JPH04211105A - Superconducting apparatus, superconducting energy storing apparatus and operating method therefor - Google Patents

Superconducting apparatus, superconducting energy storing apparatus and operating method therefor

Info

Publication number
JPH04211105A
JPH04211105A JP3047856A JP4785691A JPH04211105A JP H04211105 A JPH04211105 A JP H04211105A JP 3047856 A JP3047856 A JP 3047856A JP 4785691 A JP4785691 A JP 4785691A JP H04211105 A JPH04211105 A JP H04211105A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
persistent current
current switch
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3047856A
Other languages
Japanese (ja)
Other versions
JP3052397B2 (en
Inventor
Yukio Ishigaki
石垣 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3047856A priority Critical patent/JP3052397B2/en
Publication of JPH04211105A publication Critical patent/JPH04211105A/en
Application granted granted Critical
Publication of JP3052397B2 publication Critical patent/JP3052397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To provide a superconducting apparatus which can open a permanent current switch at quite high speed and a highly efficient superconducting energy storing apparatus which can instantaneously accommodate for system disturbance with substantially no energy loss. CONSTITUTION:The invention comprises a superconducting apparatus having a permanent current switch 1, which opens upon conduction of a current higher than a critical level, connected in parallel with a superconducting coil 3 and a superconducting energy storing apparatus at least provided with a function for opening the permanent current switch 1, which has been closed in order to feed a permanent current to the superconducting coil 3, upon conduction of a current higher than a critical level at a time point when the superconducting coil 3 is stored with set energy through an exciting power supply 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】本発明は超電導装置、並びに超電
導エネルギー貯蔵装置、及びその運転方法に係り、特に
、超電導コイルに設定エネルギーを貯蔵した後、この超
電導コイルと並列接続されている永久電流スイッチを閉
じ、超電導コイルに永久電流を流し続けるようにしたも
のに好適な超電導装置、並びに超電導エネルギー貯蔵装
置、及びその運転方法に関する。 [0002]
[Field of Industrial Application] The present invention relates to a superconducting device, a superconducting energy storage device, and a method of operating the same, and in particular, after storing a set energy in a superconducting coil, a persistent current switch is connected in parallel with the superconducting coil. The present invention relates to a superconducting device, a superconducting energy storage device, and a method of operating the same, which are suitable for a device in which a permanent current continues to flow through a superconducting coil. [0002]

【従来の技術】超電導になるには、温度、磁界、電流の
3条件が、それぞれ臨界温度、臨界磁界、臨界電流以下
になることが必須である。 [0003]永久電流スイツチに関する従来技術は、上
記3条件のうち、温度や磁界を主に制御して、永久電流
スイッチの開路、閉路操作を行っているのが通常である
。また、永久電流スイッチには機械式もあり、これは、
超電導線を機械的に接触させたり、切り離したりして、
閉路、開路を操作するものである。但し、この方式は、
接触抵抗が大きいという問題があり、現在は余り開発が
進められていない。
2. Description of the Related Art In order to become superconducting, it is essential that the three conditions of temperature, magnetic field, and current be below the critical temperature, critical magnetic field, and critical current, respectively. [0003] Conventional techniques related to persistent current switches usually open and close the persistent current switch by mainly controlling temperature and magnetic field among the above three conditions. There are also mechanical types of persistent current switches, which are
By mechanically contacting and separating superconducting wires,
It operates to close and open circuits. However, this method
Due to the problem of high contact resistance, there is currently little progress in development.

【0004】一方、系統安定化用の超電導エネルギー貯
蔵装置に適用すべき永久電流スイッチとしては、系統擾
乱現象が数秒以下であるから、高速開閉機能が要求され
る。従って、現状技術の永久電流スイッチでは対応不可
の為、室温領域に永久電流スイッチを模擬したサイリス
クスイッチを設置し、該サイリスクスイッチに高速開閉
機能を委ねていた。 [0005]尚、此種装置に関連するものとしては、特
開昭62−93987号公報が挙げられる。又、熱式ス
イッチに関しては、特開昭59−111381号公報に
開示がある。 [0006]
On the other hand, a persistent current switch to be applied to a superconducting energy storage device for system stabilization is required to have a high-speed opening/closing function since the system disturbance phenomenon lasts several seconds or less. Therefore, since the persistent current switch of the current state of the art cannot cope with this problem, a thyrisk switch that simulates a persistent current switch is installed in the room temperature region, and the high-speed opening/closing function is entrusted to the thyrisk switch. [0005] Japanese Patent Application Laid-Open No. 62-93987 is cited as related to this type of device. Further, regarding a thermal switch, there is a disclosure in Japanese Patent Laid-Open No. 111381/1981. [0006]

