JPS6356286B2 - - Google Patents

Info

Publication number
JPS6356286B2
JPS6356286B2 JP2083081A JP2083081A JPS6356286B2 JP S6356286 B2 JPS6356286 B2 JP S6356286B2 JP 2083081 A JP2083081 A JP 2083081A JP 2083081 A JP2083081 A JP 2083081A JP S6356286 B2 JPS6356286 B2 JP S6356286B2
Authority
JP
Japan
Prior art keywords
hot metal
blowing
fluorite
vessel
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2083081A
Other languages
Japanese (ja)
Other versions
JPS57137408A (en
Inventor
Hideji Takeuchi
Toshihiko Emi
Tsutomu Nozaki
Hitoshi Morishita
Rinzo Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2083081A priority Critical patent/JPS57137408A/en
Priority to EP19810302859 priority patent/EP0043238B1/en
Priority to DE8181302859T priority patent/DE3166581D1/en
Priority to AU72345/81A priority patent/AU529793B2/en
Publication of JPS57137408A publication Critical patent/JPS57137408A/en
Publication of JPS6356286B2 publication Critical patent/JPS6356286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、溶銑の脱りん処理法に関し、とく
に溶銑を原料として溶鋼を得る精錬プロセスにお
いて、製鋼の予備的段階として、底吹き転炉又は
上底吹き併用転炉ないしはこれらに類似の機能を
もつ吹錬容器内で、主に脱けいと脱りんを目脂す
処理を溶銑に加える過程での改良を提案するもの
であつて、この予備的段階は、これに引つづい
て、殆ど専ら脱炭を行う容器たとえば底吹き転
炉、上底吹き併用転炉ないしは、上吹き転炉の如
き通常の製鋼炉での吹錬に先行させる付加工程、
つまり溶銑に対する製鋼のための予備処理法の範
疇に属している。 (従来技術) 底吹き転炉あるいはこれに類似の吹錬容器内で
通常C/4.5、Si/0.20、Mn/0.40、P/0.140、
S/0.020(以上何れも重量%を脂し、以下の記述
でも同様とする)を代表成分とする溶銑に、炉底
羽口により酸素を溶銑トン当り8〜18Nm3の範囲
で吹込みつつその酸素気流にのせて微粉状の生石
灰およびほたる石をそれぞれ、溶銑トン当り30
Kg、4Kg程度の割合いで溶銑浴中に加え、C/
3.7、Si<0.01、Mn/0.3、P/0.010、S/0.010
の程度に予備処理した、低りん低硫溶銑を得るこ
とのように要約される従来の溶銑予備処理法で
は、底吹き転炉における吹錬挙動の特徴と同様な
強撹拌が吹錬容器内の溶鋼に加わるので、微粉状
精錬剤の吹込みが容易にしかも適切に行われ、2
〜4分間程度の短時間で、脱けいと90%以上に及
ぶような脱りんが成就される。 ここで微粉状精錬剤にほたる石を配合して溶銑
浴中に添加する目的は、処理中におけるスラグの
粘性を下げて溶銑との反応界面積を大きくするこ
とにより、脱りんの効果を高めるところにあり、
とくに粉状ほたる石の炉底羽口を吹込みは、粉状
生石灰に対する接触機会を多くして、早期に、か
つ確実に、スラグの粘性を下げるのに効果がある
との考えで、従来から実施されて来たのである。 しかるに一般には、塊状の原料として入手され
るほたる石を微粉状にするため、大型の粉砕設備
と電力、燃料を必要とする上に、粉砕工場から製
鋼工場まで輸送するためのパイプラインや、搬送
用気体さらには貯蔵や、切出しのためのタンク類
の如き施設をも必要とし、これらの設備類の保守
経費が嵩むなどの点に、多くの問題があつた。 (発明が解決しようとする課題) 上記のような微粉状のほたる石を用いる場合に
おける問題点を解決するためこの発明は、従来法
のようにほたる石を微粉状にして炉底羽口より吹
込まないで、とくに塊状のまま吹錬容器の上部開
口より投入することにより、従来通りのほたる石
の粉砕を先行させる方法におけると同等程度に止
まらずして予想にも、むしろよりすぐれた効果が
えられることを実験によつて究明し、その成果に
基づいて発明した溶銑の脱りん処理法である。 (課題を解決するための手段) 精錬ガスの底吹き機能をもち、必要によりさら
には同じく精錬ガスの上吹きを付加し得る吹錬容
器に溶銑を受入れ、底吹き精錬ガスをキヤリヤガ
スに併用して粉状精錬剤を溶銑中に吹込み、この
間に脱けい及びそれに引続く脱りん処理を、さら
に随伴的に脱硫処理とともにあわせ施す溶銑の予
備的吹錬処理において、 この予備的吹錬処理に伴う発熱に由来する溶銑
の昇温を、鉱石、ミルスケール及びスクラツプの
うち少なくとも1種からなる冷却剤の装入により
抑制して、該吹錬中の溶銑温度を1250〜1450℃の
範囲に保持しつつ、 上記粉状精錬剤を、その主成分の酸化カルシウ
ムによる溶銑処理後のスラグ塩基度CaO/SiO2
の値が3以上となる調製下に溶銑中に吹込み、か
つ 媒溶剤として、ほたる石、氷晶石、コレマナイ
ト及び赤泥の群のうちの少なくとも1種を、粉砕
工程には供しないままの塊状で、吹錬容器の頂部
開口より装入し、 底吹き精錬ガスは、酸素量を除外するが、脱け
い反応に消費される冷却剤の装入に基づく酸素量
は算入することとして溶銑トン当たり8〜15Nm3
の範囲で定められる酸素量にて溶銑トン当り毎分
0.5Nm3以上の送給速度で吹込んで吹錬を行うこ
と を特徴とする溶銑脱りん処理法である。 前述の如き粉砕設備をはじめとする多くの施設
はこの発明に従い不必要となり、一般的な製鋼工
場には必ず設置されている副原料投入用シユータ
ーの如きをほたる石の投入にも流用するのみで、
塊状ほたる石の装入が行えて、従来法に比しより
高い脱りん率が得られるので、溶銑処理の大幅な
コスト低減に結びつくわけでもある。 (作 用) 底吹き転炉をとくに製鋼炉としてではなく、製
鋼前段階の溶銑予備処理に活用した際における脱
りん機構を解明するため各種、多様な実験を行つ
て、脱りんに及ぼされるほたる石添加の顕著な効
果が、 炉底羽口から吸込む石灰粒に対する寄与か、あ
るいは 溶銑上のスラグに対する作用か についての不明確であつた点につき、発明者らは
ほたる石を炉上添加し、それ以外の操業因子を変
えない場合に、微粉状ほたる石の吹込みによるよ
りもはるかに高い脱りん成績が得られ、ここに従
来法よりもほたる石使用量を減少できることが知
見されたのである。 さて底吹き転炉を溶銑予備処理に用いて、短時
間に脱けいと、これに引続いて脱りんを進行さ
せ、さらに随伴的に脱硫を行うことは、たとえば
鉄と鋼1980年第11号S730〜733に報告されてい
る。 この発明は上記のような溶銑予備処理法を実行
する場合にまず、 吹錬中の溶銑温度を1250〜1450℃に保持する
こと、 粉状精錬剤の主成分である酸化カルシウムを
炉底羽口から吹込み、かつ処理後のCaO/
SiO2を3以上にすること、および 吹錬酸素量(気体送酸量+冷却剤に由来する
酸素量−脱けいに消費される酸素量)が溶銑ト
ン当り8〜15Nm3であること、 が不可欠であり、かような条件を限定した根拠を
それぞれ第1図、第2図、第3図に示す。 の範囲限度の下限は次工程に至る間の温度降
下によつても溶湯が凝固しない最低温度、また上
限は次工程で改めて脱りん処理を行う必要をなく
すため少なくとも85%の脱りん率を要することか
ら第1図の結果から限定される。 のCaO/SiO2の下限は、第2図でCaO/
SiO2が3以上で脱りん率の向上と、脱マンガン
率の低下に顕著な効果があるのに対し、3以下で
は脱りん率にさほどの改善がないのに脱マンガン
率の低下が不充分であることによる。 の吹錬酸素量の下限は第3図で、温度上限の
限定と同じく脱りん率85%を確保するため、また
上限は次工程で昇温のための加炭を要しない溶銑
C濃度が3.0%程度であるので、これをこえる脱
