JPS60243436A - Defrosting system for heat pump type air conditioning equipment - Google Patents

Defrosting system for heat pump type air conditioning equipment

Info

Publication number
JPS60243436A
JPS60243436A JP59099501A JP9950184A JPS60243436A JP S60243436 A JPS60243436 A JP S60243436A JP 59099501 A JP59099501 A JP 59099501A JP 9950184 A JP9950184 A JP 9950184A JP S60243436 A JPS60243436 A JP S60243436A
Authority
JP
Japan
Prior art keywords
defrosting
evaporator
temperature
blower
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59099501A
Other languages
Japanese (ja)
Other versions
JPH0260941B2 (en
Inventor
Yofumi Tezuka
手塚 與文
Kenji Togashi
富樫 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59099501A priority Critical patent/JPS60243436A/en
Publication of JPS60243436A publication Critical patent/JPS60243436A/en
Publication of JPH0260941B2 publication Critical patent/JPH0260941B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent wasteful defrosting operation by performing a control to start defrosting operation only when defrosting requirement is still left after a blower on the side of an evaporator is put into operation for a fixed time during the overload protecting operation. CONSTITUTION:Heat absorption is promoted from the outside air with the operation of a blower 10 on the side of an evaporator and the temperature of the evaporator 5 rises. Under such a operation, as the temperature of a refrigerant is high on the side of a condenser 4, with the restarted operation of the ordinary blower 10, the temperature of the evaporator 5 rises to remove the frost immediately. Subsequently, the intermittent operation of the blower 10 is continued until overload is dissolved. But only when a detection means 19 still detects the defrosting requirement after the time t3 is reached with the passage of a certain time TM following the restart of the blower 10, a blower relay 22 is switched over to the stop position while a four-way valve relay 23 to the cooling cycle position and a defrosting operation is performed for a fixed time up to the time t4. Thus, the temperature of a heat exchanger 4 lowers while the temperature of a heat exchanger 5 rises to eliminate the overload state and the defrosting requirement as well and after the time t4, the heating operation is done again.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、ヒートポンプ式空気調和機の暖房運転時に
才9ける蒸発器の除霜方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a defrosting method for an evaporator during heating operation of a heat pump type air conditioner.

[従来技術] 一般にヒートポンプ式空気調和機の暖房運転中には、室
外熱交換器である蒸発器の表面温度を氷点以下で使用す
る場合が生じ、そのため蒸発器の表面に着霜して熱交換
を聞書する。この霜を除去するために、一時的に冷媒サ
イクルを冷房に切換えて、室外熱交換器を凝縮機とし、
凝縮熱によって着霜を溶かし去る方法が取られてきた。
[Prior art] Generally, during heating operation of a heat pump type air conditioner, the surface temperature of the evaporator, which is an outdoor heat exchanger, is sometimes below the freezing point, so frost forms on the surface of the evaporator and heat exchange I will hear from you. In order to remove this frost, the refrigerant cycle is temporarily switched to cooling, and the outdoor heat exchanger is used as a condenser.
A method has been adopted in which frost is melted away by heat of condensation.

その除霜時には、当然、熱が有効に除霜に作用するよう
、室外側の送風機を停止させるよう制御される。この制
御は、室内温度の高い暖房過負?=’r時に才9いて生
ずる着霜に対しても同様に行われてきた。
During defrosting, the blower on the outdoor side is naturally stopped so that the heat can effectively defrost. Is this control overheating for high indoor temperatures? The same method has been applied to frost formation that occurs at the time of 90°.

第1図は、このような除霜方式が適用される、例えば特
公昭59−1936号公報などに示されている一般のヒ
ートポンプ式空気調和機の構成図で、図において(1)
は圧縮機、(2)はこの圧縮機駆動用モータ、(3)は
四方弁で冷媒サイクルを切換え、冷媒サイクル運転か、
暖房サイクル運転か決めるのに用いられる。
Figure 1 is a block diagram of a general heat pump type air conditioner to which such a defrosting method is applied, as shown in, for example, Japanese Patent Publication No. 59-1936.
is the compressor, (2) is the motor for driving this compressor, and (3) is the four-way valve that switches the refrigerant cycle, allowing refrigerant cycle operation.
Used to determine heating cycle operation.

