JPS6355977A - Floating-gate type nonvolatile semiconductor memory device - Google Patents

Floating-gate type nonvolatile semiconductor memory device

Info

Publication number
JPS6355977A
JPS6355977A JP19952386A JP19952386A JPS6355977A JP S6355977 A JPS6355977 A JP S6355977A JP 19952386 A JP19952386 A JP 19952386A JP 19952386 A JP19952386 A JP 19952386A JP S6355977 A JPS6355977 A JP S6355977A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
wiring layer
gate electrode
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19952386A
Other languages
Japanese (ja)
Other versions
JPH0766947B2 (en
Inventor
Yasuji Yamagake
山懸 保司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19952386A priority Critical patent/JPH0766947B2/en
Publication of JPS6355977A publication Critical patent/JPS6355977A/en
Publication of JPH0766947B2 publication Critical patent/JPH0766947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent the increase in area of an element, by providing two interconnection layers on the surface of a floating-gate type semiconductor memory device, connecting a source electrode to one interconnection layer, connecting a drain electrode or a gate electrode to the other interconnection layer, taking a roundabout for a propagating path of ultraviolet rays, and using one piece of a signal line for leading out the signal. CONSTITUTION:A memory cell part 1 of a device is surrounded by a source diffused layer 2 other than a part of the memory cell part 1. The cell part 1 is covered with a first interconnection layer 3 through an interlayer insulating film 10. The layers 2 and 3 are contacted. The opening part of the surrounding of the layer 2 is covered with a drain diffused layer 5 at the outside of the layer 2. The surface is covered with a second interconnection layer 6 through a second insulating film 11. A contract 7 is provided to a part of the layer 5. With this part as a drain electrode, the second interconnection layer 6a and the interconnection layer 3 are contacted 8. Thus a source electrode is provided. A signal line 9 of a gate electrode 17 is made to cross the layer 5 and made to pass beneath the interconnection layer 6. The line takes a roundabout for the path of ultraviolet rays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は浮遊ゲート型不揮発性半導体記憶装置に関し、
特に、不良ビットに接続されている配線の非導通状態が
紫外線によって導通状態に変るのを適確に防ぐようにし
た浮遊ゲート型不揮発性半導体記憶装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a floating gate type nonvolatile semiconductor memory device,
In particular, the present invention relates to a floating gate type nonvolatile semiconductor memory device that appropriately prevents a wiring connected to a defective bit from changing from a non-conductive state to a conductive state due to ultraviolet rays.

〔従来の技術〕[Conventional technology]

従来の浮遊ゲート型不揮発性半導体記憶装置として、例
えば、不良ビットに接続した配線を非導通状態にした冗
長回路(不良救済回路)を使用したものがあり、これに
よって大集積記憶装置の歩留り向上を図っている。前述
した配線の非導通状態は、例えば、大電流を流して多結
晶シリコン配線を切断したり、レーザを照射したりする
ことによって実現されている。
Conventional floating gate non-volatile semiconductor memory devices, for example, use redundant circuits (defective relief circuits) in which wiring connected to defective bits is rendered non-conductive.This has helped improve the yield of large-scale integrated memory devices. I'm trying. The aforementioned non-conducting state of the wiring is achieved, for example, by passing a large current to cut the polycrystalline silicon wiring or by irradiating it with a laser.

第4図(al、伽)は紫外線によって消去されることに
より導通状態に変わるのを防ぐ構成を有した浮遊ゲート
型不揮発性半導体記憶装置を示し、セル部101の3方
をソース拡散層102で囲い、その上部をソース電極1
04となるアルミで覆い、ソース拡散層102とコンタ
クト103をとることにより、上方及び横3方からの紫
外線の入射を阻止している。また、残り1方の側からの
紫外線の入射量を減らすため、別に拡散層105を設け
てアルミでコンタクト106をとってギャップ107を
形成する。
FIG. 4 (al) shows a floating gate type nonvolatile semiconductor memory device having a structure that prevents the device from changing into a conductive state by being erased by ultraviolet rays. enclosure, the upper part of which is connected to the source electrode 1
By covering it with aluminum 04 and making contact 103 with the source diffusion layer 102, the incidence of ultraviolet rays from above and from three sides is blocked. Further, in order to reduce the amount of ultraviolet rays incident from the remaining one side, a gap 107 is formed by separately providing a diffusion layer 105 and making a contact 106 with aluminum.