【発明が解決しようとする課題】上記従来技術では、熱
式の場合でも、磁界式の場合でも、永久電流スイッチの
開閉速度が数十秒と遅く、数秒以下で現象が終ってしま
う系統擾乱の安定化に使う超電導エネルギー貯蔵装置に
適用するのは、本質的に困難であった。この為、系統安
定化用の超電導エネルギー貯蔵装置では、サイリスタ等
による半導体スイッチを用いて開閉速度の高速化を図っ
ていたが、系統擾乱がない、所謂、エネルギー貯蔵期間
には、上記半導体スイッチの順方向電圧降下により、徐
々に貯蔵エネルギーが減衰して行ってしまうと云う、背
反する問題があった。 [0007]本発明は上述の点に鑑みなされたもので、
その目的とするところは、極めて高速に永久電流スイッ
チを開路することのできる超電導装置、瞬時に系統擾乱
に対応できることは勿論、貯蔵エネルギーの損失が殆ん
どなく、極めて効率の高い超電導エネルギー貯蔵装置、
及びその運転方法を提供するにある。 [0008]
[Problem to be Solved by the Invention] In the above-mentioned conventional technology, whether the thermal type or the magnetic field type, the opening/closing speed of the persistent current switch is slow, on the order of several tens of seconds, and the problem with system disturbances is that the phenomenon ends in a few seconds or less. It has been inherently difficult to apply it to superconducting energy storage devices used for stabilization. For this reason, superconducting energy storage devices for power grid stabilization use semiconductor switches such as thyristors to increase the opening and closing speed. However, during the so-called energy storage period when there is no grid disturbance, the semiconductor switches There was a contradictory problem in that the stored energy gradually attenuated due to the forward voltage drop. [0007] The present invention has been made in view of the above points,
The aim is to create a superconducting device that can open persistent current switches extremely quickly, and a superconducting energy storage device that can instantly respond to grid disturbances and has extremely high efficiency with almost no loss of stored energy. ,
and its operating method. [0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、超電導コイルと並列に、臨界電流値以上の
通電で開路動作する電流式永久電流スイッチを設けた超
電導装置、励磁用電源により超電導コイルに設定エネル
ギーが貯蔵された時点で、該超電導コイルに永久電流を
流すために閉路された永久電流スイッチが臨界電流値以
上の通電で開路動作する機能を少なくとも備えている超
電導エネルギー貯蔵装置、励磁用電源により超電導コイ
ルに設定エネルギーが貯蔵された時点で該超電導コイル
に永久電流を流すために閉路される熱式、又は磁界式永
久電流スイッチと直列に、臨界電流値以上の通電で開路
動作する電流式永久電流スイッチを接続した超電導エネ
ルギー貯蔵装置、励磁用電源により前記超電導コイルに
設定エネルギーが貯蔵された時点で該超電導コイルに永
久電流を流すために閉路される永久電流スイッチは、熱
的、又は磁気的に開閉制御される特性と、臨界電流値以
上の通電で開路され、過渡熱時定数で閉路される特性と
を有している超電導エネルギー貯蔵装置、超電導コイル
と並列接続されている永久電流スイッチを開路した状態
で電力系統に接続されている励磁用電源で励磁して前記
超電導コイルにエネルギーを貯蔵し、この貯蔵エネルギ
ーが設定値になった時点で前記永久電流スイッチを閉路
すると共に、前記励磁用電源を停止させて前記超電導コ
イルに永久電流を流し続け、該超電導コイルに永久電流
が流れている状態で前記電力系統から系統安定化のため
の運転指令があった場合に、前記永久電流スイッチへ臨
界電流値以上の電流を通電して開路操作を行い、次に再
閉路されるまでの時間だけ前記励磁用電源の系統側に前
記超電導コイルの貯蔵エネルギーを取り出すようにした
超電導エネルギー貯蔵装置の運転方法としたものである
。 [0009]
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a superconducting device, an excitation power source, and a superconducting device in which a current-type persistent current switch is installed in parallel with a superconducting coil and operates to open the circuit when energized at a critical current value or higher. A superconducting energy storage device having at least the function of a persistent current switch, which is closed in order to cause a persistent current to flow through the superconducting coil, to open the circuit when a current exceeding a critical current value is applied when a set energy is stored in the superconducting coil. , in series with a thermal type or magnetic field type persistent current switch that is closed in order to cause a persistent current to flow through the superconducting coil when the set energy is stored in the superconducting coil by the excitation power source, and is opened when the current exceeds the critical current value. A superconducting energy storage device connected to an operating current-type persistent current switch, the persistent current switch being closed in order to cause a persistent current to flow through the superconducting coil when the set energy is stored in the superconducting coil by an excitation power source, A superconducting energy storage device that is connected in parallel with a superconducting coil, which has characteristics that are controlled to open and close automatically or magnetically, and characteristics that the circuit is opened when the current exceeds a critical current value and is closed with a transient thermal time constant. With the persistent current switch open, energy is stored in the superconducting coil by exciting it with an excitation power source connected to the power system, and when this stored energy reaches a set value, the persistent current switch is closed. At the same time, when the excitation power supply is stopped and a persistent current continues to flow through the superconducting coil, and when an operation command for system stabilization is received from the power system while the persistent current is flowing through the superconducting coil, A superconductor in which the persistent current switch is energized with a current equal to or higher than a critical current value to perform a circuit opening operation, and the energy stored in the superconducting coil is taken out to the system side of the excitation power supply only for the time until the circuit is reclosed. This is a method of operating an energy storage device. [0009]

【作用】励磁用電源は、超電導コイルの貯蔵エネルギー
を出し入れするのに用いる。この場合、超電導コイルに
最初にエネルギーを充電する際には、従来方式による熱
式、又は磁界式永久電流スイッチを開路しておく。超電
導コイルに設定エネルギーが貯蔵された時点で、熱式、
又は磁界式永久電流スイッチを閉路操作し、前記励磁用
電源を停止させる。この操作により、超電導コイルには
永久電流が流れ続け、所謂、超電導エネルギー貯蔵装置
によるエネルギー貯蔵状態となる。この状態で、電力系
統より超電導エネルギー貯蔵装置へ系統安定化のための
運転指令が出された場合は、励磁用電源と並列接続され
たパルス電源を駆動して、本発明に係る電流式永久電流
スイッチへ臨界電流値以上の電流を通電し、高速に開路
操作を行う。この操作により、超電導コイルと励磁用電
源は、電気的に接続状態となり、超電導エネルギー貯蔵
装置と電力系統間で、エネルギーの出し入れが可能とな
る。但し、系統安定化運転は数秒以下で良いため、電流
式永久電流スイッチの再閉路のタイミングも、この時間
程度で良く、これは、電流式永久電流スイッチの過渡熱
時定数を予め、そのオーダーになる様設計しておく事に
より可能である。電流式永久電流スイッチが再閉路すれ
ば、超電導コイルによるエネルギー貯蔵状態が再現する
事になる。また、超電導エネルギー貯蔵装置を停止させ
る場合は、熱式、又は磁界式永久電流スイッチを開路す
る事によりなされる。 [00101
[Operation] The excitation power source is used to input and output the stored energy of the superconducting coil. In this case, when the superconducting coil is initially charged with energy, the conventional thermal type or magnetic field type persistent current switch is opened. Once the set energy is stored in the superconducting coil, the thermal type,
Alternatively, the magnetic field type persistent current switch is operated to close the circuit to stop the excitation power source. By this operation, a persistent current continues to flow through the superconducting coil, resulting in an energy storage state by a so-called superconducting energy storage device. In this state, if the power system issues an operation command to the superconducting energy storage device to stabilize the system, the pulse power source connected in parallel with the excitation power source is driven, and the current type persistent current according to the present invention is activated. A current higher than the critical current value is applied to the switch, and the circuit is opened at high speed. Through this operation, the superconducting coil and the excitation power source are electrically connected, and energy can be transferred between the superconducting energy storage device and the power system. However, since the grid stabilization operation only takes a few seconds or less, the re-closing timing of the current-type persistent current switch also suffices within this time period. This is possible by designing it in such a way. If the current type persistent current switch is reclosed, the state of energy storage by the superconducting coil will be reproduced. Further, when the superconducting energy storage device is stopped, it is done by opening a thermal type or magnetic field type persistent current switch. [00101

