+1は量子化器入力信号
レベルに応じて次式を用いて圧伸させる。 △j+1=△〓j・M(nj) (2) ただし、ここでM(nj)はnjにより一意的に定
まる乗数であり、8kHzで標本化された音声信号
を4ビツト(N=4)に符号化する場合に用いら
れる乗数の一例を表1に示す。
【表】
式(2)においてβは1より小さい正定数に定めて
おけば、適応予測回路が時不変フイルタである限
りは△〓jの演算が過去の量子化幅をリークさせる
作用があるため伝送路ビツト誤りに対して強くな
る事が知られており、詳しくは1975年IEEE発行
の「Transactions on Communications」第
1362頁〜第1365頁を参照されたい。逆適応量子化
回路4及び9は前記適応量子化回路3のNビツト
出力信号及び伝送されて来たNビツト適応量子化
回路出力信号が入力されると、前記閾値に対応し
てMビツトの再生入力信号を出力するもので x^j=nj△j+0.5△j (3) により伝送信号を逆量子化する。このx^jの事は代
表値と呼ばれている。式(1)、式(3)で示される量子
化の特性は閾値間の幅が常に一定であるため、代
表値間も同じ幅で一定となつており、線形量子化
特性と呼ばれている。一般には閾値間の幅、代表
値間の幅も一定とはならず、量子化すべき信号の
統計的な分布関数に依存した幅を持たせるのが常
であるが詳しくは後述する。適応予測回路6およ
び11の伝達関数は同一で、これをP(Z)とす
ると、 P(Z)=k 〓j=1 aj iZ-i (4) となる。ここで{aj i|i=1、…、k}は時刻j
の予測係数と呼ばれており時刻jにおける予測器
入力信号をx^j、逆量子化器出力信号をe^jとすれ
ば、e^2 jを最小とする様に各係数を変化させる。つ
まり、各係数は aj+1 i=(1−δ)aj i+g・e^j・x^j-i (5) として時々刻々変化させるとよい事が知られてい
る。ここでδ及びgは1より小の正定数である。 以下第1図に従つて従来のADPCM符号回路/
復号回路について述べる。時刻jにおける入力信
号標本値xjが端子1からADPCM符号化回路に入
力されると、減算器2により入力信号xjと適応予
測回路6の出力信号x〓jの差が計算され、誤差信号
ejとして適応量子化回路3へ入力される。適応量
子化回路3は前述した様にejをNビツトの符号nj
に変換し、端子7から出力されると同時に逆適応
量子化回路4へ入力される。逆適応量子化回路4
ではnjよりMビツトの誤差信号e^jを再生する。再
生された誤差信号e^jと適応予測回路6の出力x〓jは
加算器5により加え合せられ量子化入力信号x^jを
再生する。この後、適応量子化回路3、逆適応量
子化回路4の量子化幅及び適応予測回路6の係数
は前述した様に式(2)および式(5)に従つて次の入力
信号の符号化を行なうために修正される。前述し
たように適応予測回路の係数修正は誤差信号e^jの
パワー、つまりe^2 jを最小化する様に修正されるた
め、ej信号はxj信号に比べダイナミツク・レンジ
が小さくなり、同一ビツトで符号化する事を考え
れば小さくなつた分だけ適応量子化回路3によつ
て発生する誤差も小さくなり、精度よく符号化で
きる事になる。 一方従来形のADPCM復号回路では、受信され
た量子化符号njが端子8から入力され、逆適応量
子化回路9により再生誤差信号e^jを発生する。こ
のe^jと適応予測回路11の出力x〓jは加算器10に
より加算されx^jを合成して、出力端子12へ出力
し、かつ適応予測回路11へ次の標本時刻の予測
を行なうために加える。ADPCM復号回路側でも
適応量子化符号njもしくは誤差信号e^jより、逆適
応量子化回路の量子化幅を式(2)に従つて時々刻々
変化させ、かつx^jとx〓jの差、つまり、e^jのパワー
を最小化する様に適応予測回路11の係数を式(5)
に従つて変化させる。 ADPCM符号器と復号器では、逆適応量子化回
路4,9および適応予測回路6,11の内部状態
が一致しておれば、ADPCM符号回路/復号回路
でのe^j、x^j、x〓jの値は一致する。このため
ADPCM符号回路と復号回路が距離的に離れて設
けられていても端子1に加わる入力信号xjと端子
12から出力されるx^jはほとんど同一の値を取る
ことになる。ところで、符号器の端子7から復号
器の端子8までの間は伝送路となるが、伝送路に
は熱雑音等によりビツト誤りが発生する可能性が
ある。この場合、ADPCM復号回路が不安定状態
に陥つて復帰できない事が多い。これは以下の様
に説明できる。 ADPCM復号回路の逆適応量子化回路9の出力
e^jより出力端子12までの伝達関数D(Z)を、
適応予測回路11の伝達関数として式(4)を用いて
求めると、 となる。aj iは前述した様にe^jより計算される値で
あり、伝送路ビツト誤りが発生するとADPCM復
号回路の適応予測回路の予測係数の修正値は
ADPCM符号回路の適応予測回路の予測係数とは
異なる値となる。式(6)は予測係数により決定され
る極をK個持つており、上記の伝送路ビツト誤り
の結果ADPCM復号回路側では極の位置がZ平面
上で単位円外に出てしまうことがある。この様な
状況になるとADPCM復号回路は発振状態とな
り、再び正しい動作にはもどれない。(前記第2
の文献参照) 前記第2の文献ではこの不安定状態を除くた
め、式(6)を以下の様に式展開して、適応的に動く
極を除いた伝達関数を持つADPCM符号回路及び
復号回路を実現している。 ここで係数{a^i}は固定定数であり{bj i}が適
応係数である。(1+M 〓i=1 bj iZ-iの項は式(6)を(1−
k 〓i=1 a^iZ-i) で割つた答を(M+1)項でうち切つたものであ
る。固定係数{a^i}を音声の平均的な性質にあつ
た値に選べば上記のうち切り誤差も小さく、符号
化品質の劣化はほとんどない。ここで、音声の平
均的な性質にあつた固定係数{a^i}の求め方は、
前記第1の文献の498頁に詳しい。 式(7)に基ずいた従来方式のADPCM符号回路お
よび復号回路を第2図に示す。第2図は入力端子
1、減算器21,22、適応量子化回路3、逆適
応量子化回路4、加算器51,52、適応フイル
タ61、固定フイルタ62、出力端子7からなる
ADPCM符号回路と、入力端子8、逆適応量子化
回路9、加算器101,102、適応フイルタ1
11、固定フイルタ112、出力端子12からな
るADPCM復号回路からなる。固定フイルタ62
および112は、式(4)で使用された固定予測係数