ゲート電極116のシグナル線108、およびドレイン
拡散層111のシグナル線109はそれぞれ多結晶シリ
コン配線で形成され、ソース拡散層102とキャップの
拡散層105の間から外に引き出される。セル部101
に到達する紫外線はソース電極104とアルミキャップ
107の間のすき間110、およびドレイン拡散層10
8のシグナル線109、ゲート電極116のシグナル線
108の出入口から入射してシリコン酸化膜中を距離α
伝播してくるものに限られる。
The signal line 108 of the gate electrode 116 and the signal line 109 of the drain diffusion layer 111 are each formed of polycrystalline silicon wiring, and are drawn out from between the source diffusion layer 102 and the diffusion layer 105 of the cap. Cell part 101
The ultraviolet light that reaches the gap 110 between the source electrode 104 and the aluminum cap 107 and the drain diffusion layer 10
The signal line 109 of 8 enters from the entrance/exit of the signal line 108 of the gate electrode 116 and passes through the silicon oxide film at a distance α.
Limited to things that are propagated.

当然のことながら距離αが大きい程、セルに到達した時
の紫外線の強度が弱まるため、消去されにくくすること
ができる。距離αは設計上スペースが許す限り長くする
ことができる。また、紫外線の通り道を曲げることもで
きる。尚、112.115はシリコン酸化膜、113は
層間絶縁膜、114は浮遊ゲート、117はP型半導体
基板である。
Naturally, the larger the distance α, the weaker the intensity of the ultraviolet rays when they reach the cell, making it more difficult for the ultraviolet rays to be erased. The distance α can be made as long as the design space allows. It can also bend the path of UV rays. Note that 112 and 115 are silicon oxide films, 113 is an interlayer insulating film, 114 is a floating gate, and 117 is a P-type semiconductor substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の浮遊ゲート型不揮発性半導体記憶装置に
よれば、ドレイン拡散層111のシグナル線109およ
びゲート電極116のシグナル線108が外部に引き出
されているため、紫外線を完全に遮断することが不可能
であり、また紫外線の伝播距離αを大にして紫外線強度
を低下させようとすると、素子面積が大になるという不
都合がある。
However, in the conventional floating gate nonvolatile semiconductor memory device, the signal line 109 of the drain diffusion layer 111 and the signal line 108 of the gate electrode 116 are drawn out, so it is impossible to completely block ultraviolet rays. However, if an attempt is made to reduce the intensity of ultraviolet light by increasing the propagation distance α of ultraviolet light, there is a disadvantage that the area of the device increases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、素子面積の
増大を抑えながらセル部への紫外線の入射を確実に防ぐ
ことによりセルの消去時間を長くするため、素子表面に
2層の配線層を設け、1つの配線層をソース電極に、他
の配線層をドレイン電極あるいはゲート電極に接続し、
それによって外部に引き出すシグナル線を1本にした浮
遊ゲート型不揮発性半導体記憶装置を提供するものであ
る。
The present invention has been made in view of the above, and in order to prolong cell erasing time by reliably preventing ultraviolet rays from entering the cell portion while suppressing an increase in the device area, two wiring layers are provided on the surface of the device. one wiring layer is connected to the source electrode, the other wiring layer is connected to the drain electrode or gate electrode,
This provides a floating gate type non-volatile semiconductor memory device in which only one signal line is drawn out to the outside.

以下、本発明による浮遊ゲート型不揮発性半導体記憶装
置を詳細に説明する。
Hereinafter, a floating gate type nonvolatile semiconductor memory device according to the present invention will be explained in detail.