炭を回避するための最大量が15Nm3/tであるこ
とによる。 この発明の最も重要な条件は媒溶剤として装入
するほたる石につき従来のような粉砕やその炉底
羽口からの吹込みの代りにとくに塊状のまま、吹
錬容器の頂部開口より装入することである。 こゝに第4図aでは従来法により粉状ほたる石
を精錬剤の生石灰と併用した場合につき脱りん率
の向上、および脱マンガン率の低下の傾向を、炉
底羽口から生石灰粉と同時吹込みした場合につい
て示したが、これに対し第4図bには、生石灰粉
は炉底羽口を通して吹込む一方ほたる石は塊状の
ものを吹錬容器の頂部開口から装入した実験につ
いて示す。両図を比較して明らかなように、塊状
のほたる石を使用した場合であつても、脱りん率
の向上と脱マンガン率の低下の傾向は、同図aの
場合と同様であるが、とくに注目すべきは前述し
た脱りん率の下限85%を得るのに必要な最少ほた
る石量が、粉状同時吹込みの場合生石灰の5重量
%であるのに対し塊状ほたる石を投入するこの発
明では約2重量%で足りる。 さらにこれを明確にするために、脱りん率のみ
について比較し第5図に示す。 すなわち従来、粉状ほたる石を使用した方が、
スラグの粘性低下を早めて脱りんに効果が高いと
考えられてきたが、事実は第4図a,bのように
これと反対の結果を生じた。 この理由はいまだ明確ではないが、発明者らは
粉状ほたる石吹込みの場合、吹込まれた一部のほ
たる石は酸素気泡に取り込まれ、このため生石灰
との接触が妨げられたまま浮上し、スラグを形成
せずに発生ガスとともに炉外へ逸出してスラグの
粘性低下への効果が塊状ほたる石添加に比較して
劣るのではないかと推測した。 以上媒溶剤としてほたる石単独使用の場合につ
いて説明したが、そのほか氷晶石、コレマナイト
および赤泥を単独あるいは、ほたる石も含めて2
種以上を、同様に併用した実験を行つたところ、
第5図と同様な同じ配合率でも塊状で炉上投入の
方が微粉吹込みより脱りん率の向上効果が得られ
た。 表1にこの発明による実施例のデータを、従来
法と比較して示す。
(Industrial Application Field) The present invention relates to a method for dephosphorizing hot metal, and in particular, in a refining process to obtain molten steel from hot metal as a raw material, as a preliminary step in steelmaking, a bottom blowing converter, a top and bottom blowing combined converter, or a top and bottom blowing converter are used. We are proposing improvements in the process of adding molten iron to molten iron in a blowing vessel that has similar functions to these, and this preliminary step is a continuation of this process. An additional process that precedes blowing in a normal steelmaking furnace such as a bottom-blowing converter, a top-bottom-blowing converter, or a top-blowing converter, which almost exclusively performs decarburization.
In other words, it belongs to the category of pretreatment methods for hot metal for steel making. (Prior art) Usually C/4.5, Si/0.20, Mn/0.40, P/0.140,
Hot metal containing S/0.020 (all of the above have a fat content of % by weight, and the same applies in the following descriptions) is injected with oxygen in the range of 8 to 18 Nm 3 per ton of hot metal through the furnace bottom tuyere. 30% each of finely powdered quicklime and fluorite per ton of hot metal in an oxygen stream
Add C/
3.7, Si<0.01, Mn/0.3, P/0.010, S/0.010
In the conventional hot metal pretreatment method, which can be summarized as obtaining low phosphorus, low sulfur hot metal that has been pretreated to a degree of Since it is added to the molten steel, the fine powder refining agent can be easily and properly blown into the molten steel.
In a short period of about 4 minutes, more than 90% dephosphorization can be achieved. The purpose of blending fluorite into the fine powder refining agent and adding it to the hot metal bath is to lower the viscosity of the slag during treatment and increase the reaction interface area with the hot metal, thereby increasing the dephosphorization effect. Located in
In particular, blowing powdered fluorite through the hearth tuyere is believed to be effective in reducing the viscosity of slag by increasing the chances of contact with powdered quicklime, and has traditionally been used. It has been implemented. However, in general, fluorite, which is obtained as a raw material, is turned into a fine powder, which requires large crushing equipment, electricity, and fuel. There were many problems in that it required facilities such as tanks for gas storage and extraction, and the maintenance costs for these facilities increased. (Problems to be Solved by the Invention) In order to solve the above-mentioned problems when using finely powdered fluorite, the present invention has developed a method in which fluorite is made finely powdered and blown from the bottom tuyeres of the hearth, unlike the conventional method. By injecting the fluorite into the blowing vessel from the top opening in the form of a