JPS6355465A - Device and method for measuring molten steel flow velocity - Google Patents

Device and method for measuring molten steel flow velocity

Info

Publication number
JPS6355465A
JPS6355465A JP20054686A JP20054686A JPS6355465A JP S6355465 A JPS6355465 A JP S6355465A JP 20054686 A JP20054686 A JP 20054686A JP 20054686 A JP20054686 A JP 20054686A JP S6355465 A JPS6355465 A JP S6355465A
Authority
JP
Japan
Prior art keywords
molten steel
detector
flow velocity
torque
eccentric shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20054686A
Other languages
Japanese (ja)
Inventor
Masayuki Soma
相馬 正幸
Haruki Hosokoji
細小路 春樹
Kazuyuki Yamada
和之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20054686A priority Critical patent/JPS6355465A/en
Publication of JPS6355465A publication Critical patent/JPS6355465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To exactly derive a flow velocity in the measuring flow direction by allowing a plane determined by the center of a detector and an eccentric shaft to be opposed to said direction. CONSTITUTION:Molten steel in a tundish 1 flows into a mold 3 from a hole 2a of a dipping nozzle 2. Also, in the molten steel 4 in the mold 3, a detector 5 is immersed, and coupled to a torque converter 6 through an eccentric shaft 5a. This converter 6 consists of a strain gauge, and converts the torque which has been transferred through the eccentric shaft 5a from the detector 5, to a corresponding electric signal through a dynamic strain gauge 7. Also, the torque around the center line of the eccentric shaft for working on the detector 5 has magnitude corresponding to a flow velocity in a prescribed direction, to be measured. Accordingly, by allowing a plane determined by the center of the detector 5 and the eccentric shaft 5a, to be opposed to the measuring direction, the flow velocity in the prescribed direction can be derived exactly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶鋼流の流速を測定する装置および方法に関す
る。さらに詳しくは、連続鋳造においてモールド内に流
入する溶鋼流の流速を、浸漬検出子の受けるトルク(回
転モーメント)の検出により測定する装置および方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus and method for measuring the flow velocity of molten steel flow. More specifically, the present invention relates to an apparatus and method for measuring the flow velocity of molten steel flowing into a mold during continuous casting by detecting the torque (rotational moment) applied to an immersion detector.

(従来の技術) 連続鋳造装置においてモールド内の溶鋼の流れを、定量
的に把握することは、スラブ製造上、もっとも重要なポ
イントの1つであり、浸漬ノズルからの片流れ等の発見
にも役立つ貴重な情報の1つである。しかし、溶鋼の流
れを把握することは非常に難しく、従来、はとんど測定
されたことがない。
(Prior art) Quantitatively understanding the flow of molten steel in the mold in continuous casting equipment is one of the most important points in slab manufacturing, and is also useful for discovering unilateral flow from the immersion nozzle. This is a valuable piece of information. However, it is extremely difficult to understand the flow of molten steel, and it has rarely been measured in the past.

最近になって、次のようなモールド内溶鋼流の測定方法
が提案された(鉛末 等:鉄と鋼゛82−5920 r
電磁ブレーキによる連鋳々型内の溶鋼流動の制御」)。
Recently, the following method for measuring molten steel flow in a mold has been proposed (lead powder, etc.: Iron and Steel 82-5920 r
Control of molten steel flow in a continuous casting mold using an electromagnetic brake").

即ち、モールド内の溶鋼流中に耐火物からなるロンドな
いしブロックを浸漬し、このロンドの上端にプレートを
介して結合されたストレーンゲージを取り?=Jけ、歪
めの大きさの経時的変化を測定する方法である。
That is, a rond or block made of refractory is immersed in the molten steel flow in a mold, and a strain gauge connected to the upper end of the rond via a plate is taken. This is a method for measuring changes in the magnitude of distortion over time.

