JPS59185931A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS59185931A
JPS59185931A JP58060454A JP6045483A JPS59185931A JP S59185931 A JPS59185931 A JP S59185931A JP 58060454 A JP58060454 A JP 58060454A JP 6045483 A JP6045483 A JP 6045483A JP S59185931 A JPS59185931 A JP S59185931A
Authority
JP
Japan
Prior art keywords
capacity
signal
temperature
compressor
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58060454A
Other languages
Japanese (ja)
Other versions
JPS6356452B2 (en
Inventor
Seijiro Kondo
近藤 誠二郎
Norio Kagimura
紀雄 鍵村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP58060454A priority Critical patent/JPS59185931A/en
Publication of JPS59185931A publication Critical patent/JPS59185931A/en
Publication of JPS6356452B2 publication Critical patent/JPS6356452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To shorten the warming up time after a start-up and to make a temperature fluctuation range small during the air conditioner operation by quickly adjusting the compressor output in response to the existing load. CONSTITUTION:The present air conditioner has a compressor 1 consisting of two compressors 1A, 1B which are adjustable in their capacity in stages by the operation of a capacity controller 2. For instance, when a six cylinder reciprocating compressor is used, the low pressure induction gas passage in the compressor casing may be divided into two to allow a separate induction by each group of three cylinders so that a selection of 100% or 50% capacity operation may be done by opening or closing an induction passage to one group of three cylinders. At the time of start-up, a switch means is operated to cause the compressor 1 to start at an intermediate capacity of 50%+50%, and at the same time the sampling frequency for temperature comparison by a thermo 4 is shortened from three minutes to one minute. As the comparison of the induction air temperature and the set temperature is made by a repetition of short cycles, a step control to move up by one stage can be quickly done while the capacity increasing signal is being outputted.

Description

【発明の詳細な説明】 設定温度とを比較して圧縮機を容量制御しなから運転し
一変動巾が小さい温度制御を可能とした空気調和装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that enables temperature control with a small fluctuation range by operating a compressor without performing capacity control by comparing the temperature with a set temperature.

吹出空気温度を周期的な繰り返しで検出し、圧縮機の容
量制御をしなから呈温を一定に保持すべく空気調和を行
なわせるものが多く用いらnるが、従来KJ開昭5 7
 − 1 0 4 9 2号公報に開示されでなる装置
のように、始動後空気温度が最初にサーモの所定設定値
に到達するまでの間は、容量制御器を不作動となすこと
により、運転始動時の立上り時間を短縮するように制御
回路を構成しているのが普通である。
Many devices are used that periodically detect the temperature of the blown air, control the capacity of the compressor, and perform air conditioning to maintain a constant temperature.
- As in the device disclosed in Publication No. 10492, the capacity controller is deactivated until the air temperature reaches the predetermined thermostat setting after startup, so that the operation can be stopped. Usually, the control circuit is configured to shorten the rise time at startup.

例えば圧縮機にステップ数の多い(通常5〜9段)段階
容量制御を可能おしているものを使用しているとすると
、始めに低能力域で起動すると一周期的1段階的に容量
制御したのでは負荷に見合った能力域に一、i8[1達
するまでに時間が長くかつ、つて、迅速に所望温度域に
達することが不可能となり不快感を覚えさせる不利があ
るからである。
For example, if you are using a compressor that is capable of staged capacity control with a large number of steps (usually 5 to 9 stages), when you start it up in a low capacity range, the capacity will be controlled in one cycle in one step. This is because it takes a long time to reach the capacity range commensurate with the load, and it becomes impossible to quickly reach the desired temperature range, which has the disadvantage of causing discomfort.

従って始動時は100%能力で運転し吹出空気温度が所
定温度に達した時点乃)ら通常の周期的。
Therefore, at startup, it operates at 100% capacity, and from the point when the blown air temperature reaches a predetermined temperature, it operates normally periodically.

段階的容量制御を行なっているのである。This is a step-by-step capacity control.

ところが、これでは空調負荷が小さいときに100%能
力で起動させると所定設定湿度を超過してしまって?@
房の場合は冷え過ぎ一暖房の場合は暑過ぎの現象を生じ
て、その後のステップ容量制御を経でやつと所定設定温
度に達するという不都合があった。
However, with this, when the air conditioning load is small and the air conditioner is started at 100% capacity, the humidity exceeds the predetermined humidity setting. @
In the case of a room, it becomes too cold, and in the case of only one heating, it becomes too hot, and the predetermined set temperature is reached slowly through subsequent step capacity control.

このように−従来の装置では特に始動時に間mかぁ−〕
たのに着目して本発明は截さノ]たものであって、その
目的とするところは、始動運転時におケルウオーミング
アツプ時間を短縮すると共に一負荷に見合った圧縮機能
力に逸早く達せしめて湿度変動中が小さい空気調和運転
を行なわせることにより一快適環境を確実にしり)+I
1.I簡単に得る如くした点にある。
In this way, with conventional equipment, it takes a long time, especially when starting up.
The present invention has been developed with a focus on the above, and its purpose is to shorten the warm-up time during starting operation and to quickly reach the compression function commensurate with one load. By performing air conditioning operation with small humidity fluctuations, a comfortable environment is ensured) +I
1. The point is that it is easy to obtain.

そのために本発明は、容量制御可能な圧縮機と一該圧縮
機の容量を段階的に制御し得る容量制御器と、空調対象
域の空気温度を検出する温度検出手段と、該温度検圧手
段が検出した温度と温度帯域を持つ設定温度とを周期的
な繰シ返しで比較し、能力増加信号、能力減少信号及び
現能力維持信号のうちの対応する1つを選択し発令する
能力制御指令手段と、該能力制御指令手段が発令する信
号が能力増加信号あるいは能力減少信号であれば、前記
容量制御器に対して1段増加あるいは1段減少のステッ
プ制御出力を与える一方、現能力維持信号であれば前記
容量制御器を現制御出力状態に保持する容量制御出力手
段と、前記圧縮機を運転始動するのに連動して、前記容
量制御器を最高容量と最低容量との中間の容量で作動せ
しめると共に、前記能力制御指令手段に対して温度比較
のための周期を短縮する信号を発令し、D)つこの信号
を現能力維持信号の発令に切替る時点まで続けた後に解
除し、前記周期を復元せしめる切替手段(61とを空気
調和装置に備えしめた構成とし78:ものであり、始動
時に中間能力で起動することにより、負荷の大小に71
)7)・オつりなく速やり)に負荷に見合った能力への
到達が可能であると共に、設定温度領域を超えるオーバ
ラン現象ff:解消することが可能であって、ここに前
述の目的を達成することかでさる。
To this end, the present invention provides a compressor capable of controlling the capacity, a capacity controller capable of controlling the capacity of the compressor stepwise, a temperature detecting means for detecting the air temperature in an air-conditioned area, and the temperature detecting means. A capacity control command that periodically and repeatedly compares the detected temperature with a set temperature that has a temperature band, and selects and issues the corresponding one of a capacity increase signal, a capacity decrease signal, and a current capacity maintenance signal. and if the signal issued by the capacity control command means is a capacity increase signal or a capacity decrease signal, a step control output of one step increase or one step decrease is given to the capacity controller, while a current capacity maintenance signal is issued. If so, the capacity control output means maintains the capacity controller in the current controlled output state, and the capacity control output means operates the capacity controller at an intermediate capacity between the maximum capacity and the minimum capacity in conjunction with starting operation of the compressor. D) activate the signal and issue a signal to the capacity control command means to shorten the cycle for temperature comparison; and D) continue the signal until the point where the current capacity maintenance signal is issued, and then release the signal. The air conditioner is equipped with a switching means (61) for restoring the cycle.
)7)・It is possible to reach the capacity commensurate with the load quickly (without overturning), and it is also possible to eliminate the overrun phenomenon ff: exceeding the set temperature range, thus achieving the above purpose. The monkey is the one who does it.

以下、本発明空気JM和装置の実施例を図面VCもとづ
き詳細説明する。
Hereinafter, an embodiment of the air JM summation device of the present invention will be described in detail based on drawing VC.

第1図に示した本発明の実施例に係る空気δム和装置は
一容量制御器(2;の作動によりs階的に容量制御が可
能な2台の圧縮機(IA)、 (IE)からなる圧縮機
fl+を備えており、例えば6気筒の往復動圧縮機を用
いて、圧縮機ケーシング内の低圧吸入ガス通路を2分割
し3気筒づつ吸入可能となし一一方の3気筒の吸入通路
を開閉可能となして100%及び50%の運転を可能と
なすものである。
The air delta damping device according to the embodiment of the present invention shown in FIG. For example, by using a 6-cylinder reciprocating compressor, the low-pressure intake gas passage in the compressor casing is divided into two, so that three cylinders can each take in suction. The passage can be opened and closed to enable 100% and 50% operation.

この2台の圧縮機(IA)、 (IE)を組合オっせて
、前記容量制御器+21の作動にょフ両者共100%で
運転する最大(第1段目)能力、一方が100%。
When these two compressors (IA) and (IE) are combined and operated at 100% operation of the capacity controller + 21, the maximum (first stage) capacity is achieved, one being 100%.

他方が50%で運転する第2段目の能力1両者共50%
で運転する第3段目の能力、一方のみ100%で運転す
る第4段目の能力、一方のみ50%で運転する第5段目
の能力の5段階能力に全停を加えて所MIV6段階能力
制御が可能である。
Capacity of the second stage with the other operating at 50% 1 Both 50%
The ability of the 3rd stage to operate at 100% on one side, the ability of the 4th stage to operate at 100% on one side, the 5th stage ability to operate on only one side at 50%, and the ability to fully stop is added to the 6th stage of MIV. Capacity control is possible.

而して本装置の冷房運転は上記圧縮機[+1wら吐出さ
八たガスを図示しない凝縮器で凝縮液化した後、減圧器
で減圧し低圧冷媒液となして2経路を有する蒸発器(7
1に送って、室内還気との間で蒸発熱を熱交換せしめた
後、前記圧縮機(1)に返戻するようになっていて、2
つの独立した冷媒回路を持つように構成している。
Therefore, in the cooling operation of this device, the gas discharged from the compressor [+1w] is condensed and liquefied in a condenser (not shown), and then reduced in pressure with a pressure reducer to form a low-pressure refrigerant liquid.
1, the heat of vaporization is exchanged with indoor return air, and then returned to the compressor (1);
It is configured to have two independent refrigerant circuits.

そして前記蒸発器(7)において冷却さT1.た室内還
気は室内側ファン(8)によって送気ダクト(91を経
て室内に送出される。
Then, the evaporator (7) cools T1. The indoor return air is sent indoors through the air supply duct (91) by the indoor fan (8).

斯る?!?i房運転は冷房対象域の空気温度例えば送気
ダン) f9+内の冷風の温度を検出する温度検出手J
Rf3B:しての感温センサからの信号によシ呈温を一
定に保持する温度制御が、前述せる圧縮機の能力制御下
において行なわ2″1句。
Is that so? ! ? In the i room operation, the temperature of the air in the area to be cooled (for example, the air supply temperature)
Rf3B: Temperature control to keep the temperature constant based on the signal from the temperature sensor is performed under the capacity control of the compressor mentioned above.

この1lrlJ簡1系統について第1図乃至第3図によ
シ説明すると、i]」記感湿センサ(31を人力信号要
異とし、/l’つ前記容量制御器(2]を出力要素とし
て能力!1i14御指令十段(4)例えば3段指<?形
刃−モスタラI・と−制御回路(lOjとを備えている
To explain this 1lrlJ simple 1 system with reference to Figs. 1 to 3, the i]'' humidity sensor (31 is used as a human power signal input, and the /l' capacity controller (2) is used as an output element. Ability! 1i14 command 10th stage (4) For example, 3rd stage finger <?-shaped blade - Mostara I and - equipped with a control circuit (lOj).

3PiN令形ザーモスタツト(以T1−モと略称する1
t=l+は第3図に例示するように、設定温度点が数度
程異なり、υふつ個々には1°C程度のディファレンシ
ャルを有する温度W、′]節器(4A)、 (4B)を
用いて、高温側1(4A)と低温側1(4B)とが共に
1乍動して接点をa」成(ory)シたときには、こス
−1を能力増力n信号となし、一方一高湿111!l(
4/l)が非作動で接点を開放[0FF) シておリ一
〇・つ低温側(4B)が作動して接点を閉成(ON)し
ているときには、こ1]を現能力維持信号どかし、また
、高湿l1111 (4,A )+ 低温側1(413
+共に非作動で接点を(Jト」放(OFFI したとさ
には、こハを能力減少信号となすものであって、そZ”
L等3つのイ、−丁号のうちの1つを空調対象域の空気
温度(本′に胤例の場合吹出空気温度)の高低に対応し
て選択し、タイマー回路との組合わせによって周期的(
通常3分)な繰り返しで発令するようにかつている。
3PiN thermostat (hereinafter abbreviated as T1-Mo)
For t=l+, as shown in Fig. 3, the set temperature points differ by several degrees, and the temperature W,'] node (4A), (4B) each has a differential of about 1°C for each υ. When the high temperature side 1 (4A) and the low temperature side 1 (4B) both move by 1 to form the contact a', this -1 is taken as the capacity boost n signal, while the High humidity 111! l(
When the low temperature side (4B) is activated and closes the contact (ON), the current capacity is maintained. Signal output, high humidity l1111 (4, A ) + low temperature side 1 (413
If the contact is turned off (OFF) with both of them inactive, this is a signal to reduce the capacity.
One of the three numbers A, -C, etc., such as L, is selected depending on the level of air temperature in the area to be air conditioned (in the case of this example, the temperature of the outlet air), and the periodicity is determined by combining it with a timer circuit. Target (
It used to be issued repeatedly over a period of 3 minutes (usually 3 minutes).

上述の作動を行なうサーモ+41は当然冷房用の5ので
あって、暖房用は能力増加信号と能力減少信号とが入2
1替るようにすス1ばよいことは言うまでもない。
Thermo+41, which performs the above-mentioned operation, is of course used for cooling, and for heating, a capacity increase signal and a capacity decrease signal are input.
Needless to say, it's best to change things by one.

次に制御回路(10jは第2図にブロック示しているが
、容量制御出力手段(51と切替手段(6)との)らな
って89〜容量制御出力手段(5)は圧縮機fllKお
ける前述の6段階能力のいずれか1つを容量制御器(2
1によって選択するための制御比力を発令するジのであ
り、サーモ(4)っ1らの信号が能力増加信号あるいは
能力減少信号でろ1′Lば、1段増加あるいは1段減少
のステップ制御出力を容量制御器(2)に発令する一方
、現能力維持信号でろ1″1.ば容量制御器(2)を現
状の制御出力状態のままに保持するように出力を発令す
るものである。
Next, the control circuit (10j is shown as a block in FIG. 2, consisting of capacity control output means (51 and switching means (6)) 89 to capacity control output means (5) is connected to the Capacity controller (2
If the signal from the thermometer (4) is a capacity increase signal or a capacity decrease signal, the step control output increases or decreases by one level. is issued to the capacity controller (2), while the current capacity maintenance signal 1''1. issues an output to maintain the capacity controller (2) in its current control output state.

一万一切替手段(6)は、前記圧縮機(1)に対し停止
力)ら運転始動せしめる指令信号(S)例えば温度調節
スイッチが閉成するのに運動して、前記容量制御器(2
1を最高容量(Zoo%+100%)と最低容量(0%
十〇%)の中間の容量(例えば50%+50%)で作動
せしめると共に、前記サーモ(4)のタイマー回路に信
号を送って温度比較のための周!9」を短縮せしめ、例
えば通常3分の周期(’ro l  を1分す周期(T
1)に短縮せしめるようになっている。
The switching means (6) receives a command signal (S) from the compressor (1) to start operation, for example, when a temperature control switch is closed, and generates a command signal (S) for starting the operation of the compressor (1).
1 to the highest capacity (Zoo%+100%) and lowest capacity (0%
100%) at an intermediate capacity (for example, 50% + 50%), and sends a signal to the timer circuit of the thermometer (4) to set the temperature comparison cycle. 9'', for example, the normal period of 3 minutes (the period of 1 minute of 'ro l (T
1).

この短縮するための信号を一運転始動時点力)らサーモ
141の信号が能力増加信号から現能力維持信号への発
令に切替る時点まで続けた後vcys除するようにする
のであって、爾後は前記サーモ+41を通常の周期(’
rolで作動するように復元せしめるのである。
This shortening signal is continued from the start of operation until the signal from the thermostat 141 switches from the capacity increase signal to the current capacity maintenance signal, and then is divided by vcys. The thermometer +41 is operated at the normal cycle ('
This will restore it to work with rol.

このように周期を短縮させるものとしてはコンデンサと
抵抗とを要素となした電子的タイマー回路における計時
のための放電時定数を変えることによって簡単に行ない
得るものである。
The cycle can be shortened in this way simply by changing the discharge time constant for timing in an electronic timer circuit comprising a capacitor and a resistor.

叙土の構riy:、を有する空気調和装置の冷房運転作
14Ilは次の如く成さn、る。
The cooling operation of an air conditioner having the following structure is as follows.

温度調節スイッチの閉成ビJ(第4図参照)に伴つ了、
圧縮機(1)が起動するが、その際前述したように切替
手段16+が作動して圧縮機(1)は(50%+50%
)の中間能力で起動すると同時に前記サーモ+41は温
度比較のためのサンプル周期を3分から1分に短縮せし
められる(口]。
Due to the closing of the temperature control switch (see Figure 4),
The compressor (1) starts, but at that time, as mentioned above, the switching means 16+ operates and the compressor (1) changes to (50% + 50%).
), the Thermo+41 is simultaneously forced to shorten the sample period for temperature comparison from 3 minutes to 1 minute.

従って第5図に示すように短い丙期(TI=1分)の繰
9返しで吸出空気温度と設定温度との比較が成される結
果、能力増加信号が発令している間は1−M増加のステ
ップ制御が速やかに行゛なわれる。
Therefore, as shown in Fig. 5, the suction air temperature is compared with the set temperature by nine repetitions of a short TI = 1 minute, and as a result, while the capacity increase signal is issued, the Increased step control is performed quickly.

その場合、冷房負荷が大きいときには当然最高能力に速
やつ)に達し、一方、冷房負荷が小さいときには呈温か
早く設定温度に達するので最高能力に至るまでに能力増
加信号は現能力維持信号に切替る。
In that case, when the cooling load is large, the maximum capacity is naturally reached (quickly), while when the cooling load is small, the temperature reaches the set temperature quickly, so the capacity increase signal switches to the current capacity maintenance signal by the time the cooling load reaches the maximum capacity. .

このようにサーモ(41の発令する信号が現能力維持信
号に切替る(ハ)と同時に、サーモ+41は前記サンプ
ル周期を1分力)ら3分に復元せしめらn (=J、そ
の後は3分毎に温度比較を行なってサーモ(4)が発令
する信号の種類に対応した圧縮機容量制御が成されて負
荷に見合った能力を速や力)に選択して発停回数が少な
く、υ・つ温度が安定した冷房運転がなされる。
In this way, at the same time as the signal issued by the thermometer (41) switches to the current capacity maintenance signal (c), the thermometer +41 restores the sampling period from 1 minute force to 3 minutes (=J, and then 3 minutes). By comparing the temperature every minute, the compressor capacity is controlled according to the type of signal issued by the thermometer (4), and the capacity suitable for the load is selected (speed or power), reducing the number of starts and stops. - Cooling operation with stable temperature is performed.

また中間容量で圧縮機の始動を行うので、急激な冷媒吸
入は起らず、従って液バツクによる圧縮機の損傷等の不
都合を生ずることもない。
Furthermore, since the compressor is started at an intermediate capacity, sudden suction of refrigerant does not occur, and therefore, problems such as damage to the compressor due to liquid bag do not occur.

尚、上記実施例は冷房運転について説明したが、本発明
は暖房運転における温度制御も同様の構成。
Incidentally, although the above-mentioned embodiment has been described with respect to cooling operation, the present invention also has a similar configuration for temperature control in heating operation.

作用により成し得るものであってヒートポンプ式の冷暖
房装置等に適用できることは言うまでもない。
It goes without saying that this can be achieved by action and can be applied to heat pump type air-conditioning devices and the like.

つづいて本発明の効果を挙げると次の通りである。Next, the effects of the present invention are as follows.

(I]  始動の際には最高能力でな−くて中間能力で
運転するようにしているので過大能力で運転した場合に
起り易いオーバラン現象を解消することができる。
(I) Since the engine is operated at an intermediate capacity instead of the maximum capacity at the time of starting, it is possible to eliminate the overrun phenomenon that tends to occur when operating at an excessive capacity.

(1)  負荷大なるときには始動後中間能力力)ら鐙
い周期でヌテツブ能力増加するために、速やかに最高能
力の運転に到達しウオーミングアツプ時間カ短縮さnる
(1) When the load is large, the engine capacity is increased in the stirrup cycle from the intermediate capacity after starting, so the maximum capacity operation is quickly reached and the warm-up time is shortened.

(釦 起動時のサンプリング周期を短くすることによっ
て、負荷に見合った能力に速やかに到達し快適性の面で
非常にすぐれている。
(Button) By shortening the sampling period at startup, the system quickly reaches a capacity commensurate with the load, resulting in extremely high comfort.

■ 始動後の速やり−な能力制御が一段落した後はサン
プリング周期を通常の状態に戻すようにしているので、
圧縮機[11の発停、容量変換の短周期的な繰り返しが
起こることはなく運転経済性ならびに信頼性の向上かは
力)れる。
■ After the rapid capacity control after startup is completed, the sampling period is returned to normal, so
There is no need for short-term repetitions of starting/stopping the compressor and changing the capacity, which improves operating economy and reliability.

〔v)  中間能力で始動させているので、液バツクの
防止が図nる。
[v] Since the engine is started at intermediate capacity, liquid back-up is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例の態様を示すもので、第1図は略
示構造図、第2図は制御回路ブロック示図、第3図は第
2図における能力制御指令手段の動作説明図、第4図は
第2図々示制御回路の切替手段に係るフローチャート図
、第5図は運転時間に対する吹出空気温度変化を示す動
作説明図である。 ill・・・圧縮機、(2)・・容量制御器り(3)・
・・温度検出手段、(4j・・・能力制御指令手段。 (51・・・容量制御出力手段、(6)・・・切替手段
Each figure shows an aspect of an embodiment of the present invention, and FIG. 1 is a schematic structural diagram, FIG. 2 is a control circuit block diagram, and FIG. 3 is an explanatory diagram of the operation of the capacity control command means in FIG. 2. , FIG. 4 is a flowchart relating to the switching means of the control circuit shown in FIG. 2, and FIG. 5 is an operation explanatory diagram showing changes in the temperature of the blown air with respect to operating time. ill...compressor, (2)...capacity controller (3)...
...Temperature detection means, (4j... Capacity control command means. (51... Capacity control output means, (6)... Switching means.

Claims (1)

【特許請求の範囲】[Claims] / 容量制御可能な圧縮機1月と、該圧縮機(1)の容
量を段階的に制御し得る容量制御器f2’lと、空調対
象域の空気温度を検出する温度検出手段(3)と、この
温度検出手段(3)が検出した温度と温度帯域を持つ設
定温度とを周期的な繰り返しで比較し、能力増加信号、
能力減少信号及び現能力維持信号のうちの対応する1つ
を選択し発令する能力制御指令手段+41と、この能力
制御指令手段(4)が発令する信号が能力増加信号ある
いは能力減少信号であれば、前記容量制御器+21 V
C対して1段増7J!]あるいは1段減少のステップ制
御出力を与える一方、現能力維持信号であn、Id前記
容量制御器(21を現制御出力状態に保持する容量制御
出力手段(51と、前記圧縮機(1)を運転始動するの
に連動して、前記容量制御器(21を最高容量と最低容
量との中間の容量で作動せしめると共に、前記能力制御
指令手段+41に対して温度比較のための周期を短縮す
る信号を発令し〜V)つこの信号を現能力維持信号の発
令に切替る時点まで続けた後に解除し、前記周期を復元
ぜしめる切替手段(61とを備えたことを特徴とする空
気調和装置。
/ A capacity controllable compressor (1), a capacity controller (f2'l) that can control the capacity of the compressor (1) in stages, and a temperature detection means (3) that detects the air temperature in an air-conditioned area. , the temperature detected by this temperature detection means (3) is periodically compared with a set temperature having a temperature range, and a capacity increase signal,
If the capacity control command means +41 selects and issues the corresponding one of the capacity reduction signal and the current capacity maintenance signal, and the signal issued by this capacity control command means (4) is a capacity increase signal or a capacity decrease signal. , the capacity controller +21 V
One step more for C, 7J! ] or the capacity control output means (51) which maintains the capacity controller (21) in the current control output state with the current capacity maintenance signal and the compressor (1) while giving a step control output of one step decrease. In conjunction with the start of operation, the capacity controller (21) is operated at an intermediate capacity between the maximum capacity and the minimum capacity, and the cycle for temperature comparison is shortened for the capacity control command means +41. An air conditioner characterized by comprising a switching means (61) for issuing a signal and continuing the signal until switching to issuing a current capacity maintenance signal, and then canceling the signal and restoring the cycle. .
JP58060454A 1983-04-05 1983-04-05 Air conditioner Granted JPS59185931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060454A JPS59185931A (en) 1983-04-05 1983-04-05 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060454A JPS59185931A (en) 1983-04-05 1983-04-05 Air conditioner

Publications (2)

Publication Number Publication Date
JPS59185931A true JPS59185931A (en) 1984-10-22
JPS6356452B2 JPS6356452B2 (en) 1988-11-08

Family

ID=13142726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060454A Granted JPS59185931A (en) 1983-04-05 1983-04-05 Air conditioner

Country Status (1)

Country Link
JP (1) JPS59185931A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972316A (en) * 1987-03-30 1990-11-20 International Business Machines Corporation Method of handling disk sector errors in DASD cache
CN107677005B (en) * 2017-09-22 2020-05-29 青岛海尔空调器有限总公司 Control method and system of air conditioner under low-temperature heating working condition

Also Published As

Publication number Publication date
JPS6356452B2 (en) 1988-11-08

Similar Documents

Publication Publication Date Title
JP4668769B2 (en) Air conditioner
JP3999608B2 (en) Air conditioner
JP2801675B2 (en) Air conditioner
JPS6082756A (en) Method of adjusting capacity of compressor and refrigerationcircuit
JP4290480B2 (en) Temperature control method
JP2002174450A (en) Air-conditioning device
JPS59185931A (en) Air conditioner
KR100347899B1 (en) Control method of inverter compressor of air conditioner
JP2695288B2 (en) Multi-room air conditioner
KR100488010B1 (en) Control method of Airconditioner
KR100484801B1 (en) Heating driving method of air conditioner
JP2962978B2 (en) Air conditioner
JP3702264B2 (en) Air conditioner having a plurality of indoor units and control method thereof
JPH03160261A (en) Air conditioner
JPH081343B2 (en) Air conditioner
JP2850440B2 (en) Operation control device of air conditioner equipped with refrigerant heater
JPS6115033A (en) Air conditoning device
JPH0719575A (en) Air conditioner
JPS6332256A (en) Heat pump system
JPH03217744A (en) Operation control system for temperature control device
JPS6189455A (en) Flow controller for refrigerant in refrigeration cycle
JPS6325493Y2 (en)
JPS6018898B2 (en) air conditioner
JPH01121645A (en) Defrosting control device for air conditioner
JPH0510624A (en) Air conditioner