〔実施例〕〔Example〕

第1図(a)、(bl、(C)は本発明の一実施例を示
し、1はセル部、2はソース拡散層、3は第1の配線層
、4はソース拡散層2と第一の配線層3とを接続するコ
ンタクト、5はドレイン拡散層、6.6aは第2の配線
層、7は第2の配線層6とドレイン拡散層5とを接続す
るコンタクト、8は第2の配線層6と第1の配線層3と
を接続するコンタクト、9はゲート電極17に接続する
シグナル線である。
FIGS. 1(a), (bl, and c) show an embodiment of the present invention, in which 1 is a cell portion, 2 is a source diffusion layer, 3 is a first wiring layer, and 4 is a source diffusion layer 2 and a first wiring layer. 5 is a drain diffusion layer; 6.6a is a second wiring layer; 7 is a contact that connects the second wiring layer 6 and the drain diffusion layer 5; 8 is a second wiring layer 5; A contact 9 connects the wiring layer 6 and the first wiring layer 3 , and a signal line 9 connects to the gate electrode 17 .

セル部1の周りを一部除いてソース拡散層2で囲い、か
つ、セル部1を第1の絶縁膜10を介して、例えば、ポ
リサイドの第1の配線層3で覆い、ソース拡散層2との
間でコンタクト4を取る。ソース拡散層2の外側では、
ドレイン拡散層5がソース拡散層2の囲いの開いた部分
を囲っており、第2の絶縁層重1を介して、例えば、ア
ルミの第2の配線層6で覆い、ドレイン拡散層5の一部
とコンタクト7を取る。これがドレイン電極となる。ま
た、第2の配線層6aが第1の配線層3とコンタクト8
によって接続されてソース電極となっている。ゲート電
極17のシグナル線9はドレイン拡散層5上を横切り、
第2の配線層6の下を通る。この部分のa−a’線断面
図を第1図(C1に示す。尚、12は第2の配線層6.
6aのオープニング、13はP型シリコン基板、14.
16はシリコン酸化膜、15は浮遊ゲートである。
The cell part 1 is surrounded by a source diffusion layer 2 except for a part thereof, and the cell part 1 is covered with a first wiring layer 3 made of polycide, for example, via a first insulating film 10, and the source diffusion layer 2 is Make contact 4 with. Outside the source diffusion layer 2,
The drain diffusion layer 5 surrounds the open part of the source diffusion layer 2, and is covered with a second wiring layer 6 made of, for example, aluminum via the second insulating layer layer 1. Make contact 7 with the department. This becomes the drain electrode. Further, the second wiring layer 6a is connected to the first wiring layer 3 and the contact 8.
is connected to the source electrode. The signal line 9 of the gate electrode 17 crosses over the drain diffusion layer 5,
It passes under the second wiring layer 6. A sectional view taken along the line a-a' of this portion is shown in FIG. 1 (C1).
6a opening, 13 P-type silicon substrate, 14.
16 is a silicon oxide film, and 15 is a floating gate.

第1図(b)から明らかなように、第2の配線層6.6
3間のオープニング12より入射した紫外線はまず第1
の配線層3と第2の配線層6との間の第2の絶縁膜11
中を伝播し、次に折り返して第1の配線層3と基板13
との間の絶縁膜10中を伝播するので、セル部11に到
達するまでの行程が長くなる。また、ゲート電極17の
シグナル線9の出入り口から入射する紫外線の量も、第
1図(C)から明らかなように、2本のシグナル線を有
した従来のものよりも少なくなる。
As is clear from FIG. 1(b), the second wiring layer 6.6
The ultraviolet rays that entered from the opening 12 between 3
The second insulating film 11 between the wiring layer 3 and the second wiring layer 6
propagates inside, then turns back and connects the first wiring layer 3 and the substrate 13.
Since the light propagates through the insulating film 10 between the two, the journey to reach the cell part 11 becomes long. Further, as is clear from FIG. 1(C), the amount of ultraviolet light incident from the entrance and exit of the signal line 9 of the gate electrode 17 is also smaller than that of the conventional structure having two signal lines.