【実施例]以下、図示した実施例に基づいて本発明の詳
細な説明する。以下に説明する例は、超電導エネルギー
貯蔵装置についてである。 【0011】図1に本発明の一実施例を示す。 [0012]該図に示す如く、本実施例では、臨界電流
により制御される電流式永久電流スイッチ(以下、pc
Slと略称する)1と、臨界温度や臨界磁界等により制
御される熱式、又は磁界式永久電流スイッチ(以下、P
C82と略称する)2とを直列接続し、これを超電導コ
イル3に並列接続して、共にクライオスタット内に設置
している。又、PC81に臨界電流値以上の電流を通電
する為の、コンデンサ5とサイリスクスイッチ6との直
列回路で構成される外部回路を超電導コイル3に並列に
接続する。更に、超電導コイル3に並列に接続する励磁
用サイリスタ変換器7を備え、この励磁用サイリスタ変
換器7の交流側を電力系統8に接続して超電導エネルギ
ー貯蔵装置を構成している。次に、本実施例の超電導エ
ネルギー貯蔵装置における運転方法を説明する。 [0013]先ず、PC82をヒーター等により加熱し
たり、磁界を付与することにより開路状態とする。PC
81は、未だ電流が流れていないので、当然閉路状態で
ある。次に、励磁用サイリスタ変換器7を駆動する事に
より、超電導コイル3へ直流電流を通電し、設定値にな
った時点でPC82を閉路状態に復帰させ、励磁用サイ
リスタ変換器7をゲートブロックする。この操作により
、超電導コイル3の電流は、PC3L、PC82にてク
ランプされ、設定されたエネルギー貯蔵状態となる(矢
印9参照)。ちなみに、定格電流値は、PC81の臨界
電流値の60〜80%程度に、予め設定しておくもので
ある。 [0014]上記状態にて、電力系統8へ擾乱が発生し
た場合は、該電力系統8からの運転要請に基づき、先ず
、サイリスクスイッチ6をONさせる。コンデンサ5は
、予め設定値まで充電されており、且つ、励磁用サイリ
スタ変換器7はゲートブロックされているから、この操
作により放電電流は、矢印10の放電路を形成し、PC
8I、PC82,超電導コイル3へ流れ込む事になる。 但し、PC3L、PC32の直列回路インピーダンスは
、超電導コイル3のインピーダンスと比べ、はるかに小
さく、その結果、放電電流の殆んどが、PC81゜PC
82回路へ流入し、貯蔵状態にあった超電導コイル3の
電流に重畳される事になる。この結果、PC81は臨界
電流値以上の通電となってクエンチし、開路状態となる
。 [0015] PC8I、PC82回路のインピーダン
スは、上述した様に極めて低いので、コンデンサ5は小
容景で十分高速、且つ、大電流放電を達成出来る。また
、超電導コイル3については、貯蔵状態に於ける電流方
向とは逆方向の電流注入となるので、この放電によりク
エンチが発生する事はない。さて、PC81が開路状態
になる事によって、超電導コイル3の端子間には、PC
81に発生する抵抗成分に基づく過渡電圧が発生する。 但し、この過渡電圧は、励磁用サイリスタ変換器7にと
って順方向電圧となるので、PC31の開路により、む
しろ、励磁用サイリスタ変換器7は再起動しやすい方向
へ作用する為、超電導コイル3の電流は、高速に励磁用
サイリスタ変換器7側へ転流し、その結果、超電導コイ
ル3に貯蔵されていた磁気エネルギーを、電力系統8側
へ高速でパワーバックする事が可能となるものである。 励磁用サイリスタ変換器7を介した系統安定化運転は、
高々、数秒間程度であり、PC31の過渡熱時定数を数
秒以上に設定しであるので、系統安定化運転後、PC8
1は自動的に閉路状態に復帰し、励磁用サイリスタ変換
器7のゲートブロックにより、再び、元のエネルギー貯
蔵状態に到るものである。 [0016]図2は、本発明の他の実施例を示すもので
あり、図1に於けるPC81にPC32の機能を付加し
、1台の永久電流スイッチ1−にて、初期充電の為のス
イッチング、及び系統安定化運転の為のスイッチングを
行わせしめるものである。運転操作は、図1と略同様な
ので説明は省略する。 [0017] このような本実施例のようにすることに
より、電力系統に擾乱が発生していない期間(待機期間
)には、超電導コイルに流れる電流を永久電流スイッチ
でクランプするので、貯蔵エネルギーの損失が殆んどな
く、極めて効率の高い系統安定化用超電導エネルギー貯
蔵装置を実現出来る。又、電力系統に擾乱が発生した場
合は、超電導エネルギー貯蔵装置の主回路に設置される
コンデンサ放電により、上記永久電流スイッチに臨界電
流値以上の通電を行い、極めて高速にて開路状態に至ら
しめる事が可能な上、永久電流の過渡熱時定数により、
設定時間以後は自動的に再閉路出来るので、系統安定化
用超電導エネルギー貯蔵装置として最適である。 [0018]図3は本発明の第3の実施例を示すもので
あり、図1に示す実施例に加え励磁用サイリスタ変換器
7と直列に投入器等の開閉手段11を設けたことを基本
とするものである。 [0019]本実施例において、先ず超電導コイル3を
励磁するには、開閉手段11を閉路、PC81を閉路、
PC82を開路しておき、励磁用サイリスタ変換器7を
運転することにより行う。そして、超電導コイル3の電
流値が設定電流に達した時点でPC32を閉路して永久
電流モード運転へ移行すると共に、励磁用サイリスタ変
換器7をゲートブロックし、開閉手段11を開路する。 この一連の操作にて、超電導エネルギー貯蔵装置は、エ
ネルギー貯蔵状態に入る。 [00201次に、電力系統8からの要求により、系統
安定化運転を行う場合を考える。この場合、先ずPC8
1を外部電源(コンデンサ5とサイリスクスイッチ6と
の直列回路)の駆動により開路させる必要がある。PC
81は、臨界電流値以上の通電にて開路する特徴を備え
ているので、例えば、外部電源がコンデンサバンクであ
るとした場合、比較的大きな充電電圧を必要とすること
が考えられる。但し、開閉手段11は開路されているの
で、励磁用サイリスタ変換器7に直接印加される事がな
い。一方、放電電流10が充分大きくなり、それと共に
外部電源(コンデンサバンク)の充電電圧値が小さくな
った時点を超電導コイル3と並列に設けた電圧検出器1
2で計測して、励磁用電圧の耐圧以下の電圧になったこ
とを確認し、開閉手段11にON指令を与えて励磁用サ
イリスタ変換器7をデブロック(再起動)させれば、超
電導コイル3の電流は、励磁用サイリスタ変換器7にシ
フトされ、系統安定化運転を行うことが出来る。尚、制
御装置13は、上記した回路構成機器を制御し、正常に
システム全体を運転するため設置されるものである。 [00211尚、各実施例では特に図示してはいないが
、前記PC81を無誘導巻きした超電導コイルで形成す
ることにより、インダクタンス分を殆んど0にすること
が可能であり、外部電源からの通電電流は、前記超電導
コイルへは殆んど通電されず、効果的にPC81に流入
されることになる。 [0022]このため、外部電源の容量を低減できる他
、運転の信頼性、高速性を達成することが可能である。 PC82についても、同様に無誘導巻きとした超電導コ
イルで形成すれば、同様な効果が得られる。 [0023]
[Embodiments] The present invention will be explained in detail below based on the illustrated embodiments. The example described below is for a superconducting energy storage device. FIG. 1 shows an embodiment of the present invention. [0012] As shown in the figure, in this embodiment, a current type persistent current switch (hereinafter, PC
(abbreviated as Sl) 1, and a thermal type or magnetic field type persistent current switch (hereinafter referred to as P) controlled by critical temperature, critical magnetic field, etc.
(abbreviated as C82) 2 are connected in series, which are connected in parallel to the superconducting coil 3, and both are installed in the cryostat. Further, an external circuit constituted by a series circuit of a capacitor 5 and a thyrisk switch 6 is connected in parallel to the superconducting coil 3 in order to supply a current higher than the critical current value to the PC 81. Furthermore, an excitation thyristor converter 7 connected in parallel to the superconducting coil 3 is provided, and the AC side of the excitation thyristor converter 7 is connected to a power system 8 to constitute a superconducting energy storage device. Next, a method of operating the superconducting energy storage device of this embodiment will be explained. [0013] First, the PC 82 is brought into an open state by heating it with a heater or by applying a magnetic field. PC
81 is naturally in a closed state because no current is flowing through it yet. Next, by driving the excitation thyristor converter 7, a DC current is applied to the superconducting coil 3, and when the set value is reached, the PC 82 is returned to the closed circuit state, and the excitation thyristor converter 7 is gate-blocked. . By this operation, the current of the superconducting coil 3 is clamped by PC3L and PC82, and the set energy storage state is achieved (see arrow 9). Incidentally, the rated current value is set in advance to about 60 to 80% of the critical current value of the PC 81. [0014] In the above state, if a disturbance occurs in the power system 8, first, the si-risk switch 6 is turned on based on an operation request from the power system 8. Since the capacitor 5 is charged in advance to a set value, and the excitation thyristor converter 7 is gate-blocked, this operation causes the discharge current to form the discharge path shown by the arrow 10, and the PC
It will flow into 8I, PC82, and superconducting coil 3. However, the series circuit impedance of PC3L and PC32 is much smaller than the impedance of the superconducting coil 3, and as a result, most of the discharge current is
The current flows into the 82 circuit and is superimposed on the current of the superconducting coil 3 which was in the storage state. As a result, the PC 81 is energized to a value equal to or higher than the critical current value, quenches, and becomes an open circuit state. [0015] Since the impedance of the PC8I and PC82 circuits is extremely low as described above, the capacitor 5 can achieve sufficiently high speed and large current discharge with a small size. Furthermore, since current is injected into the superconducting coil 3 in the opposite direction to the current direction in the storage state, quenching does not occur due to this discharge. Now, with PC81 in an open state, there is a PC between the terminals of superconducting coil 3.
A transient voltage is generated based on the resistance component generated at 81. However, since this transient voltage becomes a forward voltage for the excitation thyristor converter 7, the opening of the PC 31 acts in a direction that makes it easier to restart the excitation thyristor converter 7, so the current in the superconducting coil 3 decreases. is commutated to the excitation thyristor converter 7 side at high speed, and as a result, it becomes possible to power back the magnetic energy stored in the superconducting coil 3 to the power system 8 side at high speed. System stabilization operation via the excitation thyristor converter 7 is as follows:
At most, the transient thermal time constant of PC31 is set to several seconds or more, so after the system stabilization operation, PC8
1 automatically returns to the closed circuit state and returns to the original energy storage state again by the gate block of the excitation thyristor converter 7. [0016] FIG. 2 shows another embodiment of the present invention, in which the functions of the PC 32 are added to the PC 81 in FIG. 1, and one persistent current switch 1- is used to perform initial charging. This is used to perform switching and switching for system stabilization operation. The driving operation is substantially the same as that in FIG. 1, so the explanation will be omitted. [0017] By doing as in this embodiment, the current flowing through the superconducting coil is clamped by the persistent current switch during a period when no disturbance occurs in the power system (standby period), so that the stored energy is It is possible to realize an extremely efficient superconducting energy storage device for system stabilization with almost no loss. In addition, if a disturbance occurs in the power system, the persistent current switch is energized to a level exceeding the critical current value by discharging a capacitor installed in the main circuit of the superconducting energy storage device, and is brought into an open state at an extremely high speed. In addition, due to the transient thermal time constant of the persistent current,
Since it can automatically reclose after a set time, it is ideal as a superconducting energy storage device for system stabilization. [0018] FIG. 3 shows a third embodiment of the present invention, and the basic feature is that, in addition to the embodiment shown in FIG. That is. [0019] In this embodiment, first, in order to excite the superconducting coil 3, the switching means 11 is closed, the PC 81 is closed,
This is performed by keeping the PC 82 open and operating the excitation thyristor converter 7. Then, when the current value of the superconducting coil 3 reaches the set current, the PC 32 is closed to shift to persistent current mode operation, the excitation thyristor converter 7 is gate-blocked, and the switching means 11 is opened. With this series of operations, the superconducting energy storage device enters the energy storage state. [00201 Next, consider a case where grid stabilization operation is performed in response to a request from the power grid 8. In this case, first, PC8
It is necessary to open circuit 1 by driving an external power supply (a series circuit of capacitor 5 and thyrisk switch 6). PC
Since the circuit 81 has a characteristic of being opened when a current exceeding a critical current value is applied, a relatively large charging voltage may be required if the external power supply is a capacitor bank, for example. However, since the switching means 11 is open-circuited, no voltage is directly applied to the excitation thyristor converter 7. On the other hand, a voltage detector 1 installed in parallel with the superconducting coil 3 detects the point in time when the discharge current 10 becomes sufficiently large and the charging voltage value of the external power supply (capacitor bank) becomes small.
2, confirm that the voltage is lower than the withstand voltage of the excitation voltage, and give an ON command to the switching means 11 to deblock (restart) the excitation thyristor converter 7, and the superconducting coil The current of No. 3 is shifted to the excitation thyristor converter 7, and system stabilization operation can be performed. The control device 13 is installed to control the circuit components described above and operate the entire system normally. [00211 Although not particularly shown in each embodiment, by forming the PC 81 with a non-inductively wound superconducting coil, the inductance can be reduced to almost 0, and the inductance from the external power source can be reduced to almost zero. Almost no current is applied to the superconducting coil, but effectively flows into the PC 81. [0022] Therefore, in addition to being able to reduce the capacity of the external power source, it is also possible to achieve operational reliability and high speed. If the PC 82 is also formed of a superconducting coil with non-inductive winding, the same effect can be obtained. [0023]