lump without pulverizing it, the effect is not only the same as that of the conventional method of crushing the fluorite, but is even better than expected. This is a method for dephosphorizing hot metal that was invented based on the results of experiments. (Means for solving the problem) Hot metal is received in a blowing vessel that has a bottom blowing function for refining gas and can also add top blowing of the refining gas if necessary, and the bottom blowing refining gas is used in combination with the carrier gas. In the preliminary blowing treatment of hot metal, in which a powdered refining agent is injected into the hot metal, during which desilting and subsequent dephosphorization treatment are performed together with additional desulfurization treatment. The temperature rise of hot metal due to heat generation is suppressed by charging a coolant consisting of at least one of ore, mill scale, and scrap, and the temperature of hot metal during blowing is maintained in the range of 1250 to 1450 ° C. At the same time, the powdered refining agent is used to increase the slag basicity CaO/SiO 2 after hot metal treatment with calcium oxide, its main component.
is blown into the hot metal under the condition that the value of In the case of bottom-blown refining gas, which is in the form of a lump and is charged from the top opening of the blowing vessel, the amount of oxygen is excluded, but the amount of oxygen based on the charging of the coolant consumed in the desiliconization reaction is included in the ton of hot metal. 8~15Nm per 3
per minute per ton of hot metal at the amount of oxygen determined within the range of
This is a hot metal dephosphorization treatment method characterized by blowing at a feed rate of 0.5Nm3 or higher . Many facilities such as the above-mentioned crushing equipment are no longer necessary according to this invention, and the auxiliary material inputting shooter, which is always installed in a general steel factory, can be used to input fluorite. ,
Since bulk fluorite can be charged and a higher dephosphorization rate can be obtained than in conventional methods, it also leads to a significant cost reduction in hot metal processing. (Function) In order to elucidate the dephosphorization mechanism when a bottom-blowing converter is used not specifically as a steelmaking furnace, but for hot metal pretreatment in the pre-steelmaking stage, we conducted various experiments to clarify the effects of fireflies on dephosphorization. Since it was unclear whether the significant effect of stone addition was due to its contribution to the lime grains sucked in from the bottom tuyeres or the effect on the slag on the hot metal, the inventors added fluorite in the furnace. It was discovered that when other operational factors are not changed, much higher dephosphorization results can be obtained than by injecting fine powdered fluorite, and the amount of fluorite used can be reduced compared to conventional methods. . Now, using a bottom-blowing converter for hot metal pretreatment to remove desulfurization in a short time, to proceed with dephosphorization, and to perform concomitant desulfurization, for example, Tetsu-to-Hagane 1980 No. 11 S730 ~733 reported. When carrying out the hot metal pretreatment method as described above, this invention first requires that the temperature of the hot metal during blowing be maintained at 1250 to 1450°C, and that calcium oxide, which is the main component of the powdered refining agent, be added to the furnace bottom tuyere. CaO/ after injection and treatment
The SiO 2 should be 3 or more, and the blowing oxygen amount (gas oxygen supply amount + oxygen amount derived from the coolant - oxygen amount consumed for desiliconization) should be 8 to 15 Nm 3 per ton of hot metal. The grounds for limiting such conditions are shown in Figures 1, 2, and 3, respectively. The lower limit of the range limit is the minimum temperature at which the molten metal will not solidify even if the temperature drops during the next process, and the upper limit is the dephosphorization rate of at least 85% to eliminate the need for dephosphorization treatment in the next process. Therefore, it is limited based on the results shown in Figure 1. The lower limit of CaO/SiO 2 is shown in Figure 2.
When SiO 2 is 3 or more, it has a remarkable effect on improving the dephosphorization rate and reducing the demanganization rate, whereas when it is less than 3, there is no significant improvement in the dephosphorization rate, but the reduction in the demanganization rate is insufficient. By being. The lower limit of the amount of blowing oxygen is shown in Figure 3, and as with the upper limit of temperature, the upper limit is set to ensure a dephosphorization rate of 85%, and the upper limit is set at 3.0 C concentration, which does not require carburization to raise the temperature in the next process. %, the maximum amount to avoid decarburization exceeding this amount is 15 Nm 3 /t. The most important condition of this invention is that the fluorite to be charged as a solvent is charged from the top opening of the blowing vessel in the form of a lump, instead of being crushed or blown from the bottom tuyere as in the conventional method. That's true. Figure 4a shows the improvement in the dephosphorization rate and the decrease in the demanganization rate when powdered fluorite is used in combination with quicklime as a refining agent using the conventional method. In contrast, Fig. 4b shows an experiment in which quicklime powder was blown through the bottom tuyere, while fluorite was charged in the form of a lump from the top opening of the blowing vessel. . As is clear from comparing the two figures, even when bulk fluorite is used, the tendency for the dephosphorization rate to improve and the demanganization rate to decrease is the same as in Figure a. What is particularly noteworthy is that the minimum amount of fluorite required to obtain the lower limit of 85% dephosphorization rate mentioned above is 5% by weight of quicklime when simultaneously injecting powdered fluorite, whereas in this case when bulk fluorite is introduced. In the invention, about 2% by weight is sufficient. In order to further clarify this, only the dephosphorization rate is compared and shown in FIG. In other words, it is better to use powdered fluorite in the past.
It has been thought that it is highly effective in dephosphorizing by accelerating the decrease in the viscosity of the slag, but in fact, the opposite results were produced as shown in Figure 4 a and b. The reason for this is not yet clear, but the inventors found that when powdered fluorite is injected, some of the injected fluorite is incorporated into oxygen bubbles, which prevents it from coming into contact with quicklime and causes it to float to the surface. It was speculated that fluorite escapes from the furnace together with the generated gas without forming slag, and its effect on reducing the viscosity of slag is inferior to that of adding bulk fluorite. Above, we have explained the case where fluorite is used alone as a solvent, but in addition, cryolite, colemanite, and red mud can be used alone or in combination with fluorite.
When we conducted an experiment using more than one species in the same way, we found that
Even at the same blending ratio as shown in FIG. 5, charging the bulk powder above the furnace was more effective in improving the dephosphorization rate than fine powder injection. Table 1 shows the data of the embodiment according to the present invention in comparison with the conventional method.

【表】【table】

【表】 この発明で従来法と異なる操業条件は、ほたる
石添加を塊状のまま炉上より、行つた点のみであ
るがより少いほたる石の使用量で同様の処理後溶
銑が得られている。 (発明の効果) この発明の実施により、ほたる石粉砕費(電力
および水分除去のための加熱費)が皆無になり、
またほたる石を粉砕する設備および輸送配管の保
守経費も不要となる。なお底吹き吹錬容器による
溶銑予備処理のための施設を新設する場合には、
従来生石灰粉砕用のほかにほたる石の粉砕のため
にも粉砕設備を要したのにそのうちほたる石用の
ものは不要となり、設備費の低減が期待できる。 以上のべたようにしてこの発明によれば粉状精
錬剤を溶銑浴中に底吹き吹錬ガスとともに吹込む
溶銑予備処理の有効な脱りん作用を促進する媒溶
剤の使用量を、そのとくに高い寄与率の下に低減
することが、とくに粉砕加工の省略にあわせ可能
となる。 なお、実施例では底吹き転炉を吹錬容器に用い
た場合について示したが、この発明方法の要点は
ほたる石などの媒溶剤をとくに塊状のまま炉上よ
り装入することであるので、上下吹き転炉に対し
ても全く同様に応用できるのはいうまでもない。
[Table] The only operating condition that differs from the conventional method in this invention is that the fluorite is added in the form of a lump over the furnace, but the same processed hot metal can be obtained with a smaller amount of fluorite. There is. (Effect of the invention) By implementing this invention, the cost of crushing fluorite (electricity and heating cost for removing moisture) will be completely eliminated.
In addition, maintenance costs for equipment for crushing fluorite and transportation piping become unnecessary. In addition, when constructing a new facility for hot metal pretreatment using a bottom-blown blowing vessel,
Conventionally, crushing equipment was required not only for crushing quicklime but also for crushing fluorite, but in the future, equipment for fluorite will no longer be necessary, and equipment costs can be expected to be reduced. As described above, according to the present invention, the amount of the solvent used to promote the effective dephosphorization effect of the hot metal pretreatment in which the powdered refining agent is blown into the hot metal bath together with the bottom blowing gas is increased. It becomes possible to reduce the contribution rate to below, especially by omitting the crushing process. In addition, although the example shows the case where a bottom blowing converter is used as the blowing vessel, the key point of the method of this invention is to charge the solvent such as fluorite from above the furnace in the form of lumps. Needless to say, it can be applied in exactly the same way to a top-bottom blowing converter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吹精中の溶銑温度と脱りん率との関係
を示すグラフ、第2図は処理後スラグの塩基度
CaO/SiO2と脱りん率、脱マンガン率との関係
グラフ、第3図は吹錬酸素量(気体酸素+冷却剤
に由来する酸素−脱けいに消費される酸素)と脱
りん率との関係グラフ、第4図aは粉状ほたる石
を炉底羽口より吹込んだ場合のほたる石配合率と
脱りん率、脱マンガン率との関係グラフ、同図b
はほたる石を塊状のまま炉上より装入した場合に
おける同様な関係グラフ、第5図は脱りん率につ
いてほたる石吹込みと炉上装入との比較グラフで
ある。
Figure 1 is a graph showing the relationship between the hot metal temperature during blowing and the dephosphorization rate, and Figure 2 is the basicity of the slag after treatment.
Figure 3 shows the relationship between CaO/SiO 2 , dephosphorization rate, and demanganization rate. Relationship graph, Figure 4a is a graph of the relationship between the fluorite blending ratio, dephosphorization rate, and demanganization rate when powdered fluorite is injected from the bottom tuyere, Figure 4b
Figure 5 is a graph showing a similar relationship when fluorite is charged in the form of a lump from above the furnace, and Figure 5 is a graph comparing the dephosphorization rate between fluorite injection and furnace charging.