従って、本発明は紫外線によって消去されにくいPRO
Mセルを提供することができる。また、層間絶縁膜10
.11として、紫外線を吸収しやすい物質、例えば、シ
リコンを含む酸化膜を用いると、本発明の効果をさらに
増すことができる。
Therefore, the present invention provides PRO that is difficult to erase by ultraviolet rays.
M cells can be provided. Moreover, the interlayer insulating film 10
.. The effects of the present invention can be further enhanced by using, as 11, an oxide film containing a substance that easily absorbs ultraviolet rays, such as silicon.

第2図(al、(b)、(C)は本発明の製造方法を示
す工程図である。P型基板13の表面の一部に通常のL
OCO5法により厚い二酸化シリコン膜14を形成する
。次に、気相成長法などによって、後に浮遊ゲート電極
となるべき不純物を導入した多結晶シリコン層15を形
成し、バターニングした後、熱酸化により二酸化シリコ
ン膜16を形成し、さらに、後にゲート電極となるべき
不純物を導入した多結晶シリコン117を形成し、バタ
ーニングする(第2図(al)、次に、例えば、ヒ素の
イオン注入を行い、ドレイン領域となるべきn型拡散層
5、ソース領域となるべきn型拡散層2を形成する0次
に、第1の層間絶縁膜10を形成し、ソース拡散層2上
にコンタクト14を開孔した後、第1の配線層3を形成
し、バターニングを行う(第2図(b))、次に、第2
の層間絶縁膜11を形成した後、ドレイン拡散層5上と
第1の配線層3上の一部にコンタクト8を開孔し、第2
の配線層6を形成した後、バターニングを行って6.6
bとする(第2図(C))。
FIGS. 2(al), (b), and (C) are process diagrams showing the manufacturing method of the present invention. A part of the surface of the P-type substrate 13 is
A thick silicon dioxide film 14 is formed by the OCO5 method. Next, a polycrystalline silicon layer 15 doped with impurities, which will later become a floating gate electrode, is formed by vapor phase growth or the like, and after buttering, a silicon dioxide film 16 is formed by thermal oxidation. Polycrystalline silicon 117 doped with impurities to become an electrode is formed and buttered (FIG. 2 (al)).Next, for example, arsenic ions are implanted to form an n-type diffusion layer 5, which is to become a drain region. Next, a first interlayer insulating film 10 is formed, and a contact 14 is formed on the source diffusion layer 2, and then a first wiring layer 3 is formed. and then perform buttering (Fig. 2(b)).
After forming the interlayer insulating film 11, a contact 8 is opened on the drain diffusion layer 5 and a part of the first wiring layer 3, and a second
After forming the wiring layer 6 of 6.6, buttering is performed.
b (Figure 2 (C)).

第3図は本発明の第2の実施例を示し、24はセル部、
25はソース拡散層、26は第1の配線層、27はソー
ス拡散層と第1の配線層27とを接続するコンタクト、
2日はドレイン拡散層、29はドレインシグナルの引き
出し配線、30はドレイン拡散層2日とシグナル線29
とを接続するコンタクト、31はゲート電極、32はゲ
ート電極と接続する拡散層、33.33aは第2の配線
層、34は第2の配線層33とゲート電極に接続する拡
散層32とを接続するコンタクト、35は第1の配線層
26と第2の配線層33とを接続するコンタクトである
FIG. 3 shows a second embodiment of the present invention, in which 24 is a cell section;
25 is a source diffusion layer, 26 is a first wiring layer, 27 is a contact connecting the source diffusion layer and the first wiring layer 27,
2nd is the drain diffusion layer, 29 is the drain signal extraction wiring, 30 is the drain diffusion layer 2nd and the signal line 29
31 is a gate electrode, 32 is a diffusion layer that connects to the gate electrode, 33.33a is a second wiring layer, and 34 is a diffusion layer 32 that connects the second wiring layer 33 and the gate electrode. A connecting contact 35 is a contact that connects the first wiring layer 26 and the second wiring layer 33.

この実施例では、ゲート電極のシグナル線31を第2の
配線Ji33に接続しており、ドレイン拡散層28のシ
グナル線29に低抵抗材料を用いることにより、ドレイ
ン側につく抵抗を下げることができる利点がある。
In this embodiment, the signal line 31 of the gate electrode is connected to the second wiring Ji33, and by using a low resistance material for the signal line 29 of the drain diffusion layer 28, the resistance attached to the drain side can be lowered. There are advantages.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の浮遊ゲート型半導体記憶装
置によれば、素子表面に2層の配線層を設け、1つの配
線層をソース電極に、他の配線層をドレイン電極あるい
はゲート電極に接続し、それによって紫外線の伝播通路
を迂回させるとともに外部に引き出すシグナル線を1本
にしたため、素子面積の増大を抑えながらセル部への紫
外線の入射をより確実に防ぎ、セルの消去時間を長くす
ることができる。
As explained above, according to the floating gate semiconductor memory device of the present invention, two wiring layers are provided on the element surface, one wiring layer is connected to the source electrode, and the other wiring layer is connected to the drain electrode or the gate electrode. As a result, the propagation path of ultraviolet rays is bypassed, and only one signal line is needed to lead out to the outside, thereby suppressing an increase in the element area, more reliably preventing ultraviolet rays from entering the cell area, and extending cell erasing time. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは本発明の第1の実施例の平面図、第1図
中)は第1図(a)のA−A”断面図、第1図(C1は
第1図(alのc−c’断面図、第2図(a)〜(C)
は本発明の第1の実施例の製造方法を示す工程図、第3
図は本発明の第2の実施例の断面図、第4図(a)は従
来の実施例の平面図、第4図(blは第4図(a)のB
−B’断面図である。 符号の説明 1124.101−・−一−−−メモリーセル部2.2
5.102−−−−−−・ソース拡散層3.26−−−
−−−−ドレイン拡散層4.27−−−−−−−ソース
拡散層と第1の配線層を接続すコンタクト 6.6a、33.33a・−−−−−一部2の配線層7
−・−・ドレイン拡散層と第2の配線層を接続するコン
タクト 8.35−−−−−−一部1の配線層と第2の配線層を
接続するコンタクト 9.31.108−−−−−−−ゲートのシグナル線1
0−・−・−・第1の層間絶縁膜 1 t−−−−−−一第2の層間絶縁膜12−・−・−
・第2の配線のオープニング13.117−−−−−−
・−P型シリコン基板14.16.112.115−・
−熱酸化膜15.114−・−・浮遊ゲート 17.116・・−−−−一制御ゲート30.118−
−−−−−−・ドレイン拡散層とドレインシグナルとを
接続するコンタクト 29.109・−・−ドレインのシグナル線32−・−
・−・ゲート電極と接続する拡散層34−・−拡散層3
2と第2の配線層とを接続するコンタクト
FIG. 1 (al is a plan view of the first embodiment of the present invention, in FIG. 1) is a sectional view taken along the line A-A'' in FIG. 1(a), and FIG. c-c' sectional view, Figure 2 (a) to (C)
3 is a process diagram showing the manufacturing method of the first embodiment of the present invention.
The figure is a sectional view of the second embodiment of the present invention, FIG. 4(a) is a plan view of the conventional embodiment, and FIG. 4 (bl is B in FIG. 4(a)).
-B' sectional view. Explanation of symbols 1124.101--1--Memory cell section 2.2
5.102---- Source diffusion layer 3.26---
-----Drain diffusion layer 4.27------Contacts 6.6a, 33.33a connecting the source diffusion layer and first wiring layer---Part 2 wiring layer 7
---Contact 8.35 for connecting the drain diffusion layer and the second wiring layer --- Contact 9.31.108 for connecting the wiring layer of part 1 and the second wiring layer --- -----Gate signal line 1
0-----First interlayer insulating film 1 t---Second interlayer insulating film 12---
・Second wiring opening 13.117------
・-P type silicon substrate 14.16.112.115-・
-Thermal oxide film 15.114--Floating gate 17.116--Control gate 30.118-
--------・Contact 29.109 connecting the drain diffusion layer and drain signal --- Drain signal line 32 ---
- Diffusion layer 34 connected to the gate electrode - Diffusion layer 3
2 and the second wiring layer.