{a^i}を用いて以下の伝送関数を持つ。 P2(Z)=k 〓i=1 a^iZ-i (8) また、適応フイルタ61,111は以下の伝送
関数を持つ。 P1(Z)=M 〓i=1 bj iZ-i (9) ただし、適応係数は各々以下の様に修正され、こ
れはej信号のパワーを最小化する方向に修正され
る事が第2の文献に述べられている。 bj+1 i=(1−δ)bj i+ge^j-ie^j (10) いま、端子1から入力信号xjが入力されると、
減算器21で固定フイルタ62の出力x〓jと差が取
られyjとなり、減算器22へ入力される。減算器
22ではyjから適応フイルタの出力y〓jを減算し、
適応量子化回路3に加えられる。適応量子化回路
3はejを量子化し、符号njを出力端子7から出力
するとともに逆適応量子化回路4に加えられ、量
子化された誤差信号e^jを得る。e^jは適応フイルタ
61に入力され、次の標本時刻でのフイルタ演算
に使用されるとともに、適応フイルタ61の出力
y〓jを加算器51により加えられ、y^jとして加算器
52へ伝えられる。加算器52ではy^jとx〓jが加算
され入力信号xjの量子化信号x^jを再生し、次の標
本時刻でのフイルタ演算に使用される。このた
め、固定フイルタ62の出力が入力信号の平均的
なふるまいに適したものであれば第1の誤差信号
yjの振幅レベルが減少し、この信号から適応フイ
ルタ61の出力を減じられた第2の誤差信号ejは
さらにレベルの低い信号となる。一般的に言つて
第1図の適応予測回路6は再生量子化入力値から
次の入力信号値を予測するのに対して、第2図の
適応フイルタ61、は誤差信号から次の入力信号
を予測することになり能力的には第2図の適応フ
イルタ61の方が低いが、固定フイルタ62が平
均的な入力信号の性質に関する信号を発生してい
るため、第2図の符号化器も全体としては第1図
の符号器と比べ遜色ない符号化が可能となつてい
る。 次に第2図のADPCM復号回路の動作を説明す
る。入力端子8から量子化符号が入力されると逆
適応量子化回路9は量子化された誤差信号e^jを再
生し、適応フイルタ111に入力し、次の標本時
刻の適応フイルタ演算に用い、かつ、加算器10
1により適応フイルタ111の出力y〓jと加算され
y^jを再生する。y^jは固定フイルタ112の出力x^j
と加算器102により加算され量子化された符号
器側入力信号x^jを再生し、出力端子12及び固定
フイルタ112へ供給される。適応フイルタ11
1と固定フイルタ112の伝達関数P1(Z)及び
P2(Z)は式(8)および式(9)に示す通りであり、逆
適応量子化回路9の出力から出力端子12までの
伝達関数D(Z)は D(Z)=1+P1(Z)/1−P2(Z) (11) となるため、式(7)と一致し、適応的に動く極をZ
平面上で持たないため、伝送路ビツト誤りが発生
しても安定な動作を期待できる。 以上のADPCM以外にも、ADPCM符号/復号
回路としては第2図の固定フイルタ62,112
を極の動きうる範囲を制限して使用する適応零
点/適応極形の予測フイルタを持つADPCM回路
もあるが、同様に説明できるため、詳細は省略す
る。 以上、ADPCM符号/復号回路について見て来
たが、このADPCM回路を既存PCM網に導入す
る事を考えると、PCMで符号化された信号は
ADPCM符号化され、再びPCM符号化され伝送
される形態が生ずる。この結果、PCM符号化と
ADPCM符号化が交互に行なわれる状況が発生す
る。 一般にADPCM符号/復号回路内部の演算は、
8ビツト非線形PCMを線形化すると14ビツト相
当となるため、PCM並の符号化を行なう必要性
から14ビツト以上の線形符号を用いて演算されて
いる。このため、ADPCM符号/復号回路と他の
ADPCM符号/復号回路との間が、ADPCM内部
演算ビツト数と等しいがそれより多い線形符号ビ
ツトで接続できるとすればADPCM符号/復号回
路を縦続接続させても接続自体による劣化はな
い。このため、最初のADPCM符号/復号回路と
それに続くADPCM符号/復号回路の内部状態が
全て一致しておればADPCM符号/復号回路を縦
続接続させても内部状態は各ADPCM符号/復号
回路で同様に変化し、何段に亘つて縦続接続させ
ても、1段分のADPCM回路の劣化に留まる。 しかしながら、前述した様にADPCM符号/復
号回路とそれに続くADPCM符号/復号回路間は
非線形8ビツトPCM符号で接続される。このた
め、縦続接続すると、使用可能ビツト数が少くな
る事および使用可能ビツト数の各ビツトの重み付
けが非線形である事に起因した接続自体の劣化を
伴う。このPCM信号による接続自体に起因する
劣化は、最初のADPCM符号/復号回路とそれに
続くADPCM符号/復号回路の内部状態がある時
点で一致したとしても、次段入力PCM符号が初
段入力PCM符号と比べ劣化分だけ異なる事に起
因して選択ADPCM符号が異なつて来る。選択
ADPCM符号が異なると、適応量子化の式(2)で与
えられる表1に示された乗数が異なる事、また、
式(5)、式(10)の適応係数が異なつて来る事より、内
部状態の一致がくずれる事となる。このため縦続
接続を行なつた場合の劣化は、上記PCM接続の
劣化分に加え、ADPCM符号/復号回路による劣
化分が縦続接続段数分だけ累積する事となり、全
体として非常に大きな劣化が発生する。 上記の内部状態の一致が崩壊して行く機構に関
しては、ADPCM符号/復号回路で使用される量
子化回路の閾値と代表値の関係が式(1)と式(3)で示
される線形量子化特性を持つている限りにおいて
はIEEE1979年発行の“Proceedings of
1979ISCAS”の969頁〜970頁に詳しく述べられ
ており、また、一度内部状態が一致すれば、閾値
間隔と代表値間隔が一致しているという線形量子
化特性の性質を利用してこの内部状態の一致を維
持する手法(同文献のTable2参照)についても
述べられている。 しかしながら、従来の内部状態維持手法は、量
子化能力を向上させるために一般に行なわれてい
る非線形量子化特性を有するADPCM符号/復号
回路には応用できない。この非線形量子化特性と
は、量子化回路へ入力される信号の統計的分布を
調べて、この分布に適した閾値と代表値を決定す
るもので、例えば分布関数がガウス分布の場合で
量子化符号ビツト数が4の場合は表2の様に定め
られる事がIRE1960年5月発行の“Transactions
on Information Theory”の7頁〜12頁に詳し