Claims (1)

【特許請求の範囲】 1 精錬ガスの底吹き機能をもち、必要によりさ
らには同じく精錬ガスの上吹きを付加し得る吹錬
容器に溶銑を受入れ、底吹き精錬ガスをキヤリヤ
ガスに併用して粉状精錬剤を溶銑中に吹込み、こ
の間に脱けい及びそれに引続く脱りん処理を、さ
らに随伴的に脱硫処理とともにあわせ施す溶銑の
予備的吹錬処理において、 この予備的吹錬処理に伴う発熱に由来する溶銑
の昇温を、鉱石、ミルスケール及びスクラツプの
うち少なくとも1種からなる冷却剤の装入により
抑御して、該吹錬中の溶銑温度を1250〜1450℃の
範囲に保持しつつ、 上記粉状精錬剤を、その主成分の酸化カルシウ
ムによる溶銑処理後のスラグ塩基度CaO/SiO2
の値が3以上となる調製下に溶銑中に吹込み、か
つ 媒溶剤として、ほたる石、氷晶石、コレマナイ
ト及び赤泥の群のうちの少なくとも1種を、粉砕
工程には供しないままの塊状で、吹錬容器の頂部
開口より装入し、 底吹き精錬ガスは、酸素量を除外するが、脱け
い反応に消費される冷却剤の装入に基づく酸素量
は算入することとして溶銑トン当たり8〜15Nm3
の範囲で定められる酸素量にて溶銑トン当り毎分
0.5Nm3以上の送給速度で吹込んで吹錬を行うこ
と を特徴とする溶銑脱りん処理法。 2 吹錬容器が底吹き転炉である特許請求の範囲
1記載の方法。 3 吹錬容器が上底吹き併用転炉である特許請求
の範囲1記載の方法。
[Claims] 1. Hot metal is received in a blowing vessel which has a bottom blowing function for refining gas and can also add top blowing of the refining gas if necessary, and the bottom blowing refining gas is used together with the carrier gas to form powder. In the preliminary blowing process of hot metal, in which a refining agent is injected into the hot metal, and during this process desilicification and subsequent dephosphorization treatment are performed together with additional desulfurization treatment. The temperature rise of the hot metal produced is suppressed by charging a coolant consisting of at least one of ore, mill scale, and scrap, and the temperature of the hot metal during blowing is maintained in the range of 1250 to 1450 ° C. , The slag basicity CaO/SiO 2 after hot metal treatment using the above powdered refining agent with its main component calcium oxide
is blown into the hot metal under the condition that the value of In the case of bottom-blown refining gas, which is in the form of a lump and is charged from the top opening of the blowing vessel, the amount of oxygen is excluded, but the amount of oxygen based on the charging of the coolant consumed in the desiliconization reaction is included in the ton of hot metal. 8~15Nm per 3
per minute per ton of hot metal at the amount of oxygen determined within the range of
A hot metal dephosphorization treatment method characterized by blowing at a feed rate of 0.5Nm3 or higher. 2. The method according to claim 1, wherein the blowing vessel is a bottom blowing converter. 3. The method according to claim 1, wherein the blowing vessel is a top-bottom blowing converter.
JP2083081A 1980-06-28 1981-02-17 Dephosphorization treatment of molten iron Granted JPS57137408A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2083081A JPS57137408A (en) 1981-02-17 1981-02-17 Dephosphorization treatment of molten iron
EP19810302859 EP0043238B1 (en) 1980-06-28 1981-06-25 Method of dephosphorizing molten pig iron
DE8181302859T DE3166581D1 (en) 1980-06-28 1981-06-25 Method of dephosphorizing molten pig iron
AU72345/81A AU529793B2 (en) 1980-06-28 1981-06-29 Method of dephosphorizing molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083081A JPS57137408A (en) 1981-02-17 1981-02-17 Dephosphorization treatment of molten iron

Publications (2)

Publication Number Publication Date
JPS57137408A JPS57137408A (en) 1982-08-25
JPS6356286B2 true JPS6356286B2 (en) 1988-11-08

Family

ID=12037958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083081A Granted JPS57137408A (en) 1980-06-28 1981-02-17 Dephosphorization treatment of molten iron

Country Status (1)

Country Link
JP (1) JPS57137408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374693U (en) * 1989-11-21 1991-07-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169318A (en) * 1986-12-29 1988-07-13 Kawasaki Steel Corp Method of de-phosphorizing molten iron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115219A (en) * 1975-04-02 1976-10-09 Nippon Steel Corp Process of preparing low-phosphor molten iron
JPS541221A (en) * 1977-06-06 1979-01-08 Sumitomo Metal Ind Ltd Method of dephosphorizing molten iron
JPS5475418A (en) * 1977-11-29 1979-06-16 Sumitomo Metal Ind Ltd Hot iron dephosphorization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115219A (en) * 1975-04-02 1976-10-09 Nippon Steel Corp Process of preparing low-phosphor molten iron
JPS541221A (en) * 1977-06-06 1979-01-08 Sumitomo Metal Ind Ltd Method of dephosphorizing molten iron
JPS5475418A (en) * 1977-11-29 1979-06-16 Sumitomo Metal Ind Ltd Hot iron dephosphorization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374693U (en) * 1989-11-21 1991-07-26

Also Published As

Publication number Publication date
JPS57137408A (en) 1982-08-25

Similar Documents

Publication Publication Date Title
CN105506226B (en) A kind of method that hot metal desiliconization, pre- decarburization and pre- dephosphorization are carried out in hot-metal bottle
CN113249544A (en) Process for quenching and tempering steel slag into refining slag and deoxidizing and desulfurizing molten steel
CN105063266B (en) A kind of converter steel making method
US4356032A (en) Method of dephosphorizing molten pig iron
JPS6356286B2 (en)
EP0043238B1 (en) Method of dephosphorizing molten pig iron
JPH07316618A (en) Method for pre-refining smelting reduction molten iron
JP4192503B2 (en) Manufacturing method of molten steel
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
CN113122673A (en) CaC using calcium carbide2Process for pretreating converter blowing end point steel slag
JP2016079462A (en) Method for refining hot pig iron
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
CN115418434B (en) Production method of low-phosphorus molten iron for carburetion
JPH0437135B2 (en)
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JP3339982B2 (en) Converter steelmaking method
JP2587286B2 (en) Steelmaking method
JPH05140626A (en) Method for pretreating molten iron
US3254987A (en) Method of operating an iron-refining basic converter and for refining iron into steel
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP2882236B2 (en) Stainless steel manufacturing method
US3163522A (en) Method for the production of steel
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JP2755027B2 (en) Steelmaking method