【発明の効果】以上説明した本発明の超電導装置、並び
に超電導エネルギー貯蔵装置、及びその運転方法によれ
ば、極めて高速に永久電流スイッチを開路することがで
き、又、瞬時に系統擾乱に対応できることは勿論、貯蔵
エネルギーの損失が殆んどなく、極めて効率の高いもの
が得られ、その効果は多大である。
[Effects of the Invention] According to the superconducting device, superconducting energy storage device, and operating method thereof of the present invention described above, persistent current switches can be opened extremely quickly, and system disturbances can be instantaneously responded to. Of course, there is almost no loss of stored energy, and extremely high efficiency can be obtained, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の超電導エネルギー貯蔵装置の一実施例
を示す回路図。
FIG. 1 is a circuit diagram showing an embodiment of a superconducting energy storage device of the present invention.

【図2】本発明の第2の実施例を示す回路図。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す回路図。FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・電流式永久電流スイッチ、訃・・熱式永久電流
スイッチ、3・・・超電導コイル、4・・・クライオス
タット、5・・・コンデンサ、6・・・サイリスクスイ
ッチ、7・・・励磁用サイリスタ変換器、8・・・電力
系統、10・・・放電電流、11・・・開閉手段、12
・・・電圧検出器、13・・・制御装置。
1... Current type persistent current switch, 2... Thermal type persistent current switch, 3... Superconducting coil, 4... Cryostat, 5... Capacitor, 6... Cyrisk switch, 7... Excitation thyristor converter, 8... Power system, 10... Discharge current, 11... Switching means, 12
...Voltage detector, 13...Control device.

【図1】[Figure 1]

【図2】[Figure 2]

【図3】[Figure 3]