く述べられている。表2よりも明らかな様に閾値
間間隔及び代表値間隔は式(1)及び式(3)で与えられ
る線形量子化特性とは異なり一定幅ではなくな
る。このため、閾値間隔と代表値間隔が一定であ
る事を利用した従来の内部状態の一致を維持させ
る手法は適応できなくなり、この様な量子化回路
を有する符号/復号回路を非線形PCM符号化を
介し
おけば、適応予測回路が時不変フイルタである限
りは△〓jの演算が過去の量子化幅をリークさせる
作用があるため伝送路ビツト誤りに対して強くな
る事が知られており、詳しくは1975年IEEE発行
の「Transactions on Communications」第
1362頁〜第1365頁を参照されたい。逆適応量子化
回路4及び9は前記適応量子化回路3のNビツト
出力信号及び伝送されて来たNビツト適応量子化
回路出力信号が入力されると、前記閾値に対応し
てMビツトの再生入力信号を出力するもので x^j=nj△j+0.5△j (3) により伝送信号を逆量子化する。このx^jの事は代
表値と呼ばれている。式(1)、式(3)で示される量子
化の特性は閾値間の幅が常に一定であるため、代
表値間も同じ幅で一定となつており、線形量子化
特性と呼ばれている。一般には閾値間の幅、代表
値間の幅も一定とはならず、量子化すべき信号の
統計的な分布関数に依存した幅を持たせるのが常
であるが詳しくは後述する。適応予測回路6およ
び11の伝達関数は同一で、これをP(Z)とす
ると、 P(Z)=k 〓j=1 aj iZ-i (4) となる。ここで{aj i|i=1、…、k}は時刻j
の予測係数と呼ばれており時刻jにおける予測器
入力信号をx^j、逆量子化器出力信号をe^jとすれ
ば、e^2 jを最小とする様に各係数を変化させる。つ
まり、各係数は aj+1 i=(1−δ)aj i+g・e^j・x^j-i (5) として時々刻々変化させるとよい事が知られてい
る。ここでδ及びgは1より小の正定数である。 以下第1図に従つて従来のADPCM符号回路/
復号回路について述べる。時刻jにおける入力信
号標本値xjが端子1からADPCM符号化回路に入
力されると、減算器2により入力信号xjと適応予
測回路6の出力信号x〓jの差が計算され、誤差信号
ejとして適応量子化回路3へ入力される。適応量
子化回路3は前述した様にejをNビツトの符号nj
に変換し、端子7から出力されると同時に逆適応
量子化回路4へ入力される。逆適応量子化回路4
ではnjよりMビツトの誤差信号e^jを再生する。再
生された誤差信号e^jと適応予測回路6の出力x〓jは
加算器5により加え合せられ量子化入力信号x^jを
再生する。この後、適応量子化回路3、逆適応量
子化回路4の量子化幅及び適応予測回路6の係数
は前述した様に式(2)および式(5)に従つて次の入力
信号の符号化を行なうために修正される。前述し
たように適応予測回路の係数修正は誤差信号e^jの
パワー、つまりe^2 jを最小化する様に修正されるた
め、ej信号はxj信号に比べダイナミツク・レンジ
が小さくなり、同一ビツトで符号化する事を考え
れば小さくなつた分だけ適応量子化回路3によつ
て発生する誤差も小さくなり、精度よく符号化で
きる事になる。 一方従来形のADPCM復号回路では、受信され
た量子化符号njが端子8から入力され、逆適応量
子化回路9により再生誤差信号e^jを発生する。こ
のe^jと適応予測回路11の出力x〓jは加算器10に
より加算されx^jを合成して、出力端子12へ出力
し、かつ適応予測回路11へ次の標本時刻の予測
を行なうために加える。ADPCM復号回路側でも
適応量子化符号njもしくは誤差信号e^jより、逆適
応量子化回路の量子化幅を式(2)に従つて時々刻々
変化させ、かつx^jとx〓jの差、つまり、e^jのパワー
を最小化する様に適応予測回路11の係数を式(5)
に従つて変化させる。 ADPCM符号器と復号器では、逆適応量子化回
路4,9および適応予測回路6,11の内部状態
が一致しておれば、ADPCM符号回路/復号回路
でのe^j、x^j、x〓jの値は一致する。このため
ADPCM符号回路と復号回路が距離的に離れて設
けられていても端子1に加わる入力信号xjと端子
12から出力されるx^jはほとんど同一の値を取る
ことになる。ところで、符号器の端子7から復号
器の端子8までの間は伝送路となるが、伝送路に
は熱雑音等によりビツト誤りが発生する可能性が
ある。この場合、ADPCM復号回路が不安定状態
に陥つて復帰できない事が多い。これは以下の様
に説明できる。 ADPCM復号回路の逆適応量子化回路9の出力
e^jより出力端子12までの伝達関数D(Z)を、
適応予測回路11の伝達関数として式(4)を用いて
求めると、 となる。aj iは前述した様にe^jより計算される値で
あり、伝送路ビツト誤りが発生するとADPCM復
号回路の適応予測回路の予測係数の修正値は
ADPCM符号回路の適応予測回路の予測係数とは
異なる値となる。式(6)は予測係数により決定され
る極をK個持つており、上記の伝送路ビツト誤り
の結果ADPCM復号回路側では極の位置がZ平面
上で単位円外に出てしまうことがある。この様な
状況になるとADPCM復号回路は発振状態とな
り、再び正しい動作にはもどれない。(前記第2
の文献参照) 前記第2の文献ではこの不安定状態を除くた
め、式(6)を以下の様に式展開して、適応的に動く
極を除いた伝達関数を持つADPCM符号回路及び
復号回路を実現している。 ここで係数{a^i}は固定定数であり{bj i}が適
応係数である。(1+M 〓i=1 bj iZ-iの項は式(6)を(1−
k 〓i=1 a^iZ-i) で割つた答を(M+1)項でうち切つたものであ
る。固定係数{a^i}を音声の平均的な性質にあつ
た値に選べば上記のうち切り誤差も小さく、符号
化品質の劣化はほとんどない。ここで、音声の平
均的な性質にあつた固定係数{a^i}の求め方は、
前記第1の文献の498頁に詳しい。 式(7)に基ずいた従来方式のADPCM符号回路お
よび復号回路を第2図に示す。第2図は入力端子
1、減算器21,22、適応量子化回路3、逆適
応量子化回路4、加算器51,52、適応フイル
タ61、固定フイルタ62、出力端子7からなる
ADPCM符号回路と、入力端子8、逆適応量子化
回路9、加算器101,102、適応フイルタ1
11、固定フイルタ112、出力端子12からな
るADPCM復号回路からなる。固定フイルタ62
および112は、式(4)で使用された固定予測係数
{a^i}を用いて以下の伝送関数を持つ。 P2(Z)=k 〓i=1 a^iZ-i (8) また、適応フイルタ61,111は以下の伝送
関数を持つ。 P1(Z)=M 〓i=1 bj iZ-i (9) ただし、適応係数は各々以下の様に修正され、こ
れはej信号のパワーを最小化する方向に修正され
る事が第2の文献に述べられている。 bj+1 i=(1−δ)bj i+ge^j-ie^j (10) いま、端子1から入力信号xjが入力されると、
減算器21で固定フイルタ62の出力x〓jと差が取
られyjとなり、減算器22へ入力される。減算器
22ではyjから適応フイルタの出力y〓jを減算し、
適応量子化回路3に加えられる。適応量子化回路
3はejを量子化し、符号njを出力端子7から出力
するとともに逆適応量子化回路4に加えられ、量
子化された誤差信号e^jを得る。e^jは適応フイルタ
61に入力され、次の標本時刻でのフイルタ演算
に使用されるとともに、適応フイルタ61の出力
y〓jを加算器51により加えられ、y^jとして加算器
52へ伝えられる。加算器52ではy^jとx〓jが加算
され入力信号xjの量子化信号x^jを再生し、次の標
本時刻でのフイルタ演算に使用される。このた
め、固定フイルタ62の出力が入力信号の平均的
なふるまいに適したものであれば第1の誤差信号
yjの振幅レベルが減少し、この信号から適応フイ
ルタ61の出力を減じられた第2の誤差信号ejは
さらにレベルの低い信号となる。一般的に言つて
第1図の適応予測回路6は再生量子化入力値から
次の入力信号値を予測するのに対して、第2図の
適応フイルタ61、は誤差信号から次の入力信号
を予測することになり能力的には第2図の適応フ
イルタ61の方が低いが、固定フイルタ62が平
均的な入力信号の性質に関する信号を発生してい
るため、第2図の符号化器も全体としては第1図
の符号器と比べ遜色ない符号化が可能となつてい
る。 次に第2図のADPCM復号回路の動作を説明す
る。入力端子8から量子化符号が入力されると逆
適応量子化回路9は量子化された誤差信号e^jを再
生し、適応フイルタ111に入力し、次の標本時
刻の適応フイルタ演算に用い、かつ、加算器10
1により適応フイルタ111の出力y〓jと加算され
y^jを再生する。y^jは固定フイルタ112の出力x^j
と加算器102により加算され量子化された符号
器側入力信号x^jを再生し、出力端子12及び固定
フイルタ112へ供給される。適応フイルタ11
1と固定フイルタ112の伝達関数P1(Z)及び
P2(Z)は式(8)および式(9)に示す通りであり、逆
適応量子化回路9の出力から出力端子12までの
伝達関数D(Z)は D(Z)=1+P1(Z)/1−P2(Z) (11) となるため、式(7)と一致し、適応的に動く極をZ
平面上で持たないため、伝送路ビツト誤りが発生
しても安定な動作を期待できる。 以上のADPCM以外にも、ADPCM符号/復号
回路としては第2図の固定フイルタ62,112
を極の動きうる範囲を制限して使用する適応零
点/適応極形の予測フイルタを持つADPCM回路
もあるが、同様に説明できるため、詳細は省略す
る。 以上、ADPCM符号/復号回路について見て来
たが、このADPCM回路を既存PCM網に導入す
る事を考えると、PCMで符号化された信号は
ADPCM符号化され、再びPCM符号化され伝送
される形態が生ずる。この結果、PCM符号化と
ADPCM符号化が交互に行なわれる状況が発生す
る。 一般にADPCM符号/復号回路内部の演算は、
8ビツト非線形PCMを線形化すると14ビツト相
当となるため、PCM並の符号化を行なう必要性
から14ビツト以上の線形符号を用いて演算されて
いる。このため、ADPCM符号/復号回路と他の
ADPCM符号/復号回路との間が、ADPCM内部
演算ビツト数と等しいがそれより多い線形符号ビ
ツトで接続できるとすればADPCM符号/復号回
路を縦続接続させても接続自体による劣化はな
い。このため、最初のADPCM符号/復号回路と
それに続くADPCM符号/復号回路の内部状態が
全て一致しておればADPCM符号/復号回路を縦
続接続させても内部状態は各ADPCM符号/復号
回路で同様に変化し、何段に亘つて縦続接続させ
ても、1段分のADPCM回路の劣化に留まる。 しかしながら、前述した様にADPCM符号/復
号回路とそれに続くADPCM符号/復号回路間は
非線形8ビツトPCM符号で接続される。このた
め、縦続接続すると、使用可能ビツト数が少くな
る事および使用可能ビツト数の各ビツトの重み付
けが非線形である事に起因した接続自体の劣化を
伴う。このPCM信号による接続自体に起因する
劣化は、最初のADPCM符号/復号回路とそれに
続くADPCM符号/復号回路の内部状態がある時
点で一致したとしても、次段入力PCM符号が初
段入力PCM符号と比べ劣化分だけ異なる事に起
因して選択ADPCM符号が異なつて来る。選択
ADPCM符号が異なると、適応量子化の式(2)で与
えられる表1に示された乗数が異なる事、また、
式(5)、式(10)の適応係数が異なつて来る事より、内
部状態の一致がくずれる事となる。このため縦続
接続を行なつた場合の劣化は、上記PCM接続の
劣化分に加え、ADPCM符号/復号回路による劣
化分が縦続接続段数分だけ累積する事となり、全
体として非常に大きな劣化が発生する。 上記の内部状態の一致が崩壊して行く機構に関
しては、ADPCM符号/復号回路で使用される量
子化回路の閾値と代表値の関係が式(1)と式(3)で示
される線形量子化特性を持つている限りにおいて
はIEEE1979年発行の“Proceedings of
1979ISCAS”の969頁〜970頁に詳しく述べられ
ており、また、一度内部状態が一致すれば、閾値
間隔と代表値間隔が一致しているという線形量子
化特性の性質を利用してこの内部状態の一致を維
持する手法(同文献のTable2参照)についても
述べられている。 しかしながら、従来の内部状態維持手法は、量
子化能力を向上させるために一般に行なわれてい
る非線形量子化特性を有するADPCM符号/復号
回路には応用できない。この非線形量子化特性と
は、量子化回路へ入力される信号の統計的分布を
調べて、この分布に適した閾値と代表値を決定す
るもので、例えば分布関数がガウス分布の場合で
量子化符号ビツト数が4の場合は表2の様に定め
られる事がIRE1960年5月発行の“Transactions
on Information Theory”の7頁〜12頁に詳し
く述べられている。表2よりも明らかな様に閾値
間間隔及び代表値間隔は式(1)及び式(3)で与えられ
る線形量子化特性とは異なり一定幅ではなくな
る。このため、閾値間隔と代表値間隔が一定であ
る事を利用した従来の内部状態の一致を維持させ
る手法は適応できなくなり、この様な量子化回路
を有する符号/復号回路を非線形PCM符号化を
介し
【表】
て縦続接続させると特性劣化の累積が発生した。
本発明の目的は非線形量子化特性を有する
ADPCM符号/復号回路を非線形PCM符号化を
介して縦続接続しても特性劣化が累積しない
ADPCM復号回路を提供する事にある。 本発明の他の目的は従来のADPCM符号回路の
特性を変える事なく、ADPCM復号回路に補助回
路を付加するだけで縦続接続時の特性劣化が累積
しない方法を提供する事にある。 本発明のADPCM復号回路の構成は、標本時刻
毎に入力非線形符号化PCM信号を線型化した信
号と適応的に予測された予測信号との差である残
差信号を適応的に量子化するADPCM符号器から
出力される符号信号を受信し、非線形PCM復号
信号を出力するADPCM復号回路において、前記
ADPCM符号器からの量子化符号信号より、符号
器側での前記残差信号に対応して、代表残差値信
号、低極限残差信号および高極限残差信号を発生
し、かつ、前記量子化符号信号により次の標本時
刻での量子化特性を決定する逆適応量子化回路
と、前記逆適応量子化回路からの前記代表残差値
信号、前記低極限残差信号、および高極限残差信
号の各々に、後述する適応予測信号を加え、代表
復号値信号、低極限復号値信号、および高極限復
号値信号を発生する加算手段と、前記代表復号信
号を非線形符号化PCMに変換し、準出力非線形
PCM信号とする非線形PCM変換回路と、前記準
出力非線形PCM信号を線形化し、準出力線形
PCM信号とする線形PCM変換回路と、前記準出
力線形PCM信号と、前記低極限復号値信号およ
び前記高極限復号値信号の比較により、前記準出
力非線形PCM信号をそのまま、あるいは+1/
−1加算して非線形PCM復号信号とする手段と、
前記代表復号値信号、もしくは前記代表復号値信
号と前記代表残差値信号を入力し、現時刻での適
応予測信号を発生し、かつ、次の標本時刻での予
測特性を決定する適応予測回路とから少なくとも
構成され、適応逆量子化回路の出力に代表残差値
信号のみでなく高低両極限残差値信号をも出力さ
せ、これ等の値により代表復号値信号の非線形
PCM符号を修正して非線形PCM復号信号とする
事を特徴としている。 以下図面を参照しながら本発明を詳細に説明す
る。第3図は本発明の第2図に示すADPCM回路
に対する一実施例であり、入力端子8、逆量子化
回路91、加算器101〜109、適応フイルタ
111、固定フイルタ112、線形―非線形
PCM変換回路120、非線形―線形PCM変換回
路121、比較回路123、選択回路124、出
力端子126からなつており、適応フイルタ11
1、固定フイルタ112、加算器101,102
は第2図のADPCM復号回路と同一のものであ
る。また、線形―非線形PCM変換回路120、
非線形―線形PCM変換回路121の詳細は1970
年9月Bell System Laboratories発行の
“BSTJ”1555頁〜1588頁に説明されているもの
が利用できる。逆適応量子化器91は入力
ADPCM符号nを入力されると、表2に示された
nに対応する代表値、閾値及びn+1の閾値の
各々に量子化幅△jを乗じた値を出力するもので、
この様にすると代表値は両閾値で示される区間を
代表した形を取る。nが8の場合、n+1の閾値
として充分大きな数値(例えは10000)を仮想的
に設けて利用する。 いま端子8にADPCM符号njが入力されたとす
ると、逆適応量子化回路91はADPCM符号njに
対応して表2に示された代表値と閾値の各々に現
在の量子化幅△jを乗ぜられた値を出力する。こ
の出力信号は、符号器側の残差信号ejに対応した
代表残差信号e^jと、この代表残差信号e^jが代表し
ている信号値の区間の両極限を示す値となつてお
り、以下大きい方をThU、小さい方をThLとす
る。適応フイルタ111と固定フイルタ112で
は現時刻での予測値を出力中であるので、代表残
差信号e^jに対しては加算器101と102、ThL
に対しては加算器103と104、ThUに対し
ては加算器105と106により適応フイルタ1
11と固定フイルタ112の出力予測値を各々加
算する事により、各々代表復号信号x^j、低極限復
号信号xL j、高極限復号信号xU jを得る。ここでも
代表復号信号x^jは区間〔xL j、xU j)を代表する値と
なつている。 代表復号信号x^jは線形―非線形PCM変換器1
20により通常の8ビツトPCM符号Xに変換さ
れ、Xは再び非線形―線形PCM変換器121に
よりPCM量子化信号xR jへ変換される。 いま、xR jが区間〔xL j、xU j)内に存在する時を
考える。比較器123はこの状況では選択回路1
24によりPCM符号Xを次段でのADPCM符号
回路の内部状態が現段の内部状態と同一であると
すれば、次段のADPCM符号回路ではxR jが線形入
力として用いられ、かつ、区間〔xL j、xU j)内に
ある信号は現段と同じADPCM符号が割当てられ
る。このため、現段と次段のADPCM符号/復号
回路の内部状態は同一となる。 次に、xR jが区間〔xL j、xU j)になく、xR j>xU jの
場合を考える。現段ADPCM符号回路の入力信号
も非線形PCM信号であるから、区間〔xL j、xU j)
に少くとも1個PCMの代表値が入つているはず
である。(PCM代表値がこの区間になければ、こ
の区間を生成したADPCM符号は選択されない答
である。)さらに区間〔xL j、xU j)内にある代表値
x^jをPCM量子化した値がxR jであるから、PCMの
量子化閾値は〔xL j、x^j〕に存在し、xR j>xU jである
からPCMの量子化幅は2(xR j−x^j)〜2(xR j−xL j)
となり、この様な状況はPCMの量子化幅が
ADPCMの量子化幅の1倍から高々2倍程度とな
つた時に発生する事が理解されよう。この様な場
合、xR jを発生した非線形PCMコードXと、現段
ADPCM符号回路の入力非線形PCMコードとの
差はx^jが〔xL j、xU j)にあり、xR jはない事よりXの
方が1だけ高いPCMコードである事は明らかで
ある。非線形PCM符号は特殊な極性振幅表現で
あるため、比較回路123はこの状況で選択回路
124を働らかせxR jが正の時はXに加算器107
で+1、負の時はXに加算器108で−1したも
のを出力として選択させるため現段ADPCM符号
回路の入力PCM信号と次段ADPCM符号回路の
入力PCM信号が完全に等しくなり内部状態の一
致が維持される事が理解されよう。 さらにxR jが区間〔xL j、xU j)になく、xR j<xL jの
場合について考える。この場合も少くとも1個の
PCM代表値が区間〔xL j、xU j)に入つているはず
である。また、この区間内の代表値x^jをPCM量
子化した値がxR jであるから、PCMの量子化閾値
は〔x^j、xU j)に存在する。このためPCMの量子
化幅は2(x^j−xR j)〜2(xU j−xR j)となり、この場
合もPCMの量子化幅がADPCMの量子化幅の1
倍から高々2倍程度となつた時に発生する事が理
解されよう。この様な場合、xR jを発生した非線形
PCMコードXと、現段ADPCM符号回路の入力
非線形PCMコードとの差はXの方が1だけ小さ
いPCMコードとなつている事は明白であろう。
このため、比較回路123はこの状況で選択回路
124を働らかせ、xR jが正の時はXに加算器10
8で−1、負の時は加算器107で+1したもの
を出力として選択させるため、現段ADPCM符号
回路の入力PCM信号と次段ADPCM符号回路の
入力PCM信号が完全に等しくなり内部状態の一
致が維持される。 なお、第3図における適応フイルタ111及び
固定フイルタの動作は従来のADPCMの説明とし
て第2図を用いて説明した通りである。 以上の様に本発明に従えばADPCM符号/復号
回路をPCM符号/復号回路を介して多段に亘つ
て接続しても、ADPCM符号/復号回路の各内部
状態が一致すればADPCM符号/復号回路1段分
の特性劣化のみとなる性質を有するADPCM復号
回路が実現できる。 また、第3図は第2図のADPCM回路に対する
本発明の説明を行なつたが、第1図のADPCM回
路に対しても容易に応用可能である。さらに、第
2図のADPCM回路における予測フイルタ112
は固定フイルタであつたが、適応フイルタであつ
ても本発明の本質を変えるものではない。 さらに、容易に類推できる様に、逆適応量子化
器91の出力をe^j、(ThL−e^j)、(ThU−e^j)の
様に、代表値と、代表値から極限値までの長さと
なる様にし、xU j、xL jの各々をx^jに(ThU−e^j)と
(ThL−e^j)を各々加算して得る方法も本発明の
うちである。
ADPCM符号/復号回路を非線形PCM符号化を
介して縦続接続しても特性劣化が累積しない
ADPCM復号回路を提供する事にある。 本発明の他の目的は従来のADPCM符号回路の
特性を変える事なく、ADPCM復号回路に補助回
路を付加するだけで縦続接続時の特性劣化が累積
しない方法を提供する事にある。 本発明のADPCM復号回路の構成は、標本時刻
毎に入力非線形符号化PCM信号を線型化した信
号と適応的に予測された予測信号との差である残
差信号を適応的に量子化するADPCM符号器から
出力される符号信号を受信し、非線形PCM復号
信号を出力するADPCM復号回路において、前記
ADPCM符号器からの量子化符号信号より、符号
器側での前記残差信号に対応して、代表残差値信
号、低極限残差信号および高極限残差信号を発生
し、かつ、前記量子化符号信号により次の標本時
刻での量子化特性を決定する逆適応量子化回路
と、前記逆適応量子化回路からの前記代表残差値
信号、前記低極限残差信号、および高極限残差信
号の各々に、後述する適応予測信号を加え、代表
復号値信号、低極限復号値信号、および高極限復
号値信号を発生する加算手段と、前記代表復号信
号を非線形符号化PCMに変換し、準出力非線形
PCM信号とする非線形PCM変換回路と、前記準
出力非線形PCM信号を線形化し、準出力線形
PCM信号とする線形PCM変換回路と、前記準出
力線形PCM信号と、前記低極限復号値信号およ
び前記高極限復号値信号の比較により、前記準出
力非線形PCM信号をそのまま、あるいは+1/
−1加算して非線形PCM復号信号とする手段と、
前記代表復号値信号、もしくは前記代表復号値信
号と前記代表残差値信号を入力し、現時刻での適
応予測信号を発生し、かつ、次の標本時刻での予
測特性を決定する適応予測回路とから少なくとも
構成され、適応逆量子化回路の出力に代表残差値
信号のみでなく高低両極限残差値信号をも出力さ
せ、これ等の値により代表復号値信号の非線形
PCM符号を修正して非線形PCM復号信号とする
事を特徴としている。 以下図面を参照しながら本発明を詳細に説明す
る。第3図は本発明の第2図に示すADPCM回路
に対する一実施例であり、入力端子8、逆量子化
回路91、加算器101〜109、適応フイルタ
111、固定フイルタ112、線形―非線形
PCM変換回路120、非線形―線形PCM変換回
路121、比較回路123、選択回路124、出
力端子126からなつており、適応フイルタ11
1、固定フイルタ112、加算器101,102
は第2図のADPCM復号回路と同一のものであ
る。また、線形―非線形PCM変換回路120、
非線形―線形PCM変換回路121の詳細は1970
年9月Bell System Laboratories発行の
“BSTJ”1555頁〜1588頁に説明されているもの
が利用できる。逆適応量子化器91は入力
ADPCM符号nを入力されると、表2に示された
nに対応する代表値、閾値及びn+1の閾値の
各々に量子化幅△jを乗じた値を出力するもので、
この様にすると代表値は両閾値で示される区間を
代表した形を取る。nが8の場合、n+1の閾値
として充分大きな数値(例えは10000)を仮想的
に設けて利用する。 いま端子8にADPCM符号njが入力されたとす
ると、逆適応量子化回路91はADPCM符号njに
対応して表2に示された代表値と閾値の各々に現
在の量子化幅△jを乗ぜられた値を出力する。こ
の出力信号は、符号器側の残差信号ejに対応した
代表残差信号e^jと、この代表残差信号e^jが代表し
ている信号値の区間の両極限を示す値となつてお
り、以下大きい方をThU、小さい方をThLとす
る。適応フイルタ111と固定フイルタ112で
は現時刻での予測値を出力中であるので、代表残
差信号e^jに対しては加算器101と102、ThL
に対しては加算器103と104、ThUに対し
ては加算器105と106により適応フイルタ1
11と固定フイルタ112の出力予測値を各々加
算する事により、各々代表復号信号x^j、低極限復
号信号xL j、高極限復号信号xU jを得る。ここでも
代表復号信号x^jは区間〔xL j、xU j)を代表する値と
なつている。 代表復号信号x^jは線形―非線形PCM変換器1
20により通常の8ビツトPCM符号Xに変換さ
れ、Xは再び非線形―線形PCM変換器121に
よりPCM量子化信号xR jへ変換される。 いま、xR jが区間〔xL j、xU j)内に存在する時を
考える。比較器123はこの状況では選択回路1
24によりPCM符号Xを次段でのADPCM符号
回路の内部状態が現段の内部状態と同一であると
すれば、次段のADPCM符号回路ではxR jが線形入
力として用いられ、かつ、区間〔xL j、xU j)内に
ある信号は現段と同じADPCM符号が割当てられ
る。このため、現段と次段のADPCM符号/復号
回路の内部状態は同一となる。 次に、xR jが区間〔xL j、xU j)になく、xR j>xU jの
場合を考える。現段ADPCM符号回路の入力信号
も非線形PCM信号であるから、区間〔xL j、xU j)
に少くとも1個PCMの代表値が入つているはず
である。(PCM代表値がこの区間になければ、こ
の区間を生成したADPCM符号は選択されない答
である。)さらに区間〔xL j、xU j)内にある代表値
x^jをPCM量子化した値がxR jであるから、PCMの
量子化閾値は〔xL j、x^j〕に存在し、xR j>xU jである
からPCMの量子化幅は2(xR j−x^j)〜2(xR j−xL j)
となり、この様な状況はPCMの量子化幅が
ADPCMの量子化幅の1倍から高々2倍程度とな
つた時に発生する事が理解されよう。この様な場
合、xR jを発生した非線形PCMコードXと、現段
ADPCM符号回路の入力非線形PCMコードとの
差はx^jが〔xL j、xU j)にあり、xR jはない事よりXの
方が1だけ高いPCMコードである事は明らかで
ある。非線形PCM符号は特殊な極性振幅表現で
あるため、比較回路123はこの状況で選択回路
124を働らかせxR jが正の時はXに加算器107
で+1、負の時はXに加算器108で−1したも
のを出力として選択させるため現段ADPCM符号
回路の入力PCM信号と次段ADPCM符号回路の
入力PCM信号が完全に等しくなり内部状態の一
致が維持される事が理解されよう。 さらにxR jが区間〔xL j、xU j)になく、xR j<xL jの
場合について考える。この場合も少くとも1個の
PCM代表値が区間〔xL j、xU j)に入つているはず
である。また、この区間内の代表値x^jをPCM量
子化した値がxR jであるから、PCMの量子化閾値
は〔x^j、xU j)に存在する。このためPCMの量子
化幅は2(x^j−xR j)〜2(xU j−xR j)となり、この場
合もPCMの量子化幅がADPCMの量子化幅の1
倍から高々2倍程度となつた時に発生する事が理
解されよう。この様な場合、xR jを発生した非線形
PCMコードXと、現段ADPCM符号回路の入力
非線形PCMコードとの差はXの方が1だけ小さ
いPCMコードとなつている事は明白であろう。
このため、比較回路123はこの状況で選択回路
124を働らかせ、xR jが正の時はXに加算器10
8で−1、負の時は加算器107で+1したもの
を出力として選択させるため、現段ADPCM符号
回路の入力PCM信号と次段ADPCM符号回路の
入力PCM信号が完全に等しくなり内部状態の一
致が維持される。 なお、第3図における適応フイルタ111及び
固定フイルタの動作は従来のADPCMの説明とし
て第2図を用いて説明した通りである。 以上の様に本発明に従えばADPCM符号/復号
回路をPCM符号/復号回路を介して多段に亘つ
て接続しても、ADPCM符号/復号回路の各内部
状態が一致すればADPCM符号/復号回路1段分
の特性劣化のみとなる性質を有するADPCM復号
回路が実現できる。 また、第3図は第2図のADPCM回路に対する
本発明の説明を行なつたが、第1図のADPCM回
路に対しても容易に応用可能である。さらに、第
2図のADPCM回路における予測フイルタ112
は固定フイルタであつたが、適応フイルタであつ
ても本発明の本質を変えるものではない。 さらに、容易に類推できる様に、逆適応量子化
器91の出力をe^j、(ThL−e^j)、(ThU−e^j)の
様に、代表値と、代表値から極限値までの長さと
なる様にし、xU j、xL jの各々をx^jに(ThU−e^j)と
(ThL−e^j)を各々加算して得る方法も本発明の
うちである。
第1図は従来のADPCM符号/復号回路を示す
ブロツク図、第2図は他の従来のADPCM符号/
復号回路を示すブロツク図、第3図は本発明の
ADPCM復号回路を示すブロツク図である。 図において、91…逆適応量子化回路、111
…適応フイルタ、112…固定フイルタ、101
〜108…加算器、120…線形―非線形PCM
変換器、121…非線形―線形PCM変換器、1
23…比較回路、124…選択回路、である。
ブロツク図、第2図は他の従来のADPCM符号/
復号回路を示すブロツク図、第3図は本発明の
ADPCM復号回路を示すブロツク図である。 図において、91…逆適応量子化回路、111
…適応フイルタ、112…固定フイルタ、101
〜108…加算器、120…線形―非線形PCM
変換器、121…非線形―線形PCM変換器、1
23…比較回路、124…選択回路、である。
Claims (1)
- 1 標本時刻毎に入力非線形符号化PCM信号を
線形化した信号と適応的に予測された予測信号と
の差である残差信号を適応的に量子化する
ADPCM符号器から出力される符号信号を受信し
非線形PCM復号信号を出力するADPCM復号回
路において、前記ADPCM符号器からの量子化符
号信号より、符号器側での前記残差信号に対応し
て、代表残差値信号、低極限残差信号および高極
限残差信号を発生し、かつ、前記量子化符号信号
により次の標本時刻での量子化特性を決定する逆
適応量子化回路と、前記逆適応量子化回路からの
前記代表残差値信号、前記低極限残差信号、およ
び高極限残差信号の各々に、後述する適応予測信
号を加え、代表復号値信号、低極限復号値信号、
および高極限復号値信号を発生する加算手段と、
