JPS635563A - High breakdown strength semiconductor device - Google Patents

High breakdown strength semiconductor device

Info

Publication number
JPS635563A
JPS635563A JP14895386A JP14895386A JPS635563A JP S635563 A JPS635563 A JP S635563A JP 14895386 A JP14895386 A JP 14895386A JP 14895386 A JP14895386 A JP 14895386A JP S635563 A JPS635563 A JP S635563A
Authority
JP
Japan
Prior art keywords
platinum
type semiconductor
semiconductor layer
semiconductor device
breakdown strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14895386A
Other languages
Japanese (ja)
Other versions
JPH0624207B2 (en
Inventor
Wataru Tomoshige
友繁 渉
Shoichi Ito
伊藤 尚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP61148953A priority Critical patent/JPH0624207B2/en
Publication of JPS635563A publication Critical patent/JPS635563A/en
Publication of JPH0624207B2 publication Critical patent/JPH0624207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To relieve electric field strength, and to contrive to enhance the breakdown strangth of a semiconductor device by a method wherein platinum is introduced at least to the interface between the surface of a substrate and a silicon dioxide film in the breakdown strength constructing region in the neighborhood of P-N junction. CONSTITUTION:A high withstand voltage semiconductor device is constructed of a high resistance N-type semiconductor layer (collector) 1, a P-type semiconductor layer (base) 2, guard rings 3, an N-type semiconductor layer (emitter) 4, a high concentration N-type semiconductor layer 5, channel stopper regions 6, platinum diffusion regions 7, oxide films (SiO2 films) 8, electrodes 9 and depletion layers 10. At this time, contact holes are opened on the surfaces of the guard rings 3, and platinum is diffused only to the breakdown strength parts from the hole parts thereof. Accordingly by making interfacial charge of Si-SiO2 to be negative, a transistor having a high breakdown strength and a large amplification factor can be obtained.

Description

【発明の詳細な説明】 本発明はダイオード、トランジスタ等のブレナー型半導
体装置の高耐圧化に関するものである。プレナー型半導
体装置は半導体基体表面に露出する主P−N接合をシリ
コン酸化膜(以下5ins)等で被覆され、安定化がは
かられているが、係るS i O*を保護膜とする高耐
圧製品は、8i  810を界面での固定電荷や膜中の
イオンが正イオンをもつため、特にN型シリコンウ、バ
ーでは表面の空2N4が広がりにく、高電界強度になる
ため、高耐圧を阻止する要因となっている。このため従
来所謂ガードリング構造成はフィールドプレート構造に
より、電界強度を緩和し、高耐圧化をはかる方法が採用
されている。しかし乍ら係る構造によりてもその耐圧は
せいぜい理論値の70%乃至80%であり十分でない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to increasing the breakdown voltage of Brenner type semiconductor devices such as diodes and transistors. Planar semiconductor devices are stabilized by covering the main P-N junction exposed on the surface of the semiconductor substrate with a silicon oxide film (hereinafter referred to as 5ins). For high voltage products, 8i 810 has a fixed charge at the interface and positive ions in the film, which makes it difficult for air 2N4 on the surface to spread, especially with N-type silicon bars and bars, resulting in high electric field strength. This is a deterrent factor. For this reason, conventionally, a so-called guard ring structure has been constructed using a field plate structure to reduce the electric field strength and increase the withstand voltage. However, even with such a structure, the breakdown voltage is at most 70% to 80% of the theoretical value, which is not sufficient.

そこで理論値に近づけるべく例えばガードリング接合(
環状領域)を増すと耐圧部面積が増し、チップサイズが
より大きくなり、チップがコスト高となる難点がある0
本発明は係る欠点を解消し、経済的にして高耐圧のプレ
ナー型半導体装置を提供するもので5ift膜を保狽膜
としている製品が共通にかかえている膜中、界面電荷を
正から負にすることによって高耐圧化を可能にしたもの
である。第1図は本発明のトランジスタの実施例であっ
て、1は高抵抗N型半導体(コレクタ)、2はP型半導
体(ベース)、3はガードリング、4はNW半導体(エ
ミ、り)、5は高濃度N型半導体、6はチャネルスト、
パ、7は白金拡散領域、8は酸化膜(StO,)、9は
電極、10は空乏層である。所で氷原出願人等は先に該
810.+81とシリコン基体2の境界面付近に白金を
混入せしめることにより、該界面の電荷を正から負に変
化せしめ、これにより高耐圧化の可能な半導体装置を提
案した。即ち第2図は白金拡散温度T(’C)と界面の
電荷t(Qss/q)の関係を示す特性図で該電荷量は
白金拡散温度が高(なるに従い、より負に変化すること
を示している。
Therefore, in order to get closer to the theoretical value, for example, guard ring junction (
If the annular area) is increased, the area of the voltage-resistant part increases, the chip size becomes larger, and the cost of the chip increases.
The present invention eliminates such drawbacks and provides an economical and high-voltage planar semiconductor device, which changes the interfacial charge in the film from positive to negative, which is commonly found in products using a 5ift film as a protective film. This makes it possible to achieve high voltage resistance. FIG. 1 shows an embodiment of the transistor of the present invention, in which 1 is a high-resistance N-type semiconductor (collector), 2 is a P-type semiconductor (base), 3 is a guard ring, 4 is an NW semiconductor (EM, RI), 5 is a high concentration N-type semiconductor, 6 is a channel strike,
7 is a platinum diffusion region, 8 is an oxide film (StO,), 9 is an electrode, and 10 is a depletion layer. However, Applicant Hihara et al. first filed Article 810. By mixing platinum near the interface between +81 and the silicon substrate 2, the charge at the interface is changed from positive to negative, thereby proposing a semiconductor device that can achieve a high breakdown voltage. That is, Fig. 2 is a characteristic diagram showing the relationship between the platinum diffusion temperature T ('C) and the interface charge t (Qss/q), and the amount of charge changes more negatively as the platinum diffusion temperature increases. It shows.

−方、白金は温度によりシリコン中への拡散速度が異な
り、温度が上昇する程速くなる。このことは第2図にお
いて、温度が高い程8i0゜とシリコン基体界面に到達
する白金量が多いことを示す。又、第3図は電荷量と耐
圧(vCEO)(トランジスタの場合)の関係を示す特
性図で図から明らかなように負(e)電荷量が多くなれ
ばなるほどV tc’s ’6が大きくなることが明ら
かである。しかし乍ら、例えばN型半導体5を通して全
面に白金を拡散すればトランジスタ作用する部分のライ
フタイムが短くなり、増幅率hFBが低下したり、飽和
電圧が大きくなる。
- On the other hand, the rate of diffusion of platinum into silicon varies depending on the temperature, and the rate of diffusion of platinum into silicon increases as the temperature rises. This shows in FIG. 2 that the higher the temperature, 8i0°, the greater the amount of platinum that reaches the silicon substrate interface. Also, Figure 3 is a characteristic diagram showing the relationship between the amount of charge and the withstand voltage (vCEO) (in the case of a transistor).As is clear from the figure, the larger the amount of negative (e) charge, the larger V tc's '6. It is clear that However, if platinum is diffused over the entire surface through the N-type semiconductor 5, for example, the lifetime of the portion that functions as a transistor will be shortened, the amplification factor hFB will be lowered, and the saturation voltage will be increased.

そこで本発明では第1図に示したように3のガードリン
グ部表面から白金を拡散することにより、耐圧部のみに
白金が拡散される。このことによりs51−5to界面
電菊が■イオンからeイオンに変化し、表面での空乏層
の広がりは第4図中10で示す如く大きくなり、理論耐
圧に近くなる。−方、トランジスタとして作用するエミ
ッタ直下近くに白金がないため、ライフタイムは長く増
幅率hFEや飽和特性Vσg(sat)は悪くならない
、したがりて、ガードリング表ITKコンタクトをあけ
て、その部分から白金を耐圧部分のみに拡散することに
より、5t−sto、の界面電荷をeにすることにより
、高耐圧で増4[率の大きいトランジス41i:製造す
ることができる。因みにPt拡散の横方向の範囲はトラ
ンジスタ作用するエミy夕に、Ptが殆んど拡散されな
いことが必要である。すなわちptを導入する場所から
最短距離のエミッタまでが横方向の最大拡散距離である
。第5図は選択拡散と全面拡散とを比較した特性図で図
のhFE−Ic特性から明らかなように全面拡散品(イ
)の大電流領域のhFBの低下が選択(0)に比べて大
きい。その値は、I c = 5 Aの点で、選択品の
hFFs=17で全面拡散品のhFE=8と約1/2で
あった。以上の説明では本発明をトランジスタに適用し
た例について説明したがダイオードに適用すれば高耐圧
化と共に順方向電圧(VF)を小さくすることが可能で
あり、又同様にパワーMO8FRT、その他サイリスタ
にも適用できることは明白である。又、上記実施例では
ガードリングを用いた例について説明したが、該ガード
リングは必ずしも設ける必要はなく、要は空乏層が広が
る耐圧構成領域に白金が導入されればよい。
Therefore, in the present invention, by diffusing platinum from the surface of the guard ring portion 3 as shown in FIG. 1, platinum is diffused only into the pressure-resistant portion. As a result, the s51-5to interface electrons change from ■ ions to e ions, and the spread of the depletion layer at the surface increases as shown by 10 in FIG. 4, approaching the theoretical breakdown voltage. - On the other hand, since there is no platinum directly under the emitter that acts as a transistor, the lifetime is long and the amplification factor hFE and saturation characteristic Vσg (sat) do not deteriorate. By diffusing platinum only in the withstand voltage portion, the interfacial charge of 5t-sto is set to e, making it possible to manufacture a transistor 41i with a high withstand voltage and a high rate of increase. Incidentally, regarding the lateral range of Pt diffusion, it is necessary that almost no Pt be diffused into the emitter that functions as a transistor. That is, the maximum lateral diffusion distance is from the place where PT is introduced to the emitter at the shortest distance. Figure 5 is a characteristic diagram comparing selective diffusion and full-surface diffusion.As is clear from the hFE-Ic characteristics in the figure, the decrease in hFB in the large current region of the full-field diffusion product (A) is greater than that of the selection (0). . At I c = 5 A, the value was about 1/2 of hFFs = 17 for the selected product and hFE = 8 for the entire surface diffusion product. In the above explanation, the present invention was applied to a transistor, but if applied to a diode, it is possible to increase the withstand voltage and reduce the forward voltage (VF), and it can also be applied to a power MO8FRT and other thyristors. The applicability is obvious. Further, in the above embodiment, an example using a guard ring has been described, but the guard ring does not necessarily need to be provided, and it is sufficient if platinum is introduced into the breakdown voltage region where the depletion layer spreads.

以上の説明から明らかなように本発明によれば従来より
ガードリング本数が少なくても又、ガードリング深さが
浅くても高耐圧化が可能であり、より高耐圧品はどその
効果が大であり、白金拡散の悪影響がなく特にトランジ
スタに適用して高hFB、低飽和電圧化が達成できる等
実用上の効果は大きい。
As is clear from the above explanation, according to the present invention, it is possible to achieve a high withstand voltage even if the number of guard rings is smaller than before, and even if the depth of the guard ring is shallow, and the effect is greater for products with higher withstand voltages. This has great practical effects, such as being able to achieve high hFB and low saturation voltage, especially when applied to transistors, without the negative effects of platinum diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図、第3
図、第4図は特性説明図、第5図は従来例と比較した本
発明の特性図である。図において1はシリコン半導体基
体、2はP型半導体(ベース)、3はガードリング、4
はN型半導体(エミ、り)、SはN型半導体(オーミッ
ク領域)、6はチャンネルスト、パ、7は白金拡散領域
、8はシリコン硅素g ($ r Ot )、9は電極
金属、10は空乏層である。 特許出願人 新電元工業株式会社 Vcso (eLLloo)、tA) QLSa/9f<xto”)
Figure 1 is a sectional view showing one embodiment of the present invention, Figures 2 and 3 are
FIG. 4 is a characteristic diagram, and FIG. 5 is a characteristic diagram of the present invention in comparison with a conventional example. In the figure, 1 is a silicon semiconductor base, 2 is a P-type semiconductor (base), 3 is a guard ring, and 4
is an N-type semiconductor (Emi, Ri), S is an N-type semiconductor (ohmic region), 6 is a channel strike, 7 is a platinum diffusion region, 8 is silicon g ($ r Ot ), 9 is an electrode metal, 10 is a depletion layer. Patent applicant Shindengen Industries Co., Ltd. Vcso (eLLloo), tA) QLSa/9f<xto”)

Claims (1)

【特許請求の範囲】[Claims] シリコン半導体基体表面に露出するP−N接合を二酸化
硅素膜で被覆した半導体装置において、前記P−N接合
近傍の耐圧構成領域の少くとも前記基体表面と二酸化硅
素膜の界面に白金を導入せしめたことを特徴とする高耐
圧半導体装置。
In a semiconductor device in which a P-N junction exposed on the surface of a silicon semiconductor substrate is coated with a silicon dioxide film, platinum is introduced into at least the interface between the substrate surface and the silicon dioxide film in the breakdown voltage region near the P-N junction. A high voltage semiconductor device characterized by:
JP61148953A 1986-06-25 1986-06-25 High-voltage semiconductor device manufacturing method Expired - Lifetime JPH0624207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148953A JPH0624207B2 (en) 1986-06-25 1986-06-25 High-voltage semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148953A JPH0624207B2 (en) 1986-06-25 1986-06-25 High-voltage semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPS635563A true JPS635563A (en) 1988-01-11
JPH0624207B2 JPH0624207B2 (en) 1994-03-30

Family

ID=15464347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148953A Expired - Lifetime JPH0624207B2 (en) 1986-06-25 1986-06-25 High-voltage semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JPH0624207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10202005315SA (en) * 2014-08-19 2020-07-29 Nat Univ Corporation Okayama Univ Agent for treating and/or preventing diseases associated with immune abnormalities by combining biguanide antidiabetic drug with immunosuppressive factor blocking agent or costimulatory receptor agonist

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502478A (en) * 1973-05-08 1975-01-11
JPS6084881A (en) * 1983-10-17 1985-05-14 Toshiba Corp High-power mos fet and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502478A (en) * 1973-05-08 1975-01-11
JPS6084881A (en) * 1983-10-17 1985-05-14 Toshiba Corp High-power mos fet and manufacture thereof

Also Published As

Publication number Publication date
JPH0624207B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
US5183769A (en) Vertical current flow semiconductor device utilizing wafer bonding
US6031254A (en) Monolithic assembly of an IGBT transistor and a fast diode
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
JPH04233232A (en) Semiconductor device
JP2862027B2 (en) Insulated gate bipolar transistor
US6441463B2 (en) IGBT, control circuit, and protection circuit on same substrate
US3446995A (en) Semiconductor circuits,devices and methods of improving electrical characteristics of latter
US7321138B2 (en) Planar diac
JPH0465552B2 (en)
JPS622461B2 (en)
JPS5921170B2 (en) MOS type semiconductor device
JPS635563A (en) High breakdown strength semiconductor device
JPH06140633A (en) Mos driving type semiconductor device
JP3297087B2 (en) High voltage semiconductor device
JPH0195568A (en) Semiconductor device
JPH03222475A (en) Semiconductor device
JPH05235365A (en) Composite semiconductor device
JP4302329B2 (en) Semiconductor device
JP2816985B2 (en) Vertical MOS field-effect transistor
JPS6258678A (en) Transistor
US3480802A (en) High power semiconductor control element and associated circuitry
JP2501236B2 (en) Thyristor with turn-off gate
JPS635574A (en) High breakdown strength semiconductor device
JPH0575029A (en) Semiconductor device
GB1249812A (en) Improvements relating to semiconductor devices

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term