(発明が解決しようとする問題点) しかしこの方法では、流速は、歪み(ストレーン)の経
時的変化の振幅によって評価するのみであり、所定方向
の流速の絶対値を捉えることはできない。たとえば、E
 M B R(Iilectro−MagneticM
old nrFlking、モールド内溶鋼流の電磁制
動)の使用の有無による歪みの振幅の増減は把握される
が、歪みの絶対値の差は検出されていない。
(Problems to be Solved by the Invention) However, in this method, the flow velocity is only evaluated based on the amplitude of the change in strain over time, and the absolute value of the flow velocity in a predetermined direction cannot be determined. For example, E
MBR (Iielectro-Magnetic M
An increase or decrease in the amplitude of strain due to the presence or absence of the use of old nrFlking (electromagnetic braking of molten steel flow in the mold) was detected, but a difference in the absolute value of strain was not detected.

理論的に溶鋼の流速の増大にともない歪みも増加するこ
とは確かである。しかしストレーンゲージの受&Jる力
は、種々の方向の流れからの流圧の総和となるため、ど
の方向の流れにより、歪みが発生しているか判断できな
い。よってこの方法では直接的に所定方向の溶鋼流速を
求めることは不可能である。
Theoretically, it is certain that as the flow velocity of molten steel increases, the strain also increases. However, the force that a strain gauge receives is the sum of fluid pressures from flows in various directions, so it is impossible to determine which direction of flow is causing the strain. Therefore, with this method, it is impossible to directly determine the flow velocity of molten steel in a predetermined direction.

従って本発明の目的は、直接的に所定方向の溶鋼流速を
求める装置および方法を提供することである。
Therefore, an object of the present invention is to provide an apparatus and method for directly determining the flow velocity of molten steel in a predetermined direction.

なお、特開昭59−104512号公報は溶鋼流速の絶
対値を求める方法を提案している。しかし、この公報に
おける流速計算に必要な抗力係数CDの値は、ベンチテ
ストで正確に求めることはできず、実流により実測して
初めて正確に算出できるものである。従って、この公報
による方法では流速の概略値を求めることができるに留
まる。また、受圧体7aのような形状を作成するのは極
めて困難であり、十分な精度が出にくい問題がある。ま
た、受圧板7dに歪ゲージ7hを張り付ける構成のため
、その張り付は方により大きな誤差がでる。従って、従
って本発明の目的はまた、単純な構成で溶鋼流速を正確
に求めることができる装置および方法を提供することで
ある。
Note that Japanese Patent Application Laid-open No. 104512/1984 proposes a method for determining the absolute value of the flow velocity of molten steel. However, the value of the drag coefficient CD necessary for calculating the flow velocity in this publication cannot be accurately determined by a bench test, and can only be accurately calculated by actually measuring the actual flow. Therefore, the method according to this publication can only obtain an approximate value of the flow velocity. Further, it is extremely difficult to create a shape like the pressure receiving body 7a, and there is a problem in that it is difficult to achieve sufficient accuracy. Furthermore, since the strain gauge 7h is attached to the pressure receiving plate 7d, there is a larger error in the attachment. Therefore, it is also an object of the present invention to provide a device and a method that can accurately determine the flow rate of molten steel with a simple configuration.

(問題点を解決するための手段) かくして本発明の要旨は、流速を測定する溶鋼内に浸漬
されて溶鋼から所定方向の流速に対応するトルクを受け
る検出子と、該検出子に加わったトルクの大きさを測定
するトルク測定手段と、を備える溶鋼流速測定装置であ
る。
(Means for Solving the Problems) Thus, the gist of the present invention is to provide a detector that is immersed in molten steel for measuring flow velocity and receives a torque from the molten steel corresponding to the flow velocity in a predetermined direction, and a torque applied to the detector. This is a molten steel flow rate measuring device comprising: a torque measuring means for measuring the magnitude of the molten steel flow rate;

また本発明の方法の要旨は、流速を測定する溶鋼内に浸
漬された検出子の受ける溶鋼の所定方向の流速に対応す
るトルクの大きさから溶鋼流速を算出する溶鋼流速測定
方法である。
The gist of the method of the present invention is a molten steel flow rate measuring method in which the molten steel flow rate is calculated from the magnitude of the torque corresponding to the flow rate of the molten steel in a predetermined direction, which is received by a detector immersed in the molten steel whose flow rate is to be measured.

この場合において、溶損を最少限に抑えるため、検出子
は偏心軸に取り付けられた溶鋼内に浸漬される円柱体よ
り成るものとすることが好ましい。
In this case, in order to minimize melting loss, it is preferable that the detector consists of a cylindrical body attached to an eccentric shaft and immersed in molten steel.

また検出子が受けるトルクの測定はストレーンゲージに
よることが好ましい。
Further, it is preferable that the torque applied to the detector be measured using a strain gauge.

(作用) 本発明によれば検出子は溶鋼の所定方向の流速に対応す
るトルクを受ける。この所定方向とは、例えば連続鋳造
設備においてタンディツシュからモールド内に浸漬され
たノズルを中心とする水平方向である。
(Function) According to the present invention, the detector receives a torque corresponding to the flow velocity of molten steel in a predetermined direction. This predetermined direction is, for example, a horizontal direction centered on a nozzle immersed into a mold from a tundish in continuous casting equipment.

たとえば検出子として偏心軸に取り付けられた浸漬円柱
体を用いた場合、該円柱体は、それ自身および偏心軸の
中心線(中心軸)により決まる平面(つまりその上に円
柱体および偏心軸の中心線が乗る平面)に直交する方向
の流速に対応するトルクを受ける。よってこの場合、該
平面に直交する方向と流速測定を行う所定方向とが一致
するように円柱体を位置させる。
For example, if an immersed cylinder attached to an eccentric shaft is used as a detector, the cylinder is placed in a plane defined by itself and the center line (central axis) of the eccentric shaft (i.e., on which the center of the cylinder and the eccentric shaft lies). It receives a torque corresponding to the flow velocity in the direction perpendicular to the plane on which the line rests. Therefore, in this case, the cylindrical body is positioned so that the direction perpendicular to the plane coincides with the predetermined direction in which flow velocity measurement is performed.

かくして検出子の受けるトルクは測定されるべき所定方
向の流速に対応する。よってこのトルクをストレーンゲ
ージ等で測定することにより該流速を正確に決定するこ
とができる。
The torque experienced by the detector thus corresponds to the flow velocity in the given direction to be measured. Therefore, by measuring this torque with a strain gauge or the like, the flow velocity can be determined accurately.

(実施例) 次に添付図面を参照しながら本発明の実施例について詳
しく説明する。
(Example) Next, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明を連続鋳造設備のモールド内溶鋼流の
流速測定に用いた実施例の全体構成を示す模式的側面図
である。
FIG. 1 is a schematic side view showing the overall configuration of an embodiment in which the present invention is used to measure the flow velocity of molten steel flow in a mold of continuous casting equipment.

タンディツシュl内の溶鋼は、浸漬ノズル2の孔2aか
らモールド3内に流入する。モールド3内の溶鋼4中に
は検出子5が浸漬され、偏心軸5aを介してトルク変換
器6に結合される。
The molten steel in the tundish l flows into the mold 3 through the hole 2a of the immersion nozzle 2. A detector 5 is immersed in the molten steel 4 in the mold 3 and connected to a torque converter 6 via an eccentric shaft 5a.

タンディツシュ1底面に取り付けられたトルク変換器に
は、ストレーンゲージより成り、検出子5から偏心軸5
aを介して伝達された溶鋼流速に対応するトルクを動歪
計7を通して対応電気信号に変換する。即ち、動歪計7
はブリッジ回路を備え、ストレーンゲージの歪による電
気抵抗の変化を検出する。また記録計8はトルクに対応
する電気信号の経時的変化を記録する。なお、一般にト
ルク変換器6は高熱型ではない。よって、この実施例に
おいては、溶鋼イからの輻射熱ががなりあるため防熱板
をとりつけ、内側をエアパージすることにより熱対策を
施している。
The torque converter attached to the bottom of the tanditshu 1 consists of a strain gauge, and is connected to the eccentric shaft 5 from the detector 5.
The torque corresponding to the molten steel flow rate transmitted through the dynamic strain gauge 7 is converted into a corresponding electric signal. That is, dynamic strain meter 7
is equipped with a bridge circuit to detect changes in electrical resistance due to strain gauge strain. Furthermore, the recorder 8 records changes over time in the electrical signal corresponding to the torque. Note that the torque converter 6 is generally not a high heat type. Therefore, in this embodiment, since the radiant heat from the molten steel is large, heat countermeasures are taken by installing a heat shield plate and air purging the inside.

次に第2図および第3図を参照しながら・、第1図の装
置の検出子5について詳しく説明する。第2図は検出子
5の模式的平面図、第3図は模式的側面図である。
Next, the detector 5 of the apparatus shown in FIG. 1 will be explained in detail with reference to FIGS. 2 and 3. FIG. 2 is a schematic plan view of the detector 5, and FIG. 3 is a schematic side view.

検出子5は、金属モリブデンおよび高純度のジルコニア
を主成分とするサーメットより成る円柱体より構成され
る。検出子5は、長時間の溶鋼浸漬にも溶損量が少くな
いと誤差が大きくなる。従って、部分的な(局所的)溶
損を極力少なくする意味で、円柱状にした。もちろん平
板状としても流速は検出可能である。さらに溶損の極力
少ない材質の選定も重要であり、本装置では、サーメッ
トで金属モリブデンおよび高純度ジルコニアを主成分と
したものである。検出子5を構成する円柱体の具体的寸
法としては、例えば高さhを270mn+ 。
The detector 5 is composed of a cylindrical body made of cermet whose main components are metal molybdenum and high-purity zirconia. The detector 5 will have a large error if the amount of erosion is not small even when immersed in molten steel for a long time. Therefore, in order to minimize partial (local) erosion loss, it was made into a cylindrical shape. Of course, the flow velocity can be detected even if it is in the form of a flat plate. Furthermore, it is important to select a material that has minimal melting loss, and this device uses a cermet whose main components are metallic molybdenum and high-purity zirconia. As for the specific dimensions of the cylindrical body constituting the detector 5, for example, the height h is 270 m+.

半径rを15ml11とする。Let the radius r be 15ml11.

検出子5は、円柱体の中心線(中心軸)Bから偏心した
中心fl(中心軸〉Aを有する偏心軸5aに固定され、
偏心軸5aはトルク変換器6の入力軸に結合される。従
って検出子5は、取り付番」位置(第2図に実線で示す
)から、中心線Aを回転中心として回転する(第2図の
破線は図において時計方向にθ°回転した状態を示す)
。なお、偏心軸5aの偏心量dは、例えば14mmとす
る。
The detector 5 is fixed to an eccentric shaft 5a having a center fl (center axis>A) eccentric from the center line (center axis) B of the cylindrical body,
Eccentric shaft 5a is coupled to an input shaft of torque converter 6. Therefore, the detector 5 rotates about the center line A from the mounting number position (shown by the solid line in Figure 2) (the broken line in Figure 2 indicates the state rotated by θ° clockwise in the figure). )
. Note that the eccentricity d of the eccentric shaft 5a is, for example, 14 mm.

検出子5の取り付は位置は次のように定められる。即ち
、溶鋼流速を測定すべき所定方向(第2図、第3図の流
速を示す矢印Vを参照)に対し、中心線入、Bにより決
まる平面(即ち中心線A、Bを乗せる平面)が直交する
よう検出子5および偏心軸5aを位置させる。(測定方
向が複数ある場合には、それぞれの方向に応じて複数個
の検出子5を設ける。) 検出子5は、上述のように位置され、偏心軸5aの中心
線Aを中心として回転するので、所定方向の溶鋼流速V
に対応する回転力すなわちトルクTを受ける。このトル
クTは具体的には次のように与えられる。
The mounting position of the detector 5 is determined as follows. That is, with respect to the predetermined direction in which the molten steel flow velocity is to be measured (see the arrow V indicating the flow velocity in Figures 2 and 3), the plane determined by the center lines A and B (i.e., the plane on which the center lines A and B are placed) is The detector 5 and the eccentric shaft 5a are positioned so as to be perpendicular to each other. (If there are multiple measurement directions, multiple detectors 5 are provided for each direction.) The detector 5 is positioned as described above and rotates around the center line A of the eccentric shaft 5a. Therefore, the molten steel flow velocity V in a given direction
It receives a rotational force or torque T corresponding to . Specifically, this torque T is given as follows.

溶鋼が平均流速Vで流れているとすると検出子5が受り
る力Fは F=(1/g)・r・v”  ・s  ・・・(tlで
与えられる。ただしγは溶鋼密度、gは重力加速度、S
は検出子5の溶鋼流に対する存効断面積である。また、
検出子5が受けるトルクTは、第2図の実線の状態にお
いて、 r                     dr d            d (2・arccos()))+d(1−))・・121
r                r(2)式を整理
すれば、 T=21”r−d   ・・・・・・・+31同様にし
て第2図の破線で示された任意の位置の場合は、 T=2F−r −d  −cos θ ・・・(4)よ
って、(4)弐と(1)式からVを求めると、よって、
(5)式から回転トルクTから流速Vが一義的に求めら
れる。なお、検出子5の大きさを上述の通りとし、最大
流速を0.4m/secとすると発生するトルクTは最
大約144g−cmとなる。
Assuming that the molten steel is flowing at an average flow velocity V, the force F that the detector 5 receives is given by F=(1/g)・r・v”・s (tl. However, γ is the molten steel density, g is gravitational acceleration, S
is the effective cross-sectional area of the detector 5 with respect to the molten steel flow. Also,
The torque T that the detector 5 receives in the state shown by the solid line in FIG.
If we rearrange the r r formula (2), we get T=21"r-d...+31Similarly, in the case of any position indicated by the broken line in Figure 2, T=2F-r -d -cos θ...(4) Therefore, when we calculate V from (4)2 and equation (1), we get:
From equation (5), the flow velocity V can be uniquely determined from the rotational torque T. Note that if the size of the detector 5 is as described above and the maximum flow velocity is 0.4 m/sec, the generated torque T will be approximately 144 g-cm at maximum.

(発明の効果) 本発明において検出子5に作用する偏心軸5aの中心線
入を中心とするトルクTは、測定されるべき所定方向の
流速Vに対応する大きさを有する。
(Effects of the Invention) In the present invention, the torque T acting on the detector 5 and centered on the center line of the eccentric shaft 5a has a magnitude corresponding to the flow velocity V in a predetermined direction to be measured.

従って検出子5および偏心軸5aの中心により決まる平
面を測定流方向に対向させることにより該方向の流速を
正確に求めることが可能である。
Therefore, by arranging a plane determined by the center of the detector 5 and the eccentric shaft 5a to face the measurement flow direction, it is possible to accurately determine the flow velocity in that direction.

第4図は第1図の実施例装置により測定、記録されたト
ルクTの経時変化を示したもので、図の矢印位置におい
て検出子5をノズル2の中心から20cmの位置から1
5cmの位置に変えた場合を示す。
FIG. 4 shows the change over time in the torque T measured and recorded by the embodiment device shown in FIG.
The case where the position is changed to 5 cm is shown.

このようにして得られた検出子5の各位置についてのト
ルクTの時間的平均値(絶対値)から溶鋼4の所“定方
向の流速を上述の(5)式を用いて算出することができ
る。第5図は、このようにして求められたモールド3内
のノズル2を中心とする水平方向の溶鋼流速Vとノズル
2の中心からの距離との関係を示すグラフである。なお
、従来の方法ではこのように所定方向の流速を正確に算
出することは不可能であった。
From the temporal average value (absolute value) of the torque T for each position of the detector 5 obtained in this way, the flow velocity of the molten steel 4 in a predetermined direction can be calculated using the above equation (5). Figure 5 is a graph showing the relationship between the horizontal molten steel flow velocity V centered on the nozzle 2 in the mold 3 and the distance from the center of the nozzle 2, which was determined in this way. With this method, it was impossible to accurately calculate the flow velocity in a predetermined direction.

】1 第6図は、EMBRの使用に伴うトルクTの時間的変化
を示す。図の矢印位置においてEMB R100^から
EMBR50^に変えられ、これに伴いトルクTの絶対
値および振幅が変化している。
1. FIG. 6 shows the temporal change in torque T due to the use of EMBR. At the arrow position in the figure, EMB R100^ is changed to EMBR50^, and the absolute value and amplitude of torque T change accordingly.

本装置の導入によりEMBRの適正な使用が確立でき、
スラブで発生する表面疵の低減に大いに貢献した。第7
図は、矢印の時点における本発明にかかる流速測定装置
の導入による表面疵抑制の効果を示す。
By introducing this device, proper use of EMBR can be established,
This greatly contributed to reducing surface defects that occur on slabs. 7th
The figure shows the effect of suppressing surface flaws by introducing the flow rate measuring device according to the present invention at the point indicated by the arrow.

また検出子5をサーメツト製円柱体とした結果、約3時
間の連続測定においても、円柱体には若干の溶損がスラ
グラインで発生したものの溶鋼に浸漬している部分には
、はとんど溶損を生じなかった。
In addition, as a result of using a cermet cylinder as the detector 5, even during continuous measurement for about 3 hours, although some corrosion damage occurred on the cylinder at the slag line, there was no damage to the part immersed in the molten steel. No melting loss occurred.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例装置の全体的構成を示す模式
的側面図ないしブロック図: 第2図および第3図は、それぞれ第1図の装置の検出子
の模式的平面図および側面図;第4図は、第1図の装置
による溶―流速に対応するトルクの測定例を示すグラフ
; 第5図は、第1図の装置による測定から求められた溶鋼
流速のノズル中心からの距離による変化を示すグラフ; 第6図は、第1図の装置におけるEMBR使用に伴う測
定トルクの時間的変化を示すグラフ;および 第7図は、本発明にかかる流速測定装置の連続鋳造装置
への導入によるスラグ表面疵発生抑制の効果を示すグラ
フである。
FIG. 1 is a schematic side view or block diagram showing the overall configuration of an apparatus according to an embodiment of the present invention. FIGS. 2 and 3 are a schematic plan view and a side view of a detector of the apparatus shown in FIG. 1, respectively. Figure; Figure 4 is a graph showing an example of the measurement of torque corresponding to the melt flow rate using the apparatus shown in Figure 1; Figure 5 is a graph showing the measurement of the molten steel flow rate from the center of the nozzle determined by the measurement using the apparatus shown in Figure 1. A graph showing changes with distance; FIG. 6 is a graph showing changes in measured torque over time due to the use of EMBR in the device of FIG. 1; and FIG. 3 is a graph showing the effect of suppressing the occurrence of slag surface defects by introducing .

Claims (6)

【特許請求の範囲】[Claims] (1)流速を測定する溶鋼内に浸漬されて溶鋼から所定
方向の流速に対応するトルクを受ける検出子と、該検出
子に加わったトルクの大きさを測定するトルク測定手段
と、を備える溶鋼流速測定装置。
(1) Molten steel comprising a detector that is immersed in molten steel to measure the flow velocity and receives a torque from the molten steel corresponding to the flow velocity in a predetermined direction, and a torque measuring means that measures the magnitude of the torque applied to the detector. Flow rate measuring device.
(2)前記検出子は、偏心軸に取り付けられ、溶鋼内に
浸漬される円柱体より成る特許請求の範囲第1項記載の
溶鋼流速測定装置。
(2) The molten steel flow rate measuring device according to claim 1, wherein the detector is a cylindrical body attached to an eccentric shaft and immersed in the molten steel.
(3)前記トルク測定手段はストレーンゲージを含む特
許請求の範囲第1項または第2項記載の溶鋼流速測定装
置。
(3) The molten steel flow rate measuring device according to claim 1 or 2, wherein the torque measuring means includes a strain gauge.
(4)流速を測定する溶鋼内に浸漬された検出子の受け
る溶鋼の所定方向の流速に対応するトルクの大きさから
溶鋼流速を算出する溶鋼流速測定方法。
(4) A molten steel flow velocity measuring method in which the molten steel flow velocity is calculated from the magnitude of the torque corresponding to the flow velocity of the molten steel in a predetermined direction, which is received by a detector immersed in the molten steel for measuring the flow velocity.
(5)前記検出子は、偏心軸に取り付けられた溶鋼内に
浸漬される円柱体より成る特許請求の範囲第4項記載の
溶鋼流速測定方法。
(5) The method for measuring the flow rate of molten steel according to claim 4, wherein the detector comprises a cylindrical body attached to an eccentric shaft and immersed in the molten steel.
(6)検出子の受けるトルクの大きさをストレーンゲー
ジを用いて測定する特許請求の範囲第4項または第5項
記載の溶鋼流速測定方法。
(6) The molten steel flow rate measuring method according to claim 4 or 5, wherein the magnitude of the torque received by the detector is measured using a strain gauge.
JP20054686A 1986-08-27 1986-08-27 Device and method for measuring molten steel flow velocity Pending JPS6355465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20054686A JPS6355465A (en) 1986-08-27 1986-08-27 Device and method for measuring molten steel flow velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20054686A JPS6355465A (en) 1986-08-27 1986-08-27 Device and method for measuring molten steel flow velocity

Publications (1)

Publication Number Publication Date
JPS6355465A true JPS6355465A (en) 1988-03-09

Family

ID=16426102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20054686A Pending JPS6355465A (en) 1986-08-27 1986-08-27 Device and method for measuring molten steel flow velocity

Country Status (1)

Country Link
JP (1) JPS6355465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528070A (en) * 2003-07-22 2006-12-14 ベスビウス グループ ソシエテ アノニム How to decide whether to reuse or dispose of fire plates and fire equipment
CN102296327A (en) * 2010-06-25 2011-12-28 贵阳铝镁设计研究院有限公司 Visual detecting method and device in high-temperature melt of aluminum electrolytic bath
CN103480813A (en) * 2013-09-30 2014-01-01 南京钢铁股份有限公司 Device and method for measuring high-temperature liquid steel flow velocity of continuous casting crystallizer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528070A (en) * 2003-07-22 2006-12-14 ベスビウス グループ ソシエテ アノニム How to decide whether to reuse or dispose of fire plates and fire equipment
CN102296327A (en) * 2010-06-25 2011-12-28 贵阳铝镁设计研究院有限公司 Visual detecting method and device in high-temperature melt of aluminum electrolytic bath
CN103480813A (en) * 2013-09-30 2014-01-01 南京钢铁股份有限公司 Device and method for measuring high-temperature liquid steel flow velocity of continuous casting crystallizer

Similar Documents

Publication Publication Date Title
US4816758A (en) Method and apparatus for the detection of slag co-flowing within a stream of molten metal
US20150316574A1 (en) Device and method for continuously measuring flow rate near liquid steel surface
He et al. A novel principle for molten steel level measurement in tundish by using temperature gradient
EP0429575A1 (en) Process and equipment to determine disturbance variables when pouring molten metal from a container
JPS6355465A (en) Device and method for measuring molten steel flow velocity
JPS59112230A (en) Method and device for measuring molten metal in bottom of vessel
JP2763719B2 (en) Flow velocity / flow direction detector in the level detector
JPH0242409B2 (en)
JPS59120906A (en) Method and device for determining or measuring shape of substance to be measured
JP2916830B2 (en) Flow control method of molten metal in continuous casting
JPS5813260B2 (en) Igata no Shindo Hakeikanshi Ni Yoru Renzokuchi Yuzohou
JPH09206906A (en) Detection of unsteady bulging in continuous casting
Iguchi et al. A new probe for directly measuring flow velocity in a continuous casting mold
JP2714437B2 (en) Method and apparatus for measuring meniscus flow velocity of molten metal
JP3603620B2 (en) Slag outflow detection device
KR100573564B1 (en) Method on the prediction of residual length of porous plug in ladle
JPS58148062A (en) Method for controlling supply of molding powder in continuous casting
JPS59104512A (en) Method for measuring casting flow during continuous casting
JPS58176504A (en) Measuring device of solidified thickness for ingot
JPH06328213A (en) Method and instrument for measuring bulging quantity
JPS6054137B2 (en) Method and device for measuring lubrication state between mold and slab in continuous casting
JPS6167550A (en) Instrument for measuring bulging of steel ingot
JPS62166065A (en) Method for measuring mold powder layer thickness on molten metal in mold in continuous casting
JPH04262841A (en) Instrument and method for measuring flow speed on surface of molten steel in continuous casting mold
JPH08267207A (en) Continuous casting method