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】超電導コイルと並列に、臨界電流値以上の
通電で開路動作する電流式永久電流スイッチを設けたこ
とを特徴とする超電導装置。
1. A superconducting device characterized in that a current-type persistent current switch is provided in parallel with a superconducting coil, and the switch operates to open the circuit when energized at a critical current value or higher.
【請求項2】超電導コイルと、該超電導コイルと並列接
続され、該超電導コイルに設定エネルギーが貯蔵された
時点で永久電流を流すために閉路される永久電流スイッ
チと、該永久電流スイッチ、前記超電導コイルを収納す
るクライオスタットとを備えた超電導装置において、前
記クライオスタットの外部に、前記永久電流スイッチに
臨界電流値以上の電流を通電して開路動作させる電源装
置を設けたことを特徴とする超電導装置。
2. A superconducting coil; a persistent current switch connected in parallel with the superconducting coil and closed to cause a persistent current to flow when a set energy is stored in the superconducting coil; A superconducting device comprising a cryostat that accommodates a coil, characterized in that a power supply device is provided outside the cryostat to apply a current equal to or higher than a critical current value to the persistent current switch to open the circuit.
【請求項3】前記永久電流スイッチを、無誘導巻きとし
た超電導コイルで形成したことを特徴とする請求項1、
又は2記載の超電導装置。
3. The persistent current switch according to claim 1, wherein the persistent current switch is formed of a non-inductively wound superconducting coil.
Or the superconducting device according to 2.
【請求項4】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される永久電流スイッチとを
備えた超電導エネルギー貯蔵装置において、前記永久電
流スイッチは、臨界電流値以上の通電で開路動作する機
能を少なくとも備えていることを特徴とする超電導エネ
ルギー貯蔵装置。
4. A superconducting coil, an excitation power source that excites the superconducting coil, and a circuit that is closed in order to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power source. A superconducting energy storage device comprising a persistent current switch, wherein the persistent current switch has at least a function of opening a circuit when energized at a critical current value or higher.
【請求項5】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される永久電流スイッチと、
該永久電流スイッチ、前記超電導コイルを収納するクラ
イオスタットとを備えた超電導エネルギー貯蔵装置にお
いて、前記クライオスタットの外部に前記永久電流スイ
ッチに臨界電流値以上の通電で開路動作させる電源装置
を設けたことを特徴とする超電導エネルギー貯蔵装置。
5. A superconducting coil, an excitation power source that excites the superconducting coil, and a circuit that is closed in order to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power source. Persistent current switch;
A superconducting energy storage device comprising the persistent current switch and a cryostat housing the superconducting coil, characterized in that a power supply device is provided outside the cryostat to cause the persistent current switch to perform an opening operation when energized at a critical current value or higher. A superconducting energy storage device.
【請求項6】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される熱式、又は磁界式永久
電流スイッチとを備えた超電導エネルギー貯蔵装置にお
いて、前記熱式、又は磁界式永久電流スイッチと直列に
、臨界電流値以上の通電で開路動作する電流式永久電流
スイッチを接続したことを特徴とする超電導エネルギー
貯蔵装置。
6. A superconducting coil, an excitation power supply that excites the superconducting coil, and a circuit that is closed in order to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power supply. In a superconducting energy storage device equipped with a thermal type or magnetic field type persistent current switch, a current type persistent current switch that operates to open circuit when energized at a critical current value or more is connected in series with the thermal type or magnetic field type persistent current switch. A superconducting energy storage device characterized by:
【請求項7】超電導コイルと、電力系統に接続され、該
超電導コイルを励磁する励磁用電源と、該励磁用電源に
より前記超電導コイルに設定エネルギーが貯蔵された時
点で該超電導コイルに永久電流を流すために閉路される
永久電流スイッチとを備えた超電導エネルギー貯蔵装置
において、前記永久電流スイッチは、電力系統安定化の
ための運転指令が出された場合に臨界電流値以上の通電
で開路動作する機能を少なくとも備えていることを特徴
とする超電導エネルギー貯蔵装置。
7. A superconducting coil, an excitation power supply connected to a power system and exciting the superconducting coil, and applying a permanent current to the superconducting coil when a set energy is stored in the superconducting coil by the excitation power supply. In a superconducting energy storage device equipped with a persistent current switch that is closed to allow current to flow, the persistent current switch operates to open when energized at a critical current value or higher when an operation command for stabilizing the power system is issued. A superconducting energy storage device characterized by having at least the following functions:
【請求項8】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される熱式、又は磁界式永久
電流スイッチとを備えた超電導エネルギー貯蔵装置にお
いて、前記熱式、又は磁界式永久電流スイッチと直列に
、外部電流によって開路動作が制御される電流式永久電
流スイッチを接続し、かつ、該電流式永久電流スイッチ
に外部から電流を流すための電源装置を前記超電導コイ
ルと並列に設けたことを特徴とする超電導エネルギー貯
蔵装置。
8. A superconducting coil, an excitation power supply that excites the superconducting coil, and a circuit that is closed in order to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power supply. In a superconducting energy storage device equipped with a thermal type or magnetic field type persistent current switch, a current type persistent current switch whose opening operation is controlled by an external current is connected in series with the thermal type or magnetic field type persistent current switch. A superconducting energy storage device, further comprising: a power supply device for supplying current to the current type persistent current switch from the outside in parallel with the superconducting coil.
【請求項9】超電導コイルと、該超電導コイルを励磁す
る励磁用電源と、該励磁用電源により前記超電導コイル
に設定エネルギーが貯蔵された時点で該超電導コイルに
永久電流を流すために閉路される熱式、又は磁界式永久
電流スイッチとを備えた超電導エネルギー貯蔵装置にお
いて、前記熱式、又は磁界式永久電流スイッチと直列に
、臨界電流値以上の通電で開路動作する電流式永久電流
スイッチを接続し、かつ、該電流式永久電流スイッチに
通電する電源装置を前記超電導コイルと並列に設けたこ
とを特徴とする超電導エネルギー貯蔵装置。
9. A superconducting coil, an excitation power supply that excites the superconducting coil, and a circuit that is closed in order to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power supply. In a superconducting energy storage device equipped with a thermal type or magnetic field type persistent current switch, a current type persistent current switch that operates to open circuit when energized at a critical current value or more is connected in series with the thermal type or magnetic field type persistent current switch. A superconducting energy storage device characterized in that a power supply device for energizing the current-type persistent current switch is provided in parallel with the superconducting coil.
【請求項10】超電導コイルと、該超電導コイルを励磁
する励磁用電源と、該励磁用電源により前記超電導コイ
ルに設定エネルギーが貯蔵された時点で該超電導コイル
に永久電流を流すために閉路される永久電流スイッチと
を備えた超電導エネルギー貯蔵装置において、前記永久
電流スイッチは、熱的、又は磁気的に開閉制御される特
性と、臨界電流値以上の通電で開路され、過渡熱時定数
で閉路される特性とを有していることを特徴とする超電
導エネルギー貯蔵装置。
10. A superconducting coil, an excitation power supply for exciting the superconducting coil, and a circuit closed to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power supply. In a superconducting energy storage device equipped with a persistent current switch, the persistent current switch has a property of being thermally or magnetically controlled to open and close, and is opened when energized at a critical current value or more, and closed with a transient thermal time constant. A superconducting energy storage device characterized by having the following characteristics.
【請求項11】超電導コイルと、該超電導コイルを励磁
する励磁用電源と、該励磁用電源により前記超電導コイ
ルを励磁してエネルギーを貯蔵している時には開路され
、設定エネルギーが貯蔵された時点で閉路されて前記超
電導コイルに永久電流を流す熱式、又は磁界式永久電流
スイッチとを備えた超電導エネルギー貯蔵装置において
、前記熱式、又は磁界式永久電流スイッチと直列に、前
記超電導コイルを高速に前記励磁用電源に接続したい場
合にのみ開路動作する電流式永久電流スイッチを接続し
たことを特徴とする超電導エネルギー貯蔵装置。