この例では実線矢印方向しこ冷媒が流れる場合を暖房サ
イクル、破線矢印方向に冷媒が流れる場合を冷媒サイク
ルとする。(4)は暖房サイクルにおいて凝縮器、冷房
サイクルにおいて蒸発器となる室内熱交換器、(5)は
暖房サイクルにおいて蒸発器、冷房サイクルにおいて凝
縮機となる室外熱交換器、(6)は膨張弁又は毛細管、
(7)は、」―配圧縮機(1)、四方弁(3)、室内、
室外熱交換器(’1)(5)及び膨張弁又は毛細管(6
)を連結して冷媒を通し、冷媒サイクル(8)を構成さ
せる冷媒配管である。
In this example, the case where the refrigerant flows in the direction of the solid line arrow is a heating cycle, and the case where the refrigerant flows in the direction of the broken line arrow is a refrigerant cycle. (4) is an indoor heat exchanger that serves as a condenser in the heating cycle and an evaporator in the cooling cycle; (5) is an outdoor heat exchanger that serves as an evaporator in the heating cycle and a condenser in the cooling cycle; and (6) is an expansion valve. or capillary,
(7) - Compressor (1), four-way valve (3), indoors,
Outdoor heat exchanger ('1) (5) and expansion valve or capillary tube (6
) are connected to pass the refrigerant to form a refrigerant cycle (8).

(9)は室内側送風機、(10)は室外側送風機、(1
1)は室内熱交換器(4)の温度を検出する室内熱交換
器温度センサ、(■2)は室外熱交換器(5)の温度を
検出する室外熱交換器温度センサである。
(9) is an indoor blower, (10) is an outdoor blower, (1
1) is an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger (4), and (2) is an outdoor heat exchanger temperature sensor that detects the temperature of the outdoor heat exchanger (5).

以上の構成において、四方弁(3)を暖房運転サイクル
に切換え、圧縮機(1)、送風機(9)及び(10)が
駆動され暖房運転が開始されると、圧縮fi(])から
吐出される高温高圧の冷媒は四方弁(3)を介して配管
(7)に導かれ、凝縮器(4)で熱を放出し凝縮液化さ
れる。この液化された高圧冷媒は膨張弁(6)にて断熱
膨張し低温低圧の蒸気となるが、蒸発器(5)を通過す
ることによって外気から熱量を吸収し冷媒は加熱されて
四方弁(3)を通り圧縮機(1)で断熱圧縮され再び高
温高圧の媒体として吐出される。このサイクルにおいて
室内熱交換器であろ凝縮’a:’t (4)にて放出除
去される熟眠が暖房熱源となり、その熱にが室外熱交換
器である蒸発器(5)により夕1気か+7.吸収されろ
。このような運転がレジけられると蒸発器(5)の湿度
が氷点以トとなり、その表面に着霜が進f7する。蒸発
RiH5)の着霜によって熱交換が減少するため、冷媒
は蒸発器(5)で充分に加熱さ、h、 ′1′圧縮機(
1)に吸入される冷媒は湿り蒸気を多く含んだものとな
る。そのため圧縮機(1)の叶、′(冒令媒温度も低下
し暖房効果は劣下する。この霜をとるためには、温度セ
ンサ(12)によって、蒸発器(5)の温度が所定温度
以下の除゛霜条件を検出して、四方弁(3)を切換え、
室外側送風機(10)を停止させ、冷媒サイクル(8)
を一時的に冷房サイクルに切換える。それにより室外熱
交換器(5)を凝縮器として動作させ、冷媒による加熱
で霜を溶かし去り、一定時間後再び四方弁(3)を切換
え送風機(10)の運転を開始して暖房運転に入る。
In the above configuration, when the four-way valve (3) is switched to the heating operation cycle, the compressor (1), the blowers (9) and (10) are driven, and the heating operation is started, the air is discharged from the compression fi(]). The high-temperature, high-pressure refrigerant is led to the pipe (7) via the four-way valve (3), releases heat in the condenser (4), and is condensed and liquefied. This liquefied high-pressure refrigerant expands adiabatically at the expansion valve (6) and becomes low-temperature, low-pressure steam. However, by passing through the evaporator (5), it absorbs heat from the outside air and the refrigerant is heated, and the four-way valve (3) ), is adiabatically compressed by the compressor (1), and is discharged again as a high-temperature, high-pressure medium. In this cycle, the deep sleep released and removed by condensation 'a:'t (4) in the indoor heat exchanger becomes a heating heat source, and that heat is transferred to the evaporator (5), which is an outdoor heat exchanger, in the evening. +7. Get absorbed. If such operation is stopped, the humidity of the evaporator (5) becomes above the freezing point, and frost builds up on the surface of the evaporator (5). Since the heat exchange is reduced due to frosting of the evaporated RiH5), the refrigerant is sufficiently heated in the evaporator (5), h, '1' compressor (
The refrigerant sucked into 1) becomes moist and contains a large amount of vapor. As a result, the temperature of the compressor (1) decreases, and the heating effect deteriorates. Detects the following defrosting conditions and switches the four-way valve (3),
Stop the outdoor fan (10) and start the refrigerant cycle (8).
temporarily switch to cooling cycle. As a result, the outdoor heat exchanger (5) is operated as a condenser, the frost is melted away by heating with the refrigerant, and after a certain period of time, the four-way valve (3) is switched again to start operating the blower (10) and enter heating operation. .

ところが、暖房運転において、室温が高くなり過ぎ、過
負荷状態になると、冷媒の高圧化を保護するため、室外
側送風機(10)を停止1さぜろ過負荷保護運転制御が
一般に行われる。このような状態においても蒸発器(5
)の温度が低下し、時には除霜条件になる場合がある。
However, during heating operation, when the room temperature becomes too high and an overload condition occurs, the outdoor fan (10) is generally stopped and filtration load protection operation control is performed in order to protect the refrigerant from increasing in pressure. Even in this state, the evaporator (5
) temperatures may drop, sometimes resulting in defrosting conditions.

しかしこの場合での蒸発器(5)の着霜量は少なく、除
霜運転を行ったとしても一瞬シこシて、除霜完了するく
らいの着霜量である。従ってこのような過負荷保護運転
中において通常の除霜制御を行うと、不必要な過剰な除
霜運転となり、エネルギー損失となるばかりでなく、不
必要な冷房サイクルへの切換えのため、室温が低下し快
適性を損うし、不必要な四方弁の切換えにより不快な冷
媒音を発する等の欠点を有していた。
However, in this case, the amount of frost formed on the evaporator (5) is small, and even if a defrosting operation is performed, the amount of frost formed is such that the defrosting is completed after a moment of frosting. Therefore, if normal defrosting control is performed during such overload protection operation, it will not only result in unnecessary excessive defrosting operation, resulting in energy loss, but also cause the room temperature to decrease due to unnecessary switching to the cooling cycle. This has disadvantages, such as lowering the refrigerant noise and impairing comfort, and causing unpleasant refrigerant noise due to unnecessary switching of the four-way valve.

[発明の概要コ この発明は以上の欠点を除去するためになされたもので
、過負荷保護運転中においては、除霜条件になっても直
ちに除霜運転に入らずに、蒸発器側送風機を一定時間運
転させて、その後においても除霜条件であった場合には
じめて除霜運転に入るよう制御することによって、過負
荷保護運転中における無駄な除霜運転を防止するヒート
ポンプ式空気調和機の除霜方式を提供することを目的と
している。
[Summary of the Invention] This invention has been made to eliminate the above-mentioned drawbacks. During overload protection operation, even if defrosting conditions are reached, the evaporator side blower is turned on without immediately entering defrosting operation. A heat pump type air conditioner defrosting system that prevents wasteful defrosting operation during overload protection operation by controlling the system to operate for a certain period of time and then enter defrosting operation only when the defrosting conditions are met. It is intended to provide a frost method.

[発明の実施例] 第2図はこの発明の一実施例を示すシステム構成図で、
図において(13)は、暖房時の室内熱交換器温度セン
サ(11)である凝縮器温度センサ、(14)は、暖房
時室外熱交換器温度センサ(12)である蒸発器温度セ
ンサ、(15)(16)は、これら温度センサ(13)
(14)からの温度信号をデジタル信号に変換するA/
D変換器、(17)は、マイクロプロセッサ等の中央処
理装置(以下CPUという)、(18)はA/D変換器
(15)からの凝縮器温度Tcが室温の高い過負荷時高
圧保護温度である設定温度T1以上であることを検出す
る過負荷状態検出手段、(19)はA/D変換器(16
)からの蒸発器温度Teが除霜条件温度である設定温度
T2以下であることを検出する除霜条件検出手段、(2
0)は、過負荷状態検出手段(18)、除霜条件検出手
段(19)からの信号を処理して、手段(18)からの
信号のみの時は過負荷保護運転信号を、手段(19)か
らの信号のみの時は除霜運転信号を1両手段(18)(
1,9)からの信号が共に入力された時は蒸発器側送風
機運転信号を出力する処理回路、(21)は、処理回路
(20)からの信号で制御される制御リレー駆動回路、
(22)は蒸発器側(暖房時室外側)送風機リレー、(
23)は四方弁リレーで、制御リレー駆動回路(21)
は処理回路(20)からの過負荷保護運転信号により送
風機リレー(22)を停止側に駆動し、除霜運転信号に
より送風機リレー (22)を停止、四方弁リレー(2
3)を冷房サイクル側に駆動し、蒸発器側送風機運転信
号により、送風機リレー(22)を運転側に駆動する。
[Embodiment of the invention] FIG. 2 is a system configuration diagram showing an embodiment of the invention.
In the figure, (13) is the condenser temperature sensor which is the indoor heat exchanger temperature sensor (11) during heating, (14) is the evaporator temperature sensor which is the outdoor heat exchanger temperature sensor (12) during heating, and ( 15) (16) are these temperature sensors (13)
(14) A/ that converts the temperature signal from
The D converter (17) is a central processing unit (hereinafter referred to as CPU) such as a microprocessor, and (18) is the high pressure protection temperature when the condenser temperature Tc from the A/D converter (15) is higher than room temperature. Overload state detection means (19) detects that the set temperature T1 is higher than the set temperature T1, and (19) is an A/D converter (16
) defrosting condition detection means for detecting that the evaporator temperature Te from (2) is below the set temperature T2 which is the defrosting condition temperature;
0) processes the signals from the overload state detection means (18) and the defrosting condition detection means (19), and when there is only a signal from the means (18), it processes the overload protection operation signal and the means (19) ), the defrosting operation signal is sent to one means (18) (
(21) is a control relay drive circuit that is controlled by the signal from the processing circuit (20);
(22) is the evaporator side (outdoor side during heating) blower relay, (
23) is a four-way valve relay, and the control relay drive circuit (21)
drives the blower relay (22) to the stop side with the overload protection operation signal from the processing circuit (20), stops the blower relay (22) with the defrost operation signal, and drives the four-way valve relay (2).
3) is driven to the cooling cycle side, and the blower relay (22) is driven to the operating side by the evaporator side blower operation signal.

次にその動作を説明する。今、凝縮器(4)の温度Tc
がT1以下の正常な暖房運転時に、蒸発器(5)に着霜
が生じたとすると、蒸発器温度センサ(14)からA/
D変換器(16)をへてCPU(17)に取り込まれる
温度信号Teが低下し、CP U (17)内の検出手
段(19)がTe≦12の除霜条件を検出し、検出信号
を処理回路(20)に出力する。−力検出手段(18)
は過負荷状態を検出していないので出力はなく、処理回
路(20)から除霜運転信号が出力される。この信号に
よって制御リレー駆動回路(21)が制御され、一定時
間蒸発器側送風機リレー(22)を停+h側に、四方弁
リレー(23)を冷房運転側に駆動する。
Next, its operation will be explained. Now, the temperature Tc of the condenser (4)
If frost forms on the evaporator (5) during normal heating operation when the temperature is below T1, the evaporator temperature sensor (14) will detect A/
The temperature signal Te taken into the CPU (17) via the D converter (16) decreases, and the detection means (19) in the CPU (17) detects the defrosting condition of Te≦12 and outputs the detection signal. Output to the processing circuit (20). -force detection means (18)
Since no overload condition has been detected, there is no output, and a defrosting operation signal is output from the processing circuit (20). This signal controls the control relay drive circuit (21) to drive the evaporator side blower relay (22) to the stop +h side and the four-way valve relay (23) to the cooling operation side for a certain period of time.

次に暖房運転時に過負荷状態となった時の動作を第3図
を参照して説明する。第3図(a)は凝縮器温度Tc、
蒸発器温度Teの変化を示すタイムチャート、同図(b
)は蒸発器側送風機リレー(22)及び四方弁リレー(
23)の動作状態を示すタイムチャートである。暖房運
転時圧縮機(1)が過負荷となり。
Next, the operation when an overload condition occurs during heating operation will be explained with reference to FIG. FIG. 3(a) shows the condenser temperature Tc,
Time chart showing changes in evaporator temperature Te, same figure (b
) is the evaporator side blower relay (22) and the four-way valve relay (
23) is a time chart showing the operating state of FIG. Compressor (1) becomes overloaded during heating operation.

凝縮器温度センサ(13)からA/D変換器(j5)を
へてCP U (17)に取り込まれる温度信号゛rC
が上昇していき設定温度TIを越え、時点し1において
、検出手段(18)が過負荷状態を検出する。その検出
信号によって処理回路(20)から過負荷保護運転信号
が出力される。それに応じて制御リレー駆動回路(21
)は蒸発器側送風機リレー(22)を停止側に駆動し、
送風機(10)を停止させる。それによって蒸発器(5
)の熱交換機能は低下し、それの温度Taは減少してい
き、凝縮器(4)の温度Tcの上昇は止まり漸減状態と
なり冷媒の高圧化が防止される。しかしこの状態での運
転が続けられると蒸発器(5)の温度Teは低下を続け
、ついに時点t2で検出手段(T9)が除霜条件Te≦
T2を検出する。この時点では検出手段(18)からも
過負荷状態検出信号が出力されているため、処理回路(
20)は蒸発器側送風機運転信号を一定時間TMの聞出
力する。それにより制御リレー駆動回路(21)は蒸発
器側送風機リレー (22)を運転側に一定時間TMの
開駆動する7蒸発器側送風機(10)の運転によって、
室外熱交換器である蒸発器(5)による熱交換、即ち外
気からの熱吸収が促進され、蒸発器(5)の温度は上昇
する。
Temperature signal {rC} is input from the condenser temperature sensor (13) to the CPU (17) via the A/D converter (j5).
increases and exceeds the set temperature TI, and at time 1, the detection means (18) detects an overload condition. An overload protection operation signal is output from the processing circuit (20) based on the detection signal. Accordingly, the control relay drive circuit (21
) drives the evaporator side blower relay (22) to the stop side,
Stop the blower (10). Thereby the evaporator (5
)'s heat exchange function deteriorates, its temperature Ta decreases, and the temperature Tc of the condenser (4) stops increasing and gradually decreases, preventing the refrigerant from increasing in pressure. However, if the operation continues in this state, the temperature Te of the evaporator (5) continues to decrease, and finally at time t2, the detection means (T9) detects that the defrosting condition Te≦
Detect T2. At this point, the overload state detection signal is also output from the detection means (18), so the processing circuit (
20) outputs an evaporator side blower operation signal for a certain period of time TM. Thereby, the control relay drive circuit (21) drives the evaporator side blower relay (22) to the operating side for a certain period of time TM by operating the 7 evaporator side blower (10).
Heat exchange by the evaporator (5), which is an outdoor heat exchanger, ie, heat absorption from the outside air is promoted, and the temperature of the evaporator (5) increases.

この運転状態ではもともと凝縮器(4)側の冷媒温度は
高いので、普通、この蒸発器側送風機(]O)の運転再
開によって、蒸発器(5)の温度は上昇し、霜は直ちに
除去される。以下は、過負荷が解消される迄、送風機(
lO)の断続運転が繰返される。しかし、もし送風機(
10)の運転再開後一定時間TM経過したt3時点に達
しても、まだ検出手段(19)が除霜条件を検出してい
る時のみ、送風機リレー(22)を停止側に、四方弁リ
レー(23)を冷房サイ9° ル側に切換えて、時点L
4迄の一定時間、除霜運転が行われる。この除霜運転に
よって室内側熱交換器(4)の温度は低下し、室外側熱
交換器(5)の温度は上昇し、過負荷状態も除霜条件も
共に解消し、時点L4以後は再び暖房運転が行われる。
In this operating state, the refrigerant temperature on the condenser (4) side is originally high, so normally, when the evaporator side blower (]O) resumes operation, the temperature of the evaporator (5) rises and the frost is immediately removed. Ru. The following blower (
The intermittent operation of lO) is repeated. However, if the blower (
Only when the detection means (19) is still detecting the defrosting condition even if the fixed time TM has elapsed at time t3 after restarting the operation of step 10), the blower relay (22) is set to the stop side and the four-way valve relay ( 23) to the cooling cycle 9° side, and at time L.
Defrosting operation is performed for a certain period of time up to 4. Through this defrosting operation, the temperature of the indoor heat exchanger (4) decreases, the temperature of the outdoor heat exchanger (5) increases, and both the overload condition and the defrosting condition are resolved, and after time L4, Heating operation is performed.

なお、−上記実施例では、過負荷状態の検出に凝縮器(
4)の温度上昇を検出したが、圧縮機駆動用モータ(2
)のイマ1勢電流、即ち圧縮機駆動電流が所定設定値以
上になることを検出するようにしてもよい。
Note that - in the above embodiment, the condenser (
4), but the compressor drive motor (2)
), that is, the compressor drive current may be detected to be equal to or higher than a predetermined set value.

第4図は、この場合の実施例を示すシステム構成図で、
図において(14) (16) (17) (19)な
いしく23)は第2図と同一であり、(24)は圧縮機
駆動電流検出回路で、駆動電流に比例した電圧ICを取
り出す。(25)は^/D変換器、 (26)は、Ic
が、凝縮器(4)内圧力の許容限界時の圧縮機駆動電流
に相当する設定値To以上となった時信号を出す過負荷
状態検出手段である。この実施例では圧縮機駆動電流に
比例した電圧をデジタルに変換して、CPU(17)内
で設定値を比較したが、圧縮機駆動電流に比例した電圧
Tcを、所定の設定レベル電圧■0とを比較器にてアナ
ログ的に比較し、IC≧IOとなった時、生ずる信号を
CPU(+7)に入力するようにしてもよい。
FIG. 4 is a system configuration diagram showing an example of this case.
In the figure, (14), (16), (17), (19) or 23) are the same as in FIG. 2, and (24) is a compressor drive current detection circuit which takes out a voltage IC proportional to the drive current. (25) is ^/D converter, (26) is Ic
is an overload condition detection means that outputs a signal when the pressure inside the condenser (4) exceeds a set value To, which corresponds to the compressor drive current at the permissible limit. In this embodiment, the voltage proportional to the compressor drive current is converted into digital data and the set values are compared in the CPU (17). The signals may be compared in an analog manner using a comparator, and when IC≧IO, the resulting signal may be input to the CPU (+7).

[発明の効果] この発明は、以−ヒのように圧縮機の過負荷保護運転中
における除霜条件検出に対して、直ちに除霜運転に入ら
ずに、蒸発器側送風機を一定時間運転させるようにした
ので、不必要な除霜運転によるエネルギー損失、室温低
下による不快感、並びに四方弁切換音の多発を減少させ
ることができる効果を有している。
[Effects of the Invention] As described below, when defrosting conditions are detected during overload protection operation of the compressor, the evaporator side blower is operated for a certain period of time without immediately entering defrosting operation. This has the effect of reducing energy loss due to unnecessary defrosting operation, discomfort caused by a drop in room temperature, and frequent occurrence of four-way valve switching noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明方式が適用される一般のヒートポン
プ式空気調和機の構成図、第2図は、この発明の一実施
例を示すシステム構成図、第3図は、その動作説明図、
第4図は、この発明の他の実施例髪示すシステム構成図
である。 図において、(1)は、圧縮機、(3)は四方弁、(4
)は暖房サイクルにおいて凝縮器である室内交換器、(
5)は暖房サイクルにおいて蒸発器である室外熱交換器
、(6)は膨張弁又は毛細管、(7)は冷媒配管、(8
)は冷媒サイクル、(9)は暖房サイクルにおいて凝縮
器側送風機である室内側送風機、(10)は暖房サイク
ルにおいて蒸発機側送風機である室外側送風機、(19
)は除霜条件検出手段、(1g) (26)は圧縮機過
負荷状態検出手段、(20)は処理回路、−(21)は
制御リレー駆動回路、(22)は蒸発器側送風機リレー
、(23)は四方弁リレーである。 図中間−或は相当部分は同一符号をもって示している。 代理人 大 岩 増 雄 (ほか2名)第1区 第3図 久 第4図 2ム 手jtJt補正書(自発) 60 6 13 昭和 年 月 1−1 3、 補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁ロ2番3号名 称 
(601)三菱電機株式会社 代表者J1山仁八部 4、代理人 5、 補〔「の対象 明細11)の発明の11″f・相な説明の欄6、 補1
:の内容 (1)明細書第3頁第14行に「表われる」とあるのを
「現われるJと訂1]−する。 (2)明細書第3頁第14行と第18行間に次の字句を
挿入する。 [なよ?、判別回路の切換動作は、画面のハンチングを
さけるために、若干のヒステリシス特性を持たぜるよっ
にしてもよい。J 以1
Fig. 1 is a block diagram of a general heat pump type air conditioner to which the method of the present invention is applied, Fig. 2 is a system block diagram showing an embodiment of the present invention, and Fig. 3 is an explanatory diagram of its operation.
FIG. 4 is a system configuration diagram showing another embodiment of the present invention. In the figure, (1) is a compressor, (3) is a four-way valve, and (4) is a four-way valve.
) is the indoor exchanger which is the condenser in the heating cycle, (
5) is an outdoor heat exchanger which is an evaporator in the heating cycle, (6) is an expansion valve or capillary tube, (7) is a refrigerant pipe, and (8) is an expansion valve or capillary tube.
) is the refrigerant cycle, (9) is the indoor blower which is the condenser side blower in the heating cycle, (10) is the outdoor blower which is the evaporator side blower in the heating cycle, and (19) is the indoor blower which is the evaporator side blower in the heating cycle.
) is a defrosting condition detection means, (1g) (26) is a compressor overload state detection means, (20) is a processing circuit, - (21) is a control relay drive circuit, (22) is an evaporator side blower relay, (23) is a four-way valve relay. The middle portions or corresponding portions of the figures are designated by the same reference numerals. Agent: Masuo Oiwa (and 2 others) Ward 1, Figure 3, Figure 4, Figure 2, JtJt Amendment (voluntary) 60 6 13 Showa 1999 1-1 3. Relationship with the case of the person making the amendment Patent Applicant address 2-3 Marunouchi 2-chome, Chiyoda-ku, Tokyo Name
(601) Mitsubishi Electric Co., Ltd. Representative J1 Yamajin 8th Department 4, Agent 5, Supplementary [Object Specification 11] of the invention 11″f/Comparative Explanation Column 6, Supplementary 1
Contents of: (1) On page 3, line 14 of the specification, the word “appears” has been changed to “appear J” - (2) The following between lines 14 and 18 on page 3 of the specification: Insert the phrase. [Nayo?, the switching operation of the discrimination circuit may have a slight hysteresis characteristic in order to avoid hunting on the screen.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、冷媒サイクル切換用四方弁、凝縮器、蒸
発器、及び膨張弁又は毛細管からなる冷媒サイクル、凝
縮器側送風機、蒸発器側送風機、」1記蒸発器の除霜条
件を検出する手段、及び−上記圧縮機の過負荷状態を検
出する手段を備え、この過負荷状態の検出により上記蒸
発器側送風機を停止しての過負荷保護運転を行い、上記
除霜条件の検出により、」1記蒸発器側送風機を停止し
四方ブ?を切換えての除霜運転を所定時間行うようにし
たヒートポンプ式空気調和機の除霜方式において、上記
過負荷保護運転中における1記除霜条件検出に対しては
、−り記蒸発器側送風機を一定時間駆動させ、その後に
おいても除霜条件を検出している時のみ除霜運転に入る
ようにしたことを特徴とするヒートポンプ式空気調和機
の除霜方式。
(1) Compressor, refrigerant cycle consisting of a four-way valve for switching refrigerant cycle, condenser, evaporator, and expansion valve or capillary tube, condenser side blower, evaporator side blower, Detecting the defrosting conditions of the evaporator described in 1. - means for detecting an overload condition of the compressor; upon detection of the overload condition, the evaporator side blower is stopped to perform overload protection operation; and upon detection of the defrosting condition, , 1. Stop the evaporator side blower and blow it on all sides? In the defrosting method of a heat pump air conditioner in which defrosting operation is performed for a predetermined period of time by switching the A defrosting method for a heat pump air conditioner, characterized in that the defrosting system is operated for a certain period of time, and even after that, the defrosting operation is started only when defrosting conditions are detected.
(2)上記除霜条件を検出する手段は、上記蒸発器の温
度が所定設定温度以下を検出する手段である特許請求の
範囲第1項記載のピー1−ポンプ式空気調和機の除霜方
式。
(2) A defrosting method for a P1-pump type air conditioner according to claim 1, wherein the means for detecting the defrosting condition is means for detecting that the temperature of the evaporator is equal to or lower than a predetermined set temperature. .
(3)−l1記圧縮機の過負荷状プN検出丁段は、上記
凝縮器の温度が所定設定温度共−にを検出する手段であ
る特許請求の範囲第1項又は第2項記載のピー1−ポン
プ式空気調和機の除霜H人、。 (/I)上記圧縮機の過自荷状態検出手段は、−1−記
圧縮機の駆動電動機電流が所定設定電流値具1−になっ
たことを検出する手段である待J1請求の範囲第1項又
は第2項記載のビー1−ポンプ式H/q気調和機の除霜
方式。
(3) The overload condition detection stage of the compressor according to claim 1 or 2 is a means for detecting whether the temperature of the condenser is equal to a predetermined set temperature. P1 - Defrosting a pump type air conditioner. (/I) The overload state detection means of the compressor is means for detecting that the drive motor current of the compressor -1- has reached a predetermined set current value 1-. A defrosting method for a bee 1-pump type H/q air conditioner according to item 1 or 2.
JP59099501A 1984-05-17 1984-05-17 Defrosting system for heat pump type air conditioning equipment Granted JPS60243436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099501A JPS60243436A (en) 1984-05-17 1984-05-17 Defrosting system for heat pump type air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099501A JPS60243436A (en) 1984-05-17 1984-05-17 Defrosting system for heat pump type air conditioning equipment

Publications (2)

Publication Number Publication Date
JPS60243436A true JPS60243436A (en) 1985-12-03
JPH0260941B2 JPH0260941B2 (en) 1990-12-18

Family

ID=14249020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099501A Granted JPS60243436A (en) 1984-05-17 1984-05-17 Defrosting system for heat pump type air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS60243436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141446A (en) * 1985-12-16 1987-06-24 Matsushita Electric Ind Co Ltd Defrosting control device of air conditioner
WO2018138796A1 (en) * 2017-01-25 2018-08-02 三菱電機株式会社 Refrigeration cycle device
CN112555179A (en) * 2020-12-02 2021-03-26 广东芬尼克兹节能设备有限公司 Fan overload protection control method and device, computer equipment and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141446A (en) * 1985-12-16 1987-06-24 Matsushita Electric Ind Co Ltd Defrosting control device of air conditioner
JPH0532659B2 (en) * 1985-12-16 1993-05-17 Matsushita Electric Ind Co Ltd
WO2018138796A1 (en) * 2017-01-25 2018-08-02 三菱電機株式会社 Refrigeration cycle device
US11486620B2 (en) 2017-01-25 2022-11-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN112555179A (en) * 2020-12-02 2021-03-26 广东芬尼克兹节能设备有限公司 Fan overload protection control method and device, computer equipment and storage medium

Also Published As

Publication number Publication date
JPH0260941B2 (en) 1990-12-18

Similar Documents

Publication Publication Date Title
JPH0529830B2 (en)
JPH11287538A (en) Air-conditioner
JP3445861B2 (en) Air conditioner
JPH1030835A (en) Controller for air conditioner
JP2943685B2 (en) Operation control device for air conditioner
JP3329603B2 (en) Air conditioner
JPS60243436A (en) Defrosting system for heat pump type air conditioning equipment
KR20010001012A (en) Defrosting method for air conditioner
JPH05264113A (en) Operation control device of air conditioner
JP2909963B2 (en) Air conditioner
JPH04356647A (en) Control device for air conditioner
JPH0359358A (en) Air conditioner
JP3401873B2 (en) Control device for air conditioner
JPH0799298B2 (en) Defrosting method for heat pump type air conditioner
JPS62125244A (en) Air conditioner
JP2001235211A (en) Air conditioner
JPH0328279Y2 (en)
JPS6325448A (en) Indoor machine for heat pump type air-conditioning machine
JPH05288386A (en) Operation controller for outdoor fan in air conditioner
JPS62119348A (en) Control device for defrosting operation of air conditioner
JPS6332256A (en) Heat pump system
JPH0327265Y2 (en)
KR20050074182A (en) A indoor fan control method of air conditioner
JPH0615250Y2 (en) Air conditioner operation control device
JPS63129257A (en) Heat pump type air conditioner