前記代表復号信号を非線形符号化PCMに変換し、
準出力非線形PCM信号とする非線形PCM変換回
路と、前記準出力非線形PCM信号を線形化し、
準出力線形PCM信号とする線形PCM変換回路
と、前記準出力形PCM信号と、前記低極限復号
値信号および前記高極限復号値信号の比較によ
り、前記準出力非線形PCM信号をそのまま、あ
るいは+1または−1加算して非線形PCM復号
信号とする手段と、前記代表復号値信号、もしく
は前記代表復号値信号と前記代表残差値信号を入
力し、現時刻での適応予測信号を発生し、かつ、
次の標本時刻での予測特性を決定する適応予測回
路とから少なくとも構成されADPCM復号回路。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21671082A JPS59107630A (ja) | 1982-12-10 | 1982-12-10 | Adpcm復号回路 |
US06/558,236 US4571737A (en) | 1982-12-10 | 1983-12-05 | Adaptive differential pulse code modulation decoding circuit |
AU22175/83A AU556155B2 (en) | 1982-12-10 | 1983-12-07 | Ad pcm decoder |
FR8319785A FR2542147B1 (fr) | 1982-12-10 | 1983-12-09 | Circuit de decodage par impulsions codees differentielles adaptative |
CA000442934A CA1219373A (en) | 1982-12-10 | 1983-12-09 | Adaptive differential pulse code modulation decoding circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21671082A JPS59107630A (ja) | 1982-12-10 | 1982-12-10 | Adpcm復号回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59107630A JPS59107630A (ja) | 1984-06-21 |
JPS6356727B2 true JPS6356727B2 (ja) | 1988-11-09 |
Family
ID=16692702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21671082A Granted JPS59107630A (ja) | 1982-12-10 | 1982-12-10 | Adpcm復号回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59107630A (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59103423A (ja) * | 1982-12-06 | 1984-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Adpcm−pcm変換装置 |
-
1982
- 1982-12-10 JP JP21671082A patent/JPS59107630A/ja active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59103423A (ja) * | 1982-12-06 | 1984-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Adpcm−pcm変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JPS59107630A (ja) | 1984-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0773218B2 (ja) | Adpcm符号化・復号化器 | |
JP2754741B2 (ja) | 符号化装置 | |
US8653991B2 (en) | Coding method, decoding method, and apparatuses, programs and recording media therefor | |
US5034965A (en) | Efficient coding method and its decoding method | |
JP3339335B2 (ja) | 圧縮符号化復号方式 | |
US4571737A (en) | Adaptive differential pulse code modulation decoding circuit | |
JPH0234498B2 (ja) | ||
JPH0411054B2 (ja) | ||
KR20050087366A (ko) | 오디오 신호의 인코딩 방법 | |
JPS6356727B2 (ja) | ||
JPH0414528B2 (ja) | ||
WO2004112256A1 (ja) | 音声符号化装置 | |
JP5057334B2 (ja) | 線形予測係数算出装置、線形予測係数算出方法、線形予測係数算出プログラム、および記憶媒体 | |
JPS6031326A (ja) | Dpcm符号化復号化方法および装置 | |
US5166958A (en) | Coding apparatus with low-frequency and DC suppression | |
JPH043696B2 (ja) | ||
JPH043695B2 (ja) | ||
JPH061903B2 (ja) | 信号伝送装置 | |
JPS5944137A (ja) | 適応差分pcmの方法と符号化/復号化回路 | |
JPS59181838A (ja) | 内部状態保持回路付adpcm復号回路 | |
JP3013391B2 (ja) | Adpcm符号化方式 | |
JP2548122B2 (ja) | 符号化装置 | |
JP2975764B2 (ja) | 信号の符号化復号化装置 | |
JPS6145422B2 (ja) | ||
JPS635926B2 (ja) |