Claims (1)

【特許請求の範囲】 半導体基板に形成されたソースおよびドレ インの拡散層と、該拡散層間において前記半導体基板上
に形成された浮遊ゲート電極および制御ゲート電極から
構成されるメモリセル部を備えた半導体記憶装置におい
て、 層間絶縁膜を介して層状に配置して紫外線 の伝播通路に折り返し点を与える2つの配線層を有し、 1つの前記配線層が前記ソース拡散層領域 に接続されるとともに他の前記配線層が前記ゲート電極
あるいは前記ドレイン拡散層領域に接続され、 前記拡散層が前記メモリセル部の周囲を囲 むように形成されていることを特徴とする浮遊ゲート型
不揮発性半導体記憶装置。
[Scope of Claims] A semiconductor comprising a memory cell section consisting of source and drain diffusion layers formed on a semiconductor substrate, and a floating gate electrode and a control gate electrode formed on the semiconductor substrate between the diffusion layers. The storage device has two wiring layers arranged in layers with an interlayer insulating film interposed therebetween to provide a turning point for a propagation path of ultraviolet light, one wiring layer being connected to the source diffusion layer region and the other wiring layer being connected to the source diffusion layer region. A floating gate nonvolatile semiconductor memory device, wherein the wiring layer is connected to the gate electrode or the drain diffusion layer region, and the diffusion layer is formed to surround the memory cell portion.
JP19952386A 1986-08-26 1986-08-26 Floating gate type nonvolatile semiconductor memory device Expired - Fee Related JPH0766947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19952386A JPH0766947B2 (en) 1986-08-26 1986-08-26 Floating gate type nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19952386A JPH0766947B2 (en) 1986-08-26 1986-08-26 Floating gate type nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6355977A true JPS6355977A (en) 1988-03-10
JPH0766947B2 JPH0766947B2 (en) 1995-07-19

Family

ID=16409243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19952386A Expired - Fee Related JPH0766947B2 (en) 1986-08-26 1986-08-26 Floating gate type nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0766947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942450A (en) * 1987-07-08 1990-07-17 Nec Corporation Semiconductor memory device having non-volatile memory transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942450A (en) * 1987-07-08 1990-07-17 Nec Corporation Semiconductor memory device having non-volatile memory transistors

Also Published As

Publication number Publication date
JPH0766947B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US4561004A (en) High density, electrically erasable, floating gate memory cell
US5053840A (en) Semiconductor device having a gate electrode consisting of a plurality of layers
US4122544A (en) Electrically alterable floating gate semiconductor memory device with series enhancement transistor
US4317272A (en) High density, electrically erasable, floating gate memory cell
EP0360288B1 (en) EPROM erasable by UV radiation having redundant circuit
US4112509A (en) Electrically alterable floating gate semiconductor memory device
JPH07235649A (en) Manufacture of non-volatile semiconductor storage device
JP2003209195A (en) Non-volatile memory element and method for manufacturing the same
JPH09275196A (en) Semiconductor device and manufacturing method thereof
JP3548834B2 (en) Manufacturing method of nonvolatile semiconductor memory
GB2293269A (en) Method of manufacturing a nonvolatile memory device
JP2772020B2 (en) MOS type semiconductor device
US5107313A (en) Floating gate type semiconductor memory device
JPH0582787A (en) Thin film transistor type nonvolatile semiconductor memory device
JP2005347589A (en) Nonvolatile semiconductor memory device and method for manufacturing the same
JPH01278781A (en) Nonvolatile semiconductor memory device
JPS6355977A (en) Floating-gate type nonvolatile semiconductor memory device
JP2005183763A (en) Method of manufacturing semiconductor device including non-volatile memory
JP3629855B2 (en) Manufacturing method of semiconductor memory element
JPS63310180A (en) Semiconductor memory device
KR960000712B1 (en) Semiconductor ic device and its making method
JPS63199464A (en) Non-volatile semiconductor memory device
JP2944104B2 (en) Nonvolatile semiconductor memory device
JPH02180079A (en) Semiconductor nonvolatile memory and manufacture thereof
JPH04273168A (en) Nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees