JPS6355919A - Controlling method for superconductive electromagnet device - Google Patents

Controlling method for superconductive electromagnet device

Info

Publication number
JPS6355919A
JPS6355919A JP61198167A JP19816786A JPS6355919A JP S6355919 A JPS6355919 A JP S6355919A JP 61198167 A JP61198167 A JP 61198167A JP 19816786 A JP19816786 A JP 19816786A JP S6355919 A JPS6355919 A JP S6355919A
Authority
JP
Japan
Prior art keywords
container
helium
superconducting coil
pressure
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198167A
Other languages
Japanese (ja)
Inventor
Takeo Kawaguchi
武男 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61198167A priority Critical patent/JPS6355919A/en
Publication of JPS6355919A publication Critical patent/JPS6355919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To enhance the intensity of withstand voltage strength as well as to contrive improvement in efficiency of the title device by a method wherein, when electric resistance is generated on a superconductive coil, the pressure of the refrigerant in the container in which the superconductive coil will be housed is increased to more than that of the normal operation. CONSTITUTION:A stop valve 7, with which the stream of helium is controlled, and a pressure control valve 8 are provided between a container 2 and a recovered gas bag 6, and a reverse current preventing valve 9 is provided in order to prevent the helium in the container 2 from flowing backward into a storing container 4. When electric resistance is generated in a superconductive coil 1, the generation of resistance is detected, the stop valve 7 is closed, and the outlet of the helium in the container is closed. As a result, the helium in the container 2 is expanded by the heat generated on the coil 1, the pressure is increased to 1.5 times the pressure of the normal operation or large, the decrease in the degree of intensity of dielectric strength is small, the intensity of the withstand strength of the superconductive coil 1 becomes larger than the voltage added, and the generation of dielectric breakdown can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、容器に収納された冷媒に超電導コイルを浸
漬してなる超電導電磁石装置の制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of controlling a superconducting electromagnet device in which a superconducting coil is immersed in a refrigerant contained in a container.

〔従来の技術〕[Conventional technology]

第6図〜第1O図は、たとえば電気学会発行「超電導工
学」/66頁〜/67頁に示された従来の超電導電磁石
装置を示す。第6図において、超電導コイル【ハは、容
器Cコ)内の液体ヘリウム(3)に浸漬されている。貯
液容器(+1にも液体ヘリウムfjlが収納されており
、容器(2)内の液体ヘリウム(31は貯液容i K+
から移送される。回収ガスバッグ(6)は励磁中に超電
導コイル(/)に電気抵抗が発生し、その発熱により液
体ヘリウム(,71が蒸発した際発生するヘリ大きなも
のとなってbる。
FIG. 6 to FIG. 1O show a conventional superconducting electromagnet device as shown, for example, in "Superconductivity Engineering" published by the Institute of Electrical Engineers of Japan, pages 66 to 67. In FIG. 6, the superconducting coil is immersed in liquid helium (3) in a container C. Liquid helium fjl is also stored in the liquid storage container (+1), and liquid helium (31 is the liquid storage capacity i K+
be transferred from. In the recovery gas bag (6), electrical resistance is generated in the superconducting coil (/) during excitation, and due to the heat generated, the helium generated when the liquid helium (, 71) evaporates becomes large.

第1図は超電導コイルの励磁回路を示し、図において、
超電導コイル(ハに電流を供給する励磁電源(PS)が
電流遮断器(Slを介して超電導コイル(ハに接続され
ている。(R1は保護抵抗であるe第g図〜第1O図は
従来の超電導電磁石装置の保護時の超電導コイル(ハの
状態を示す図で、これらの図により動作を説明する。第
1図において、電流遮断器(81が閉とされ、励磁電源
(PS)から超電導コイル(1)に電流を供給すること
により超電導コイル(ハは励磁される。この励磁中、超
電導コイルC力に電気抵抗が発生した場合、これを検出
し、電流遮断器(81を開にし、超電導コイル(ハの電
流を保護抵抗(R1に流すことにより、超電導コイル(
ハに蓄えられた電磁エネルギーの大部分を保護抵抗(R
1により消費させるという保護動作が行われる。第g図
〜第1O図はこの保護時の超電導コイル(ハの電流、温
度、電圧の時間変化の特性を示し、電流速断器f61が
開になることにより保護抵抗(R1に電流が流れ。
Figure 1 shows the excitation circuit of a superconducting coil, and in the figure,
An excitation power supply (PS) that supplies current to the superconducting coil (C) is connected to the superconducting coil (C) via a current breaker (Sl). (R1 is a protective resistor. This is a diagram showing the state of the superconducting coil (C) during protection of the superconducting electromagnet device, and the operation will be explained using these diagrams. In Figure 1, the current breaker (81) is closed, and the superconducting coil is By supplying current to the coil (1), the superconducting coil (C) is excited. During this excitation, if electrical resistance occurs in the superconducting coil (C), this is detected and the current breaker (81 is opened, By passing the current of the superconducting coil (C) through the protective resistor (R1), the superconducting coil (
Most of the electromagnetic energy stored in the protective resistor (R
A protection operation is performed in which the power is consumed by 1. Figures g to 1O show the characteristics of the current, temperature, and voltage changes over time of the superconducting coil (c) during protection. When the current speed breaker f61 opens, a current flows through the protective resistor (R1).

超電導コイル(ハの電流は、第3図に示すように、減衰
する。一方、超電導コイル(ハには電気抵抗が発生して
おり、これに伴う発熱により超電導コイル(ハの温度は
、第を図のように上昇する。第1θ図の実線は、超電導
コイル(ハの両端に加わる′α圧で、この電圧は保護抵
抗(R1の電流と抵抗値の積となる。第10図の破線は
、超電導コイル(ハの耐電圧温度を示す曲線である。超
電導コイル(ハは、冷却性能を高くするため、通電部を
直接、冷媒であるヘリウムに接触させる場合が多く、そ
のような場合、超電導コイル(ハの耐電圧強度はヘリウ
ムの火花電圧で決定される、ヘリウムの火花電圧はヘリ
ウムの密度に大きく依存し、密度が小さくなると火花電
圧は下がる。第1O図の破線で電流遮断器+81が開と
される前、すなわち、超電導コイル(ハに電気抵抗が発
生していない状態では、超電導コイル(ハは液体ヘリウ
ム(3)に囲まれているため、耐電圧強度は高いが、電
流遮断6(slが開となった後、超電導フィル(ハの発
熱により液体ヘリウム(3)が蒸発し、かつ、ヘリウム
の温度が上昇すると、ヘリウムの密度は小さくなってい
き、超電導コイル(1)の耐電圧強度は減少する。第1
0図の例では、A点において、印加する電圧の方が耐電
圧強度を上回っており、このA点で超電導コイル(ハの
絶縁破壊が生じ、超’!Unコイル(ハは火花放電によ
り損傷してしまう。
As shown in Figure 3, the current in the superconducting coil (C) attenuates.On the other hand, electrical resistance is generated in the superconducting coil (C), and due to the heat generated by this, the temperature of the superconducting coil (C) decreases as shown in Figure 3. The solid line in Figure 1θ is the 'α pressure applied to both ends of the superconducting coil (C), and this voltage is the product of the current and resistance value of the protective resistor (R1).The broken line in Figure 10 is This is a curve showing the withstand voltage temperature of a superconducting coil (C).In order to improve cooling performance, the current-carrying part of the superconducting coil (C) is often brought into direct contact with helium, which is a refrigerant. The withstand voltage strength of the coil (C) is determined by the spark voltage of helium. The spark voltage of helium largely depends on the density of helium, and as the density decreases, the spark voltage decreases. Before the superconducting coil (C) is opened, that is, when no electrical resistance is generated in the superconducting coil (C), the superconducting coil (C) is surrounded by liquid helium (3), so the withstand voltage strength is high, but the current cutoff is 6. (After sl is opened, as the liquid helium (3) evaporates due to the heat generated by the superconducting film (c) and the temperature of helium increases, the density of helium decreases and the resistance of the superconducting coil (1) increases. The voltage intensity decreases.1st
In the example in Figure 0, at point A, the applied voltage exceeds the withstand voltage strength, and at point A, dielectric breakdown of the superconducting coil (c) occurs, and the superconducting coil (c) is damaged by spark discharge. Resulting in.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超電導磁石装置は以上のように構成されているの
で、超電導コイルに電気抵抗が発生し、超電導コイルの
温度が上昇すると、超電導コイルの耐電圧強度が大幅に
低下し、絶縁破壊を生じ易いという問題点があった。
Conventional superconducting magnet devices are configured as described above, so when electrical resistance occurs in the superconducting coil and the temperature of the superconducting coil increases, the withstand voltage strength of the superconducting coil decreases significantly and dielectric breakdown is likely to occur. There was a problem.

この発明は上記のような問題点を解消するためになされ
たもので、耐電圧強度の高い超電導コイルとすることに
より、信頼性を向上することができる超電導電磁石装置
の制衡方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and the purpose is to obtain a balancing method for a superconducting electromagnet device that can improve reliability by using a superconducting coil with high withstand voltage strength. shall be.

〔問題点をiW4決するための手段〕 この発明に係る超電導電磁石装置の制御方法は、超電導
コイルに電気抵抗が発生した場合、超′f!!、導コイ
ルを収納する容器内の冷媒の圧力を通常運転時の/J倍
以上に上げることにより、超電導コイルの耐電圧強度を
追加させるものである。
[Means for resolving the problem] The method for controlling a superconducting electromagnet device according to the present invention is such that when electrical resistance occurs in a superconducting coil, a super-f! ! By increasing the pressure of the refrigerant in the container housing the conductive coil to more than /J times that of normal operation, the voltage strength of the superconducting coil is increased.

〔作 用〕[For production]

この発明においては、超電導コイルの耐電圧強度が増大
するので、超電導コイルの絶縁破壊が生じない。
In this invention, the dielectric breakdown of the superconducting coil does not occur because the voltage strength of the superconducting coil increases.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第弘図を参照して
説明する。第1図において、容器(コ)から回収ガスバ
ッグ(6)へのヘリウムの流れを制御する開閉弁(7)
と圧力制御弁(fflが設けられている。逆流防止弁(
9)は容器(2)内のヘリウムが貯液容器(lIiへ逆
流することを防止するものである。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. In Figure 1, the on-off valve (7) controls the flow of helium from the container (C) to the recovery gas bag (6).
and a pressure control valve (ffl).A backflow prevention valve (
9) prevents the helium in the container (2) from flowing back into the liquid storage container (IIi).

その他、第6図におけると同一符号は同一部分を示して
いる。
In addition, the same reference numerals as in FIG. 6 indicate the same parts.

かような構成において、超電導コイル(ハに電気抵抗が
発生すると、これを検出して開閉弁(7)が閉じ、容器
(2)のヘリウム出口を塞いでしまう。そうすると、超
電導コイル(ハの発熱により容器(2)内のヘリウムが
膨張し、容器(2)内のヘリウム圧力が上昇する。そう
して、ヘリウム圧力が容器(コ)を破損しないように、
圧力制御弁(fflで容器(,21内のヘリウム圧力が
ある一定値以上にならないように制御する。第コ図〜第
q図はこのときの超電導コイル(/1の状態を表わす図
で、超電導コイルCハに電気抵抗が発生し電流遮断器(
31が開となると、超電導コイル(1)の電流は、第二
図に示すように減衰する。超電導コイル(/lの発熱に
より容器(rr内の圧力は、第3図のように、超電導コ
イル(ハが超電導状態を維持したまま励磁されている通
常運転時の圧力の/、5倍以上に上昇する。第9図の破
線はこのときの超電導コイル(ハの耐電圧強度を示し、
ヘリウムの圧力が高く、密度が大きいため、超電導コイ
ル(1)の耐電圧強度の減少が少なく、超電導コイル(
ハの耐電圧強度の方が加わる電圧より大きくなり、絶縁
破壊は生じない。
In such a configuration, when electrical resistance occurs in the superconducting coil (C), this is detected and the on-off valve (7) closes, blocking the helium outlet of the container (2). The helium in the container (2) expands and the helium pressure in the container (2) increases.Thus, to prevent the helium pressure from damaging the container (2),
The pressure control valve (ffl) is used to control the helium pressure in the container (21) so that it does not exceed a certain value. Electrical resistance occurs in coil C, causing a current breaker (
31 is opened, the current in the superconducting coil (1) attenuates as shown in FIG. Due to the heat generated by the superconducting coil (/l), the pressure inside the container (rr) increases to more than 5 times the pressure during normal operation when the superconducting coil (c) is energized while maintaining its superconducting state, as shown in Figure 3. The broken line in Figure 9 indicates the withstand voltage strength of the superconducting coil (C) at this time.
Because the pressure and density of helium is high, the withstand voltage strength of the superconducting coil (1) decreases little, and the superconducting coil (
The withstand voltage strength of C is greater than the applied voltage, and no dielectric breakdown occurs.

次に1他の実施例を第5図を参照して説明する。Next, another embodiment will be described with reference to FIG.

超電導コイル(ハの外周に第コの容器(10)を設け、
耐圧力強度を高めたものである。このように容器の構成
は特定のものに限定されなく、閾様の効果を奏するもの
であればよい。
A container (10) is provided on the outer periphery of the superconducting coil (C),
It has increased pressure resistance. In this way, the structure of the container is not limited to a specific one, and may be any structure that produces a threshold-like effect.

また、上記実施例では超電導コイルの発熱による容器内
のヘリウムの膨張を利用したが、容器外からヘリウムを
加圧してもよいし、両者を併用してもよい。
Further, in the above embodiment, expansion of helium inside the container due to heat generated by the superconducting coil was utilized, but helium may be pressurized from outside the container, or both may be used in combination.

さらに、上記実施例では冷媒を液体ヘリウムとしたが、
超臨界ヘリウムや超流動ヘリウムであってもよい。
Furthermore, in the above embodiment, the refrigerant was liquid helium, but
Supercritical helium or superfluid helium may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、超電導コイルに電気
抵抗が発生した場合、導電溝コイル周囲のヘリウムの圧
力を上げることにより、耐電圧強度の高い超電導コイル
としたので、絶縁破壊が生ぜず、性能を著しく向上する
ことができる。
As described above, according to the present invention, when electrical resistance occurs in a superconducting coil, the helium pressure around the conductive groove coil is increased to create a superconducting coil with high withstand voltage strength, so that no dielectric breakdown occurs. , performance can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第ダ図はこの発明の一実施例を説明するための
もので、第1図は装置の概略正断面図、第2図は時間−
電流特性線図、第3図は時間−圧夕 力特性線図、第邊図は時間−電圧特性線図である。 第5図は他の実施例を説明するための装置の概略正断面
図である。 第6図〜第10図は従来の超電導電磁石装置を示し、第
6図は概略正断面図、第1図は励磁回路の結線図、第を
図は時間−電流特性線図、第9図は時間−温度特性線図
、第1Q図は時間−電圧特性線図である。 (ハ・・超電導コイル、(21・・容器、(3)・・液
体ヘリウム(冷媒)。 なお、各図中、同一符号は同−又は相当部分を示す。 門1図 氾5図 昨朋 あ6図 帛7図 闇 vf1周 咋間
Figures 1 to 3 are for explaining one embodiment of the present invention. Figure 1 is a schematic front sectional view of the device, and Figure 2 is a time-sectional view of the device.
The current characteristic diagram, FIG. 3 is a time-voltage characteristic diagram, and the second diagram is a time-voltage characteristic diagram. FIG. 5 is a schematic front sectional view of the apparatus for explaining another embodiment. Figures 6 to 10 show a conventional superconducting electromagnet device, with Figure 6 being a schematic front sectional view, Figure 1 being a wiring diagram of the excitation circuit, Figure 1 being a time-current characteristic diagram, and Figure 9 being a diagram of the current characteristics. The time-temperature characteristic diagram, Figure 1Q, is a time-voltage characteristic diagram. (c. Superconducting coil, (21.. Container, (3). Liquid helium (refrigerant). In each figure, the same reference numerals indicate the same or corresponding parts. Figure 6 Figure 7 Darkness vf1 Shukakuma

Claims (3)

【特許請求の範囲】[Claims] (1)冷媒に浸漬して容器に収納されている超電導コイ
ルを励磁中に、前記超電導コイルに電気抵抗が発生した
際、前記容器内の前記冷媒の圧力を、前記超電導コイル
が超電導状態を維持したまま励磁されている状態である
通常運転時における冷媒圧力の1.5倍以上に増加し、
前記超電導コイルの耐電圧強度を高めるようにしてなる
超電導電磁石装置の制御方法。
(1) When a superconducting coil stored in a container is immersed in a refrigerant and is excited, when electrical resistance occurs in the superconducting coil, the pressure of the refrigerant in the container is maintained so that the superconducting coil maintains the superconducting state. The refrigerant pressure increases to more than 1.5 times the refrigerant pressure during normal operation, where the refrigerant is kept energized.
A method for controlling a superconducting electromagnet device, which increases the voltage strength of the superconducting coil.
(2)容器内のヘリウム圧力を、前記容器内のヘリウム
の熱膨張により増加する特許請求の範囲第1項記載の超
電導電磁石装置の制御方法。
(2) A method for controlling a superconducting electromagnet device according to claim 1, wherein the helium pressure in the container is increased by thermal expansion of the helium in the container.
(3)容器内のヘリウム圧力を、前記容器外から前記ヘ
リウムを加圧することにより増加する特許請求の範囲第
1項記載の超電導電磁石装置の制御方法。
(3) The method for controlling a superconducting electromagnet device according to claim 1, wherein the helium pressure inside the container is increased by pressurizing the helium from outside the container.
JP61198167A 1986-08-26 1986-08-26 Controlling method for superconductive electromagnet device Pending JPS6355919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198167A JPS6355919A (en) 1986-08-26 1986-08-26 Controlling method for superconductive electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198167A JPS6355919A (en) 1986-08-26 1986-08-26 Controlling method for superconductive electromagnet device

Publications (1)

Publication Number Publication Date
JPS6355919A true JPS6355919A (en) 1988-03-10

Family

ID=16386578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198167A Pending JPS6355919A (en) 1986-08-26 1986-08-26 Controlling method for superconductive electromagnet device

Country Status (1)

Country Link
JP (1) JPS6355919A (en)

Similar Documents

Publication Publication Date Title
JPS62138021A (en) Ac current limiter
EP0761030A1 (en) Current limiting device
US5361055A (en) Persistent protective switch for superconductive magnets
JPS6367709A (en) Superconducting magnet device with emergency demagnetizing device
JPH05300644A (en) Superconducting current limiter
JPH0586052B2 (en)
JPH0576162B2 (en)
JPS6355919A (en) Controlling method for superconductive electromagnet device
US3176195A (en) Superconducting solenoid
US6239957B1 (en) Current limiting device
JPS6086808A (en) Protective device for superconducting device
JPH01248931A (en) Current limiting device
JPS58219709A (en) Superconductive device
JPH05300642A (en) Method for limiting and cutting-off circuit current
JPS62244110A (en) Superconducting coil device
JPH10189326A (en) Electromagnet device and current supplying device
JPS6292416A (en) Superconductive magnet device
JPH04211105A (en) Superconducting apparatus, superconducting energy storing apparatus and operating method therefor
GB2225164A (en) Current limiting device
JP2724321B2 (en) Superconducting coil system and operating method thereof
JPH03105988A (en) Thermal persistent-current switch
JPS6352444B2 (en)
JP2003109816A (en) Protection circuit for superconducting magnet equipment
JPH0442728A (en) Instantaneous power interruption protective unit employing superconducting switch
Christianson et al. Design and Projected Performance of the Westinghouse µSMES Unit