11. A superconducting coil, an excitation power supply for exciting the superconducting coil, and an open circuit when the excitation power supply excites the superconducting coil and storing energy, and when the set energy is stored. In a superconducting energy storage device comprising a thermal type or magnetic field type persistent current switch that is closed and causes a persistent current to flow through the superconducting coil, the superconducting coil is operated at high speed in series with the thermal type or magnetic field type persistent current switch. A superconducting energy storage device characterized in that a current-type persistent current switch is connected that opens the circuit only when it is desired to connect to the excitation power source.
【請求項12】前記臨界電流値以上の通電で開路する永
久電流スイッチを無誘導巻きとした超電導コイルで形成
したことを特徴とする請求項4. 5. 7、又は10
記載の超電導エネルギー貯蔵装置。
12. Claim 4, wherein the persistent current switch, which opens when energization exceeds the critical current value, is formed of a non-inductively wound superconducting coil. 5. 7 or 10
The superconducting energy storage device described.
【請求項13】前記電流式永久電流スイッチを、無誘導
巻きとした超電導コイルで形成したことを特徴とする6
、  8. 9、又は11記載の超電導エネルギー貯蔵
装置。
13. The current type persistent current switch is formed of a non-inductively wound superconducting coil.
, 8. 9. The superconducting energy storage device according to 11.
【請求項14】超電導コイルと並列接続されている永久
電流スイッチを開路した状態で電力系統に接続されてい
る励磁用電源で励磁して前記超電導コイルにエネルギー
を貯蔵し、この貯蔵エネルギーが設定値になった時点で
前記永久電流スイッチを閉路すると共に、前記励磁用電
源を停止させて前記超電導コイルに永久電流を流し続け
る超電導エネルギー貯蔵装置の運転方法において、前記
超電導コイルに永久電流が流れている状態で前記電力系
統から系統安定化のための運転指令があった場合に、前
記永久電流スイッチへ臨界電流値以上の電流を通電して
開路操作を行い、次に再閉路されるまでの時間だけ前記
励磁用電源の系統側に前記超電導コイルの貯蔵エネルギ
ーを取り出すようにしたことを特徴とする超電導エネル
ギー貯蔵装置の運転方法。
14. Energy is stored in the superconducting coil by exciting it with an excitation power source connected to a power system while a persistent current switch connected in parallel with the superconducting coil is open, and the stored energy is a set value. In the method of operating a superconducting energy storage device, the persistent current switch is closed at the time when the permanent current switch is closed, the excitation power supply is stopped, and the persistent current continues to flow through the superconducting coil, wherein a persistent current is flowing through the superconducting coil. If there is an operation command from the power system to stabilize the system in the current state, a current exceeding the critical current value is applied to the persistent current switch to open the circuit, and only for the time until the circuit is reclosed. A method for operating a superconducting energy storage device, characterized in that energy stored in the superconducting coil is taken out to a system side of the excitation power source.
【請求項15】超電導コイルと並列接続されている永久
電流スイッチを開路した状態で電力系統に接続されてい
る励磁用電源で励磁して前記超電導コイルにエネルギー
を貯蔵し、この貯蔵エネルギーが設定値になった時点で
前記永久電流スイッチを閉路すると共に、前記励磁用電
源を停止させて前記超電導コイルに永久電流を流し続け
る超電導エネルギー貯蔵装置の運転方法において、前記
永久電流スイッチに臨界電流値以上の電流を通電して開
路し、かつ、開路された該永久電流スイッチの過渡熱時
定数により数秒後に自動的に再閉路させ、前記超電導コ
イルを系統安定化運転するに必要な期間だけ前記励磁用
電源に電気的に接続することを特徴とする超電導エネル
ギー貯蔵装置の運転方法。
15. Energy is stored in the superconducting coil by exciting it with an excitation power supply connected to a power system while a persistent current switch connected in parallel with the superconducting coil is open, and the stored energy is a set value. In the method of operating a superconducting energy storage device, the persistent current switch is closed at the point where the persistent current switch is closed, the excitation power supply is stopped, and the persistent current continues to flow through the superconducting coil. A current is applied to open the circuit, and the circuit is automatically reclosed after a few seconds due to the transient thermal time constant of the opened persistent current switch, and the excitation power source is operated for a period necessary for system stabilization operation of the superconducting coil. A method of operating a superconducting energy storage device, the method comprising: electrically connecting a superconducting energy storage device to a superconducting energy storage device;
【請求項16】超電導コイルと並列接続されている熱式
、又は磁界式永久電流スイッチを開路した状態で電力系
統に接続されている励磁用電源で励磁して前記超電導コ
イルにエネルギーを貯蔵し、この貯蔵エネルギーが設定
値になった時点で前記熱式、又は磁界式永久電流スイッ
チを閉路すると共に、前記励磁用電源を停止させて前記
超電導コイルに永久電流を流し続ける超電導エネルギー
貯蔵装置の運転方法において、前記熱式、又は磁界式永
久電流スイッチと直列に電流式永久電流スイッチを接続
し、前記超電導コイルに永久電流が流れている状態で前
記電力系統から系統安定化のための運転指令があった場
合に、前記電流式永久電流スイッチへ臨界電流値以上の
電流を通電して開路操作を行い、次に再閉路されるまで
の期間だけ前記励磁用電源の系統側に前記超電導コイル
の貯蔵エネルギーを取り出すようにしたことを特徴とす
る超電導エネルギー貯蔵装置の運転方法。
16. Storing energy in the superconducting coil by exciting it with an excitation power supply connected to the power system with a thermal type or magnetic field type persistent current switch connected in parallel with the superconducting coil in an open state, A method for operating a superconducting energy storage device that closes the thermal or magnetic persistent current switch when the stored energy reaches a set value, stops the excitation power source, and continues to flow persistent current through the superconducting coil. In this step, a current type persistent current switch is connected in series with the thermal type or magnetic field type persistent current switch, and an operation command for system stabilization is received from the power system while a persistent current is flowing through the superconducting coil. In this case, a current exceeding the critical current value is applied to the current-type persistent current switch to open the circuit, and the stored energy of the superconducting coil is transferred to the system side of the excitation power supply only for a period until the circuit is reclosed. 1. A method of operating a superconducting energy storage device, characterized in that the superconducting energy storage device is adapted to take out.
【請求項17】超電導コイルと並列接続されている熱式
、又は磁界式永久電流スイッチを開路した状態で電力系
統に接続されている励磁用電源で励磁して前記超電導コ
イルにエネルギーを貯蔵し、この貯蔵エネルギーが設定
値になった時点で前記熱式、又は磁界式永久電流スイッ
チを閉路すると共に、前記励磁用電源を停止させて前記
超電導コイルに永久電流を流し続ける超電導エネルギー
貯蔵装置の運転方法において、前記熱式、又は磁界式永
久電流スイッチに、臨界電流値以上の電流が通電されて
開路する電流式永久電流スイッチを直列接続し、かつ、
開路された該電流式永久電流スイッチを、その過渡熱時
定数により数秒後に自動的に再閉路させ、前記超電導コ
イルを系統安定化運転するに必要な期間だけ前記励磁用
電源に電気的に接続することを特徴とする超電導エネル
ギー貯蔵装置の運転方法。
17. Storing energy in the superconducting coil by exciting it with an excitation power supply connected to the power system with a thermal or magnetic field persistent current switch connected in parallel with the superconducting coil in an open state, A method for operating a superconducting energy storage device that closes the thermal or magnetic persistent current switch when the stored energy reaches a set value, stops the excitation power source, and continues to flow persistent current through the superconducting coil. , a current type persistent current switch that opens when a current equal to or higher than a critical current value is applied is connected in series to the thermal type or magnetic field type persistent current switch, and
The opened current type persistent current switch is automatically reclosed after several seconds due to its transient thermal time constant, and the superconducting coil is electrically connected to the excitation power source for a period necessary for system stabilization operation. A method of operating a superconducting energy storage device characterized by:
【請求項18】超電導コイルと、電力系統に接続され、
該超電導コイルを励磁する励磁用電源と、該励磁用電源
により前記超電導コイルに設定エネルギーが貯蔵された
時点で該超電導コイルに永久電流を流すために閉路され
る永久電流スイッチとを備えた超電導エネルギー貯蔵装
置において、前記永久電流スイッチは、電力系統安定化
のための運転指令が出された場合に臨界電流値以上の通
電で開路動作する機能を少なくとも備え、かつ、該永久
電流スイッチに通電する電源装置を超電導コイルと並列
に設けると共に、前記励磁用電源で超電導コイルを励磁
する時、及び電力系統安定化のための運転指令が出され
前記永久電流スイッチへの外部電源電圧が所定値以下に
なった時には閉路動作し、一方、前記超電導コイルの電
流値が設定電流に達した時には開路動作する開閉手段を
前記励磁用電源と直列に設けたことを特徴とする超電導
エネルギー貯蔵装置。
18. A superconducting coil connected to a power system,
Superconducting energy comprising: an excitation power source that excites the superconducting coil; and a persistent current switch that is closed to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power source. In the storage device, the persistent current switch has at least a function of opening the circuit by energization of a critical current value or more when an operation command for stabilizing the power system is issued, and a power supply that energizes the persistent current switch. The device is installed in parallel with the superconducting coil, and when the excitation power source excites the superconducting coil, and when an operation command is issued for power system stabilization, the external power supply voltage to the persistent current switch falls below a predetermined value. A superconducting energy storage device characterized in that a switching means is provided in series with the excitation power source, which operates to close the circuit when the current value of the superconducting coil reaches a set current, and to open the circuit when the current value of the superconducting coil reaches a set current.
【請求項19】超電導コイルと、電力系統に接続され、
該超電導コイルを励磁する励磁用電源と、該励磁用電源
により前記超電導コイルに設定エネルギーが貯蔵された
時点で該超電導コイルに永久電流を流すために閉路され
る熱式、又は磁界式永久電流スイッチとを備えた超電導
エネルギー貯蔵装置において、前記熱式、又は磁界式永
久電流スイッチと直列に、外部電流によって開路動作が
制御される電流式永久電流スイッチを接続し、かつ、該
電流式永久電流スイッチに外部から電流を流すための電
源装置を前記超電導コイルと並列に設けると共に、前記
励磁用電源で超電導コイルを励磁する時、及び電力系統
安定化のための運転指令が出され前記電流式永久電流ス
イッチへの外部電源装置の電圧が所定値以下になった時
には閉路動作し、一方、前記超電導コイルの電流値が設
定電流に達した時には開路動作する開閉手段を前記励磁
用電源と直列に設けたことを特徴とする超電導エネルギ
ー貯蔵装置。
19. A superconducting coil connected to a power system,
an excitation power source that excites the superconducting coil; and a thermal or magnetic field type persistent current switch that is closed to cause a persistent current to flow through the superconducting coil when a set energy is stored in the superconducting coil by the excitation power source. A superconducting energy storage device comprising: a current type persistent current switch whose opening operation is controlled by an external current is connected in series with the thermal type or magnetic field type persistent current switch; A power supply device is provided in parallel with the superconducting coil for supplying a current from the outside to the superconducting coil, and when the excitation power source excites the superconducting coil and an operation command is issued for power system stabilization, the current-type persistent current is A switching means is provided in series with the excitation power source, which operates to close the circuit when the voltage of the external power supply to the switch falls below a predetermined value, and to open the circuit when the current value of the superconducting coil reaches the set current. A superconducting energy storage device characterized by:
【請求項20】前記開閉手段は投入器であることを特徴
とする請求項18、又は19記載の超電導エネルギー貯
蔵装置。
20. The superconducting energy storage device according to claim 18, wherein the opening/closing means is an input device.
【請求項21】前記超電導コイルと並列に、前記永久電
流スイッチへの外部電源電圧が所定値以下になったこと
を確認する電圧検出器を設けたことを特徴とする請求項
18、又は19記載の超電導エネルギー貯蔵装置。
21. The superconducting coil according to claim 18 or 19, further comprising a voltage detector provided in parallel with the superconducting coil for confirming that an external power supply voltage to the persistent current switch has fallen below a predetermined value. superconducting energy storage device.
【請求項22】超電導コイルと並列接続されている永久
電流スイッチを開路した状態で電力系統に接続されてい
る励磁用電源で励磁して前記超電導コイルにエネルギー
を貯蔵し、この貯蔵エネルギーが設定値になった時点で
前記永久電流スイッチを閉路すると共に、前記励磁用電
源を停止させて前記超電導コイルに永久電流を流し続け
る超電導エネルギー貯蔵装置の運転方法において、前記
超電導コイルに永久電流が流れている状態で前記電力系
統から系統安定化のための運転指令があった場合に、前
記永久電流スイッチへ臨界電流値以上の電流を通電して
開路操作を行うと共に、その外部電源電圧が所定値以下
になったら励磁用電源と直列に設けられた開閉手段を閉
路して超電導コイル電流を前記励磁用電源にシフトし、
次に前記永久電流スイッチが再閉路されるまでの期間だ
け前記励磁用電源の系統側に前記超電導コイルの貯蔵エ
ネルギーを取り出すようにしたことを特徴とする超電導
エネルギー貯蔵装置の運転方法。
22. Energy is stored in the superconducting coil by exciting it with an excitation power source connected to the power system while a persistent current switch connected in parallel with the superconducting coil is open, and the stored energy is a set value. In the method of operating a superconducting energy storage device, the persistent current switch is closed at the time when the permanent current switch is closed, the excitation power supply is stopped, and the persistent current continues to flow through the superconducting coil, wherein a persistent current is flowing through the superconducting coil. When an operation command is received from the electric power system for system stabilization in the state, a current exceeding a critical current value is applied to the persistent current switch to open the circuit, and the external power supply voltage is lowered to a predetermined value or less. When this occurs, the switching means provided in series with the excitation power source is closed to shift the superconducting coil current to the excitation power source,
A method for operating a superconducting energy storage device, characterized in that the energy stored in the superconducting coil is taken out to the system of the excitation power source only during a period until the persistent current switch is reclosed.
【請求項23】超電導コイルと並列接続されている熱式
、又は磁界式永久電流スイッチを開路した状態で電力系
統に接続されている励磁用電源で励磁して前記超電導コ
イルにエネルギーを貯蔵し、この貯蔵エネルギーが設定
値になった時点で前記熱式、又は磁界式永久電流スイッ
チを閉路すると共に、前記励磁用電源を停止させて前記
超電導コイルに永久電流を流し続ける超電導エネルギー
貯蔵装置の運転方法において、前記熱式、又は磁界式永
久電流スイッチと直列に電流式永久電流スイッチを接続
し、前記超電導コイルに永久電流が流れている状態で前
記電力系統から系統安定化のための運転指令があった場
合に、前記電流式永久電流スイッチへ臨界電流値以上の
電流を通電して開路操作を行うと共に、その外部電源電
圧が所定値以下になったら励磁用電源と直列に設けられ
た開閉手段を閉路して超電導コイル電流を前記励磁用電
源にシフトし、次に前記電流式永久電流スイッチが再閉
路されるまでの期間だけ前記励磁用電源の系統側に前記
超電導コイルの貯蔵エネルギーを取り出すようにしたこ
とを特徴とする超電導エネルギー貯蔵装置の運転方法。
23. Storing energy in the superconducting coil by exciting it with an excitation power supply connected to the power system with a thermal type or magnetic field type persistent current switch connected in parallel with the superconducting coil in an open state, A method for operating a superconducting energy storage device that closes the thermal or magnetic persistent current switch when the stored energy reaches a set value, stops the excitation power source, and continues to flow persistent current through the superconducting coil. In this step, a current type persistent current switch is connected in series with the thermal type or magnetic field type persistent current switch, and an operation command for system stabilization is received from the power system while a persistent current is flowing through the superconducting coil. In this case, the current-type persistent current switch is energized with a current equal to or higher than the critical current value to open the circuit, and when the external power supply voltage falls below a predetermined value, the opening/closing means provided in series with the excitation power supply is activated. The superconducting coil current is shifted to the excitation power source by closing the circuit, and the stored energy of the superconducting coil is taken out to the system side of the excitation power source only for a period until the current type persistent current switch is reclosed. A method of operating a superconducting energy storage device characterized by:
JP3047856A 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same Expired - Fee Related JP3052397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3047856A JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-61000 1990-03-14
JP6100090 1990-03-14
JP3047856A JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Publications (2)

Publication Number Publication Date
JPH04211105A true JPH04211105A (en) 1992-08-03
JP3052397B2 JP3052397B2 (en) 2000-06-12

Family

ID=26388060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3047856A Expired - Fee Related JP3052397B2 (en) 1990-03-14 1991-03-13 Superconducting device, superconducting energy storage device, and method of operating the same

Country Status (1)

Country Link
JP (1) JP3052397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905267B2 (en) 2007-06-21 2012-03-28 ソニー株式会社 Positive electrode mixture and non-aqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532638A (en) * 1992-09-21 1996-07-02 Hitachi, Ltd. Superconducting energy storage apparatus

Also Published As

Publication number Publication date
JP3052397B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
EP0571956B1 (en) Circuit for starting single-phase AC induction motor
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
JPH0586052B2 (en)
JPH04211105A (en) Superconducting apparatus, superconducting energy storing apparatus and operating method therefor
JP2573725B2 (en) Instantaneous power failure protection device using superconducting switch
JP2986424B2 (en) Voltage controller
JPH11225432A (en) Transformer rush current reduction method
JPS60207403A (en) Controller for electric railcar
JP2001258179A (en) Power supply switch
JP3150422B2 (en) Protective resistor for superconducting magnet with circuit switching function
JPS644313Y2 (en)
JPH06168820A (en) Power supply for nuclear fusion device
JPH0513222A (en) Superconducting coil device
JPS61142937A (en) Method and apparatus for storing and discharging superconductive energy
JPH01255436A (en) Semiconductor circuit breaker
JPH0515088A (en) Superconducting power storage device
JPS6355919A (en) Controlling method for superconductive electromagnet device
JPH03290718A (en) Power saving circuit for single-turn transformer
JPH1014268A (en) Control of star-delta starting electromagnetic contactor
JPH0345637B2 (en)
JPH0697516A (en) Superconducting energy storage apparatus
JPH0746871A (en) Drive circuit for ac motor
JPS6216503A (en) Device for starting operation of superconductive magnet
JPS5982707A (en) Protective device for nuclear fusion device
JPH0368639B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees