JPS6356452B2 - - Google Patents
Info
- Publication number
- JPS6356452B2 JPS6356452B2 JP58060454A JP6045483A JPS6356452B2 JP S6356452 B2 JPS6356452 B2 JP S6356452B2 JP 58060454 A JP58060454 A JP 58060454A JP 6045483 A JP6045483 A JP 6045483A JP S6356452 B2 JPS6356452 B2 JP S6356452B2
- Authority
- JP
- Japan
- Prior art keywords
- capacity
- signal
- temperature
- compressor
- issued
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012423 maintenance Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Landscapes
- Air Conditioning Control Device (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
【発明の詳細な説明】
本発明は空調対象域における実際の空気温度と
設定温度とを比較して圧縮機を容量制御しながら
運転し、変動巾が小さい温度制御を可能とした空
気調和装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that operates a compressor while controlling its capacity by comparing the actual air temperature in an air-conditioned area with a set temperature, thereby enabling temperature control with a small fluctuation range. .
吹出空気温度を周期的な繰り返しで検出し、圧
縮機の容量制御をしながら室温を一定に保持すべ
く空気調和を行なわせるものが多く用いられる
が、従来は実開昭57−10492号公報に開示されて
なる装置のように、始動後空気温度が最初にサー
モの所定設定値に到達するまでの間は、容量制御
器を不作動となすことにより、運転始動時の立上
り時間を短縮するように制御回路を構成している
のが普通である。 Many devices are used that periodically detect the temperature of the blown air and perform air conditioning to maintain a constant room temperature while controlling the capacity of the compressor. As in the disclosed device, the capacity controller is deactivated until the air temperature first reaches a predetermined thermostat setting after startup, thereby reducing the startup time at startup. Usually, the control circuit is configured in the
例えば圧縮機にステツプ数の多い(通常5〜9
段)段階容量制御を可能としているものを使用し
ているとすると、始めに低能力域で起動すると、
周期的、段階的に容量制御したのでは負荷に見合
つた能力域に到達するまでに時間が長くかかつ
て、迅速に所望温度域に達することが不可能とな
り不快感を覚えさせる不利があるからである。 For example, a compressor has a large number of steps (usually 5 to 9).
Step) If you are using a device that enables stepwise capacity control, if you start it up in the low capacity range,
If the capacity is controlled periodically or in stages, it may take a long time to reach a capacity range commensurate with the load, or it may be impossible to quickly reach the desired temperature range, which has the disadvantage of causing discomfort. be.
従つて始動時は100%能力で運転し吹出空気温
度が所定温度に達した時点から通常の周期的、段
階的容量制御を行なつているのである。 Therefore, at startup, the engine operates at 100% capacity, and from the moment the blown air temperature reaches a predetermined temperature, normal periodic, step-by-step capacity control is performed.
ところが、これでは空調負荷が小さいときに
100%能力で起動させると所定設定温度を超過し
てしまつて冷房の場合は冷え過ぎ、暖房の場合は
暑過ぎの現象を生じて、その後のステツプ容量制
御を経てやつと所定設定温度に達するという不都
合があつた。 However, when the air conditioning load is small,
If it is started at 100% capacity, the predetermined set temperature will be exceeded, resulting in the phenomenon of being too cold in the case of cooling and too hot in the case of heating, and then reaching the predetermined temperature through step capacity control. There was an inconvenience.
このように、従来の装置では特に始動時に問題
があつたのに着目して本発明は成されたものであ
つて、その目的とするところは、始動運転時にお
けるウオーミングアツプ時間を短縮すると共に、
負荷に見合つた圧縮機能力に逸早く達せしめて温
度変動巾が小さい空気調和運転を行なわせること
により、快適環境を確実にしかも簡単に得る如く
した点にある。 As described above, the present invention was developed by paying attention to the problems that occurred with conventional devices, especially during startup, and its purpose is to shorten the warming-up time during startup operation, and
The purpose is to quickly reach a compression function commensurate with the load and perform air conditioning operation with a small temperature fluctuation range, thereby ensuring and easily obtaining a comfortable environment.
そのために本発明は、容量制御可能な圧縮機
と、該圧縮機の容量を段階的に制御し得る容量制
御器と、空調対象域の空気温度を検出する温度検
出手段と、該温度検出手段が検出した温度と温度
帯域を持つ設定温度とを周期的な繰り返しで比較
し、能力増加信号、能力減少信号及び現能力維持
信号のうちの対応する1つを選択し発令する能力
制御指令手段と、該能力制御指令手段が発令する
信号が能力増加信号あるいは能力減少信号であれ
ば、前記容量制御器に対して1段増加あるいは1
段減少のステツプ制御出力を与える一方、現能力
維持信号であれば前記容量制御器を現制御出力状
態に保持する容量制御出力手段と、前記圧縮機を
運転始動するのに連動して、前記容量制御器を最
高容量と最低容量との中間の容量で作動せしめる
と共に、前記能力制御指令手段に対して温度比較
のための周期を短縮する信号を発令し、かつこの
信号を現能力維持信号の発令に切替る時点まで続
けた後に解除し、前記周期を復元せしめる切替手
段6とを空気調和装置に備えしめた構成としたも
のであり、始動時に中間能力で起動することによ
り、負荷の大小にかかわりなく速やかに負荷に見
合つた能力への到達が可能であると共に、設定温
度領域を超えるオーバラン現象を解消することが
可能であつて、ここに前述の目的を達成すること
ができる。 To this end, the present invention provides a compressor capable of controlling the capacity, a capacity controller capable of controlling the capacity of the compressor in stages, a temperature detection means for detecting the air temperature in an air-conditioned area, and a temperature detection means that Capacity control command means for periodically and repeatedly comparing the detected temperature and a set temperature having a temperature band, and selecting and issuing a corresponding one of a capacity increase signal, a capacity decrease signal, and a current capacity maintenance signal; If the signal issued by the capacity control command means is a capacity increase signal or a capacity decrease signal, the capacity control unit increases the capacity by one stage or increases the capacity by one level.
A capacity control output means that provides a step control output for stage reduction, while maintaining the capacity controller in the current control output state if the current capacity maintenance signal is present; The controller is operated at a capacity intermediate between the maximum capacity and the minimum capacity, and a signal is issued to the capacity control command means to shorten the period for temperature comparison, and this signal is used to issue a current capacity maintenance signal. The air conditioner is equipped with a switching means 6 that continues to switch to the point where the cycle continues and then releases the cycle to restore the cycle.By starting at an intermediate capacity at the time of startup, It is possible to quickly reach a capacity commensurate with the load without any problems, and it is also possible to eliminate the overrun phenomenon that exceeds the set temperature range, thereby achieving the above-mentioned purpose.
以下、本発明空気調和装置の実施例を図面にも
とづき詳細説明する。 Hereinafter, embodiments of the air conditioner of the present invention will be described in detail based on the drawings.
第1図に示した本発明の実施例に係る空気調和
装置は、容量制御器2の作動により段階的に容量
制御が可能な2台の圧縮機1A,1Bからなる圧
縮機1を備えており、例えば6気筒の往復動圧縮
機を用いて、圧縮機ケーシング内の低圧吸入ガス
通路を2分割し3気筒づつ吸入可能となし、一方
の3気筒の吸入通路を開閉可能となして100%及
び50%の運転を可能となすものである。 The air conditioner according to the embodiment of the present invention shown in FIG. 1 includes a compressor 1 consisting of two compressors 1A and 1B whose capacity can be controlled in stages by the operation of a capacity controller 2. For example, using a 6-cylinder reciprocating compressor, the low-pressure suction gas passage in the compressor casing is divided into two so that each three cylinders can take in suction, and one of the three cylinders' suction passage can be opened and closed to achieve 100% and This enables 50% operation.
この2台の圧縮機1A,1Bを組合わせて、前
記容量制御器2の作動により両者共100%で運転
する最大(第1段目)能力、一方が100%、他方
が50%で運転する第2段目の能力、両者共50%で
運転する第3段目の能力、一方のみ100%で運転
する第4段目の能力、一方のみ50%で運転する第
5段目の能力の5段階能力に全停を加えて所謂6
段階能力制御が可能である。 By combining these two compressors 1A and 1B, the capacity controller 2 operates to operate both at maximum (first stage) capacity at 100%, one at 100% and the other at 50%. The ability of the second stage, the ability of the third stage to operate both at 50%, the ability of the fourth stage to operate only one at 100%, the ability of the fifth stage to operate only one at 50%. The so-called 6 is obtained by adding full stop to the stage ability.
Step-by-step capacity control is possible.
而して本装置の冷房運転は上記圧縮機1から吐
出されたガスを図示しない凝縮器で凝縮液化した
後、減圧器で減圧し低圧冷媒液となして2経路を
有する蒸発器7に送つて、室内還気との間で蒸発
熱を熱交換せしめた後、前記圧縮機1に返戻する
ようになつていて、2つの独立した冷媒回路を持
つように構成している。 In the cooling operation of this device, the gas discharged from the compressor 1 is condensed and liquefied in a condenser (not shown), and then reduced in pressure in a pressure reducer to form a low-pressure refrigerant liquid and sent to the evaporator 7 having two paths. After the heat of evaporation is exchanged with the indoor return air, it is returned to the compressor 1, and is configured to have two independent refrigerant circuits.
そして前記蒸発器7において冷却された室内還
気は室内側フアン8によつて送気ダクト9を経て
室内に送出される。 The indoor return air cooled in the evaporator 7 is then sent into the room through an air supply duct 9 by an indoor fan 8.
斯る冷房運転は冷房対象域の空気温度例えば送
気ダクト9内の冷風の温度を検出する温度検出手
段3としての感温センサからの信号により室温を
一定に保持する温度制御が、前述せる圧縮機の能
力制御下において行なわれる。 In such cooling operation, the temperature control that maintains the room temperature constant by the signal from the temperature sensing means 3 which detects the air temperature in the area to be cooled, for example, the temperature of the cold air in the air supply duct 9, is carried out by the above-mentioned compression. This is done under the control of the machine's capabilities.
この制御系統について第1図乃至第3図により
説明すると、前記感温センサ3を入力信号要素と
し、かつ前記容量制御器2を出力要素として能力
制御指令手段4例えば3段指令形サーモスタツト
と、制御回路10とを備えている。 This control system will be explained with reference to FIGS. 1 to 3. The temperature sensor 3 is used as an input signal element, the capacity controller 2 is used as an output element, and a capacity control command means 4, for example, a three-stage command type thermostat, A control circuit 10 is provided.
3段指令形サーモスタツト(以下サーモと略称
する)4は第3図に例示するように、設定温度点
が数度程異なり、かつ個々には1℃程度のデイフ
アレンシヤルを有する温度調節器4A,4Bを用
いて、高温側4Aと低温側4Bとが共に作動して
接点を閉成(ON)したときには、これを能力増
加信号となし、一方、高温側4Aが非作動で接点
を開放(OFF)しており、かつ低温側4Bが作
動して接点を閉成(ON)しているときにはこれ
を現能力維持信号となし、また、高温側4A、低
温側4B共に非作動で接点を開放(OFF)した
ときには、これを能力減少信号となすものであつ
て、それ等3つの信号のうちの1つを空調対象域
の空気温度(本実施例の場合吹出空気温度)の高
低に対応して選択し、タイマー回路との組合わせ
によつて周期的(通常3分)な繰り返しで発令す
るようになつている。 The three-stage command type thermostat (hereinafter abbreviated as thermostat) 4 is a temperature controller whose set temperature points differ by several degrees and each has a differential of about 1 degree Celsius, as illustrated in Fig. 3. Using 4A and 4B, when both high temperature side 4A and low temperature side 4B operate and close the contact (ON), this is used as a capacity increase signal, while high temperature side 4A is inactive and opens the contact. (OFF) and when the low temperature side 4B operates and closes the contact (ON), this is used as the current capacity maintenance signal, and both the high temperature side 4A and the low temperature side 4B are inactive and the contact is closed (ON). When it is opened (OFF), this is used as a capacity reduction signal, and one of these three signals corresponds to the height of the air temperature in the area to be air conditioned (in this example, the blowout air temperature). The command is selected and issued periodically (usually every 3 minutes) in combination with a timer circuit.
上述の作動を行なうサーモ4は当然冷房用のも
のであつて、暖房用は能力増加信号と能力減少信
号とが入れ替るようにすればよいことは言うまで
もない。 The thermostat 4 that operates as described above is of course for cooling purposes, and it goes without saying that for heating purposes, the capacity increase signal and capacity decrease signal may be interchanged.
次に制御回路10は第2図にブロツク示してい
るが、容量制御出力手段5と切替手段6とからな
つており、容量制御出力手段5は圧縮機1におけ
る前述の6段階能力のいずれか1つを容量制御器
2によつて選択するための制御出力を発令するも
のであり、サーモ4からの信号が能力増加信号あ
るいは能力減少信号であれば、1段増加あるいは
1段減少のステツプ制御出力を容量制御器2に発
令する一方、現能力維持信号であれば容量制御器
2を現状の制御出力状態のままに保持するように
出力を発令するものである。 Next, the control circuit 10 is shown as a block diagram in FIG. 2, and consists of a capacity control output means 5 and a switching means 6. If the signal from the thermostat 4 is a capacity increase signal or a capacity decrease signal, a step control output is issued for one step increase or one step decrease. is issued to the capacity controller 2, while if it is a current capacity maintenance signal, an output is issued to maintain the capacity controller 2 in its current control output state.
一方、切替手段6は、前記圧縮機1に対し停止
から運転始動せしめる指令信号S例えば温度調節
スイツチが閉成するのに連動して、前記容量制御
器2を最高容量(100%+100%)と最低容量(0
%+0%)の中間の容量(例えば50%+50%)で
作動せしめると共に、前記サーモ4のタイマー回
路に信号を送つて温度比較のための周期を短縮せ
しめ、例えば通常3分の周期T0を1分の周期T1
に短縮せしめるようになつている。 On the other hand, the switching means 6 controls the capacity controller 2 to set the capacity to the maximum capacity (100%+100%) in response to a command signal S for starting the compressor 1 from a stopped state, for example, when a temperature control switch is closed. Minimum capacity (0
% + 0%) (for example, 50% + 50%), and sends a signal to the timer circuit of the thermostat 4 to shorten the period for temperature comparison, for example, the period T 0 is normally 3 minutes. Period of 1 minute T 1
It is becoming shorter.
この短縮するための信号を、運転始動時点から
サーモ4の信号が能力増加信号から現能力維持信
号への発令に切替る時点まで続けた後に解除する
ようにするのであつて、爾後は前記サーモ4を通
常の周期T0で作動するように復元せしめるので
ある。 This shortening signal is continued from the start of operation until the time when the signal of the thermostat 4 switches from the capacity increase signal to the current capacity maintenance signal, and then is released. is restored to operate at the normal period T 0 .
このように周期を短縮させるものとしてはコン
デンサと抵抗とを要素となした電子的タイマー回
路における計時のための放電時定数を変えること
によつて簡単に行ない得るものである。 The cycle can be shortened in this way simply by changing the discharge time constant for timing in an electronic timer circuit consisting of a capacitor and a resistor.
叙上の構成を有する空気調和装置の冷房運転作
動は次の如く成される。 The cooling operation of the air conditioner having the above configuration is performed as follows.
温度調節スイツチの閉成イ(第4図参照)に伴
つて、圧縮機1が起動するが、その際前述したよ
うに切替手段6が作動して圧縮機1は(50%+50
%)の中間能力で起動すると同時に前記サーモ4
は温度比較のためのサンプル周期を3分から1分
に短縮せしめられるロ。 When the temperature control switch is closed (see Fig. 4), the compressor 1 starts up, but at that time, as mentioned above, the switching means 6 operates and the compressor 1 changes to (50% + 50%).
%) at the intermediate capacity and at the same time the thermometer 4
The sample period for temperature comparison can be shortened from 3 minutes to 1 minute.
従つて第5図に示すように短い周期(T1=1
分)の繰り返しで吸出空気温度と設定温度との比
較が成される結果、能力増加信号が発令している
間は1段増加のステツプ制御が速やかに行なわれ
る。 Therefore, as shown in Fig. 5, the short period (T 1 = 1
As a result of repeated comparisons between the suction air temperature and the set temperature (minutes), the step control for increasing the capacity by one stage is quickly performed while the capacity increase signal is being issued.
その場合、冷房負荷が大きいときには当然最高
能力に速やかに達し、一方、冷房負荷が小さいと
きには室温が早く設定温度に達するので最高能力
に至るまでに能力増加信号は現能力維持信号に切
替る。 In this case, when the cooling load is large, the maximum capacity is naturally reached quickly, while when the cooling load is small, the room temperature quickly reaches the set temperature, so the capacity increase signal is switched to the current capacity maintenance signal by the time the maximum capacity is reached.
このようにサーモ4の発令する信号が現能力維
持信号に切替るハと同時に、サーモ4は前記サン
プル周期を1分から3分に復元せしめられニ、そ
の後は3分毎に温度比較を行なつてサーモ4が発
令する信号の種類に対応した圧縮機容量制御が成
されて負荷に見合つた能力を速やかに選択して発
停回数が少なく、かつ温度が安定した冷房運転が
なされる。 In this way, at the same time that the signal issued by the thermostat 4 switches to the current capacity maintenance signal, the thermostat 4 restores the sampling period from 1 minute to 3 minutes, and thereafter performs temperature comparison every 3 minutes. Compressor capacity control is performed in accordance with the type of signal issued by the thermostat 4, and a capacity suitable for the load is quickly selected to provide cooling operation with fewer starts and stops and a stable temperature.
また中間容量で圧縮機の始動を行うので、急激
な冷媒吸入は起らず、従つて液バツクによる圧縮
機の損傷等の不都合を生ずることもない。 Furthermore, since the compressor is started at an intermediate capacity, sudden suction of refrigerant does not occur, and therefore, problems such as damage to the compressor due to liquid bag do not occur.
尚、上記実施例は冷房運転について説明した
が、本発明は暖房運転における温度制御も同様の
構成、作用により成し得るものであつてヒートポ
ンプ式の冷暖房装置等に適用できることは言うま
でもない。 Incidentally, although the above-mentioned embodiments have been described with respect to cooling operation, it goes without saying that the present invention can also achieve temperature control in heating operation using the same structure and operation, and can be applied to heat pump type air-conditioning devices and the like.
つづいて本発明の効果を挙げると次の通りであ
る。 Next, the effects of the present invention are as follows.
() 始動の際には最高能力でなくて中間能力で
運転するようにしているので過大能力で運転し
た場合に起り易いオーバラン現象を解消するこ
とができる。() Since the engine is operated at an intermediate capacity rather than the maximum capacity when starting, it is possible to eliminate the overrun phenomenon that tends to occur when operating at excessive capacity.
() 負荷大なるときには始動後中間能力から短
い周期でステツプ能力増加するために、速やか
に最高能力の運転に到達しウオーミングアツプ
時間が短縮される。() When the load is large, the step capacity is increased in short cycles from the intermediate capacity after startup, so the maximum capacity operation is quickly reached and the warm-up time is shortened.
() 起動時のサンプリング周期を短くすること
によつて、負荷に見合つた能力に速やかに到達
し快適性の面で非常にすぐれている。() By shortening the sampling period at startup, the capacity commensurate with the load is quickly reached, resulting in extremely high comfort.
() 始動後の速やかな能力制御が一段落した後
はサンプリング周期を通常の状態に戻すように
しているので、圧縮機1の発停、容量変換の短
周期的な繰り返しが起こることはなく運転経済
性ならびに信頼性の向上がはかれる。() After the rapid capacity control after startup is completed, the sampling period is returned to the normal state, so short-term repetitions of starting/stopping the compressor 1 and changing the capacity do not occur, resulting in economical operation. performance and reliability are improved.
() 中間能力で始動されているので、液バツク
の防止が図れる。() Since it is started at intermediate capacity, it is possible to prevent liquid back up.
各図は本発明の実施例の態様を示すもので、第
1図は略示構造図、第2図は制御回路ブロツク示
図、第3図は第2図における能力制御指令手段の
動作説明図、第4図は第2図々示制御回路の切替
手段に係るフローチヤート図、第5図は運転時間
に対する吹出空気温度変化を示す動作説明図であ
る。
1……圧縮機、2……容量制御器、3……温度
検出手段、4……能力制御指令手段、5……容量
制御出力手段、6……切替手段。
Each figure shows an aspect of an embodiment of the present invention, and FIG. 1 is a schematic structural diagram, FIG. 2 is a control circuit block diagram, and FIG. 3 is an explanatory diagram of the operation of the capacity control command means in FIG. 2. FIG. 4 is a flowchart relating to the switching means of the control circuit shown in FIG. 2, and FIG. 5 is an operation explanatory diagram showing changes in the temperature of the blown air with respect to operating time. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Capacity controller, 3... Temperature detection means, 4... Capacity control command means, 5... Capacity control output means, 6... Switching means.
Claims (1)
量を段階的に制御し得る容量制御器2と、空調対
象域の空気温度を検出する温度検出手段3と、こ
の温度検出手段3が検出した温度と温度帯域を持
つ設定温度とを周期的な繰り返しで比較し、能力
増加信号、能力減少信号及び現能力維持信号のう
ちの対応する1つを選択し発令する能力制御指令
手段4と、この能力制御指令手段4が発令する信
号が能力増加信号あるいは能力減少信号であれ
ば、前記容量制御器2に対して1段増加あるいは
1段減少のステツプ制御出力を与える一方、現能
力維持信号であれば前記容量制御器2を現制御出
力状態に保持する容量制御出力手段5と、前記圧
縮機1を運転始動するのに連動して、前記容量制
御器2を最高容量と最低容量との中間の容量で作
動せしめると共に、前記能力制御指令手段4に対
して温度比較のための周期を短縮する信号を発令
し、かつこの信号を現能力維持信号の発令に切替
る時点まで続けた後に解除し、前記周期を復元せ
しめる切替手段6とを備えたことを特徴とする空
気調和装置。1 A compressor 1 whose capacity can be controlled, a capacity controller 2 which can control the capacity of the compressor 1 in stages, a temperature detecting means 3 which detects the air temperature in an air-conditioned area, and this temperature detecting means 3 Capacity control command means 4 that periodically and repeatedly compares the detected temperature with a set temperature having a temperature band, and selects and issues a corresponding one of a capacity increase signal, a capacity decrease signal, and a current capacity maintenance signal; If the signal issued by the capacity control command means 4 is a capacity increase signal or a capacity decrease signal, a step control output of one step increase or one step decrease is given to the capacity controller 2, while a current capacity maintenance signal is issued. If so, the capacity control output means 5 maintains the capacity controller 2 in the current control output state, and the capacity control output means 5 controls the capacity controller 2 between the maximum capacity and the minimum capacity in conjunction with starting the compressor 1. At the same time, a signal is issued to the capacity control command means 4 to shorten the period for temperature comparison, and this signal is continued until the time when the current capacity maintenance signal is issued, and then released. and a switching means 6 for restoring the period.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060454A JPS59185931A (en) | 1983-04-05 | 1983-04-05 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060454A JPS59185931A (en) | 1983-04-05 | 1983-04-05 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59185931A JPS59185931A (en) | 1984-10-22 |
JPS6356452B2 true JPS6356452B2 (en) | 1988-11-08 |
Family
ID=13142726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58060454A Granted JPS59185931A (en) | 1983-04-05 | 1983-04-05 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59185931A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564814B2 (en) * | 1987-03-30 | 1993-09-16 | Ibm | |
CN107677005A (en) * | 2017-09-22 | 2018-02-09 | 青岛海尔空调器有限总公司 | The control method and system of air-conditioning under low-temperature heating operating mode |
-
1983
- 1983-04-05 JP JP58060454A patent/JPS59185931A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564814B2 (en) * | 1987-03-30 | 1993-09-16 | Ibm | |
CN107677005A (en) * | 2017-09-22 | 2018-02-09 | 青岛海尔空调器有限总公司 | The control method and system of air-conditioning under low-temperature heating operating mode |
CN107677005B (en) * | 2017-09-22 | 2020-05-29 | 青岛海尔空调器有限总公司 | Control method and system of air conditioner under low-temperature heating working condition |
Also Published As
Publication number | Publication date |
---|---|
JPS59185931A (en) | 1984-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02217766A (en) | Frost detection method of heat pump and its detector | |
JPS6082756A (en) | Method of adjusting capacity of compressor and refrigerationcircuit | |
KR100347899B1 (en) | Control method of inverter compressor of air conditioner | |
JPS6356452B2 (en) | ||
JP2695288B2 (en) | Multi-room air conditioner | |
JPH06101910A (en) | Temperature regulator of refrigerator | |
JPH08166174A (en) | Air conditioner | |
JPH03195877A (en) | Defrosting control method in heat pump air compressor | |
JP2962978B2 (en) | Air conditioner | |
JPS5913548Y2 (en) | Air conditioner operation control device | |
JP2542648B2 (en) | Refrigerant heating type air conditioner | |
JP3443442B2 (en) | Air conditioner | |
JPH0719575A (en) | Air conditioner | |
JPH062918A (en) | Controller for air conditioner | |
JP3401873B2 (en) | Control device for air conditioner | |
JPH05346257A (en) | Air conditioner | |
JPS6325493Y2 (en) | ||
JPS62294837A (en) | Heat pump type air conditioner | |
JPH05240493A (en) | Air conditioner | |
JPS60243436A (en) | Defrosting system for heat pump type air conditioning equipment | |
JPH07198214A (en) | Speed regulator for condenser fan | |
JPH0510624A (en) | Air conditioner | |
JPS6115033A (en) | Air conditoning device | |
JPH10122674A (en) | Method for controlling air conditioner | |
JPS5920581Y2 (en) | Control circuit for heat pump air conditioner |