JP2763719B2 - Flow velocity / flow direction detector in the level detector - Google Patents

Flow velocity / flow direction detector in the level detector

Info

Publication number
JP2763719B2
JP2763719B2 JP28729092A JP28729092A JP2763719B2 JP 2763719 B2 JP2763719 B2 JP 2763719B2 JP 28729092 A JP28729092 A JP 28729092A JP 28729092 A JP28729092 A JP 28729092A JP 2763719 B2 JP2763719 B2 JP 2763719B2
Authority
JP
Japan
Prior art keywords
molten metal
level
pressure
flow
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28729092A
Other languages
Japanese (ja)
Other versions
JPH06137923A (en
Inventor
木 肇 鈴
田 澄 彦 栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Nippon Steel Corp
Original Assignee
Koransha Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd, Nippon Steel Corp filed Critical Koransha Co Ltd
Priority to JP28729092A priority Critical patent/JP2763719B2/en
Publication of JPH06137923A publication Critical patent/JPH06137923A/en
Application granted granted Critical
Publication of JP2763719B2 publication Critical patent/JP2763719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は容器内に注入あるいは充
填される溶融金属の湯面レベルおよび流速を測定する装
置に関し、さらに詳しくは溶融金属から浮子が受ける浮
力を検出し、これに基づいて湯面レベルおよび流れベク
トルを算出する流速・流れ方向検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the level and flow rate of molten metal poured or filled into a container, and more particularly, to detecting the buoyancy of a float from molten metal and based on the detected buoyancy. The present invention relates to a flow velocity / flow direction detecting device for calculating a molten metal level and a flow vector.

【0002】[0002]

【従来の技術】容器内に注入あるいは充填される溶融金
属の浮子の浮力を利用する湯面検出装置は、例えば特開
昭49−106436号公報,実開昭49−52563
号公報や「圧力・真空・レベル測定」(日刊工業新聞社
出版、昭和40年5月31日発行、工業計測技術大系
4、第359頁)等ですでに公知の技術である。上記公
報等に記載の検出方法においては、被検出物上に浮かべ
た浮子の移動量から、あるいは浮子重量と浮力との差に
よる移動量を電気的信号に変換することによって、湯面
を検出する。これらは水位計測等、特に整流液体の液面
計測に適用され、その実用例は多い。
2. Description of the Related Art An apparatus for detecting a molten metal level utilizing the buoyancy of a float of a molten metal injected or filled into a container is disclosed in, for example, Japanese Patent Application Laid-Open No. 49-106436 and Japanese Utility Model Application Laid-Open No. 49-52563.
This technique is already known in Japanese Unexamined Patent Publication (Kokai) No., "Pressure / Vacuum / Level Measurement" (published by Nikkan Kogyo Shimbun, published on May 31, 1965, Kogyo Keizai Gijutsu 4, p. 359). In the detection method described in the above publications, the level of the molten metal is detected from the amount of movement of the float floating on the object to be detected or by converting the amount of movement due to the difference between the weight of the float and the buoyancy into an electrical signal. . These are applied to water level measurement and the like, particularly liquid level measurement of rectified liquid, and there are many practical examples.

【0003】[0003]

【発明が解決しようとする課題】前記浮子式溶融金属の
湯面検出装置においては、特に容器内に連続して注入
し、容器下部から凝固した鋳片を引き抜く連続鋳造での
モールド内溶融金属湯面を計測する際に、浮子にスラグ
あるいは溶融金属が付着凝固し、時間とともに成長する
ことは不可避である。即ち、浮子重量変動による計測誤
差の発生に加え、浮子が湯面に追従し自在に上下移動す
る構造ゆえに、浮子の付着地金の成長にともなって、浮
子が溶鋼流に巻き込まれ計測不能となる。さらに、浮子
に掛かる横方向の力(動圧)に対し補償する装置が無く
湯面を確実に精度よく検出することは困難である。特開
昭49−106436号公報記載の装置ではフロ−ト材
質を単に耐火性材質としているが、付着地金成長の防
止、また高温下での耐久性に加え乱流する液面計測にお
いては浮力外の力を受け易く、良好な検出性能が得られ
ず、検出精度の向上が従来から大きな課題であった。
In the above-mentioned apparatus for detecting the molten metal level of a floating type molten metal, in particular, the molten metal molten metal in a mold is continuously cast by continuously pouring the molten metal into a container and pulling out a solidified slab from a lower portion of the container. When measuring the surface, it is inevitable that slag or molten metal adheres to and solidifies on the float and grows with time. That is, in addition to the occurrence of measurement error due to the weight fluctuation of the float, the float moves up and down freely to follow the surface of the molten metal. . Further, there is no device for compensating for the lateral force (dynamic pressure) applied to the float, and it is difficult to reliably and accurately detect the molten metal surface. In the apparatus described in JP-A-49-106436, the float material is simply a refractory material, but in addition to the prevention of growth of deposited metal, the durability at high temperatures, and the buoyancy in the measurement of turbulent liquid level. It is easy to receive external force, and good detection performance cannot be obtained, and improvement of detection accuracy has been a major problem.

【0004】本発明は、以上の欠点を解消するとともに
溶融金属の湯面計測はもとより流速および流れ方向を精
度良く計測できる浮力式の改良された計測装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved buoyancy type measuring apparatus which can solve the above-mentioned drawbacks and can accurately measure the flow velocity and flow direction as well as the molten metal level.

【0005】[0005]

【課題を解決するための手段】本発明は、耐熱セラミッ
ク質の中空円柱棒の一端を閉塞し、他の一端に圧力セン
サを設け、圧力センサ面に対し中空円柱棒から伝達され
る浮力、すなわち外部押圧を検出する押圧検出部と、押
圧検出部からの検出信号の増幅と被検出材の密度による
レベル補正、流速および流れ方向(流れベクトル)を算
出する演算処理器とから構成される計測装置である。中
空円柱棒は地金等の付着を解消する窒化ほう素を主成分
とすること、また初期応力開放の解消と圧力伝達棒の横
方向に掛かる力の抗力を増すため、最大許容圧付近に圧
力センサの初期圧を設定可能な構造とする。外部押圧の
検出面に複数個の圧力センサを設け、該センサ出力の加
算処理により偏押圧を補償する湯面レベル信号を得ると
ともに各センサ出力のベクトル和演算を行いその演算値
を湯面レベルで補償することによって被検出体の流速・
方位の検出を可能とする。
SUMMARY OF THE INVENTION According to the present invention, a hollow cylindrical rod made of a heat-resistant ceramic is closed at one end and a pressure sensor is provided at the other end. A measuring device comprising: a pressure detecting unit for detecting an external pressure; an arithmetic processor for amplifying a detection signal from the pressure detecting unit, correcting a level based on a density of a material to be detected, and calculating a flow velocity and a flow direction (flow vector). It is. The hollow cylindrical rod is mainly composed of boron nitride, which eliminates the adhesion of metal and the like.Also, to reduce the initial stress release and increase the resistance of the force applied to the pressure transmission rod in the lateral direction, the pressure near the maximum allowable pressure The structure is such that the initial pressure of the sensor can be set. A plurality of pressure sensors are provided on the detection surface of the external pressure, a level signal for compensating for the partial pressure is obtained by addition processing of the sensor outputs, and a vector sum calculation of each sensor output is performed. By compensating for the flow rate of the object
Enables azimuth detection.

【0006】[0006]

【実施例】以下、本発明を図示の実施例にもとづき作用
とともに詳細に説明する。図1は本発明の一実施例の溶
融金属流速・流れ方向検出装置の構成を示す図、図2の
(a)は押圧検出部の詳細断面図、図2の(b)は、
(a)図のD−D断面図である。Eは、圧力センサS
i ,初期応力調整部F,中空円柱棒K等から構成される
押圧検出部、Aは押圧検出部Eを支持固定するための支
持アーム、Kは浮力(押圧)を伝達する中空円柱棒、B
は圧力センサからの信号を増幅し溶鋼レベルL,、流速
υ、方位θを出力する演算処理装置、CはモールドMに
充填された溶鋼である。モールドM上部の支持アームA
に押圧検出部Eを固定設置し、事前に中空円柱棒Kが溶
鋼Cに侵積しない状態で圧力センサS1 ,S2 ,S3
出力調整を行う。該圧力センサには、半導体センサある
いはワイヤストレーンゲージ等を用い、ホイートストン
ブリッジ回路で出力バランス調整を行うことは公知の技
術である。溶鋼Cに浸漬、あるいは湯面が上昇した場合
に、中空円柱棒Kの受ける浮力Fは(1)式で表記でき
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a diagram showing a configuration of a molten metal flow velocity / flow direction detecting device according to one embodiment of the present invention. FIG. 2A is a detailed sectional view of a pressing detection unit, and FIG.
(A) It is DD sectional drawing of a figure. E is the pressure sensor S
i , a pressure detecting unit composed of an initial stress adjusting unit F, a hollow cylindrical bar K, etc., A is a supporting arm for supporting and fixing the pressing detecting unit E, K is a hollow cylindrical bar transmitting buoyancy (pressing), B
Is an arithmetic processing unit that amplifies the signal from the pressure sensor and outputs the molten steel level L, the flow velocity υ, and the azimuth θ. C is the molten steel filled in the mold M. Support arm A on top of mold M
The press detection unit E fixed installed, adjusts the output of the pressure sensor S 1, S 2, S 3 in a state where pre hollow cylinder rod K is not侵積molten steel C. It is a known technique to use a semiconductor sensor or a wire strain gauge as the pressure sensor and to perform output balance adjustment by a Wheatstone bridge circuit. The buoyancy F received by the hollow cylindrical rod K when immersed in the molten steel C or when the molten metal surface rises can be expressed by the following equation (1).

【0007】F=ρSL ・・・(1) ρ:液体の密度[g/cm3] S:浮子の断面積[cm2] L:液体中にある浮子の長さ[cm] ここで、スプリング等で浮子を懸架している場合、浮子
重量Wと浮力Fとの差、すなわち見掛け上浮子重量(W
−F)が減少し、浮子は浮上するのでその移動量から湯
面を計測できる。しかし本発明では、予め固定側に設け
た圧力センサとブッシング付きスプリングで中空円柱棒
の端部に設けた圧力支持板を該圧力センサの許容最大域
まで締め付けておく。これにより中空円柱棒Kにかかる
横方向の抗力を大きくでき偏押圧を解消できるととも
に、浮子の上下の移動は見掛け上生じない構造となるた
め、溶鋼による巻き込み,ふらつきを防止でき、安定し
た浮力検出が可能となる。図2の(a)に示すように、
中空円柱棒Kの他端に固着した圧力支持板10は、固定
側の下面に圧力センサS1 ,S2 ,S3 が円周方向12
0°間隔で配列されて支持されるとともに、センサに対
応する3個の初期応力調整部Fで強固に装着されてい
る。
F = ρSL (1) ρ: density of liquid [g / cm 3 ] S: cross-sectional area of float [cm 2 ] L: length of float in liquid [cm] Here, spring In the case where the float is suspended for example, the difference between the float weight W and the buoyancy F, that is, the apparent float weight (W
−F) decreases and the float floats, so that the level of the molten metal can be measured from the amount of movement. However, in the present invention, a pressure sensor provided on the fixed side and a pressure support plate provided at the end of the hollow cylindrical rod with a spring with a bushing are previously tightened to the maximum allowable range of the pressure sensor. As a result, the lateral drag applied to the hollow cylindrical rod K can be increased to eliminate uneven pressing, and the float does not seem to move up and down apparently, so that the molten steel can be prevented from being entangled and wobble, and stable buoyancy detection can be achieved. Becomes possible. As shown in FIG.
The pressure support plate 10 fixed to the other end of the hollow cylindrical rod K has pressure sensors S 1 , S 2 , and S 3 on the fixed lower surface in the circumferential direction 12.
It is arranged and supported at intervals of 0 °, and is firmly mounted at three initial stress adjusting portions F corresponding to the sensors.

【0008】図3に応力調整部Fの構造図を示す。図3
においてF1 は調整ネジ、F2 はスプリング、F3 はブ
ッシングである、スプリングF2 のみでは圧縮による曲
がりを生じ壁面での摩擦係数が変化し問題となる。この
ためブッシングF3を付加することによってスプリング
2 の伸縮に対し側壁面の摩擦を軽減でき、安定した性
能が得られ極めて有効な手段である。圧力支持板10を
介し圧力センサS1 ,S2 ,S3 に等圧力がかかるよう
に圧力調整ネジF1 で調整する。押圧検出部EはD−D
断面で分割できる構造となっており、ボルト11で嵌合
固定する。また冷却のため給水口G11 ,G12 、排水口
21 ,G22 を設け、検出部Eを一定温度に維持する構
造としている。12は、応力調整部Fを支持ア−ムAに
固定するためのネジ穴である。図2の(b)は圧力セン
サ設置状況を示す平面図であり圧力センサS1 ,S2
3 は120°毎に3個設置しており、13は圧力セン
サのリ−ド線取り出し用溝であり、この溝からリ−ド線
を外部に取り出している。11−1はボルト11用のネ
ジ穴で、押圧検出部Eの上部,下部部分を嵌合固定する
ためのものである、中空円柱棒Kはアルミナグラファイ
ト,窒化珪素,シリカ等の耐熱セラミックがよく使われ
ているが、発明者等によれば、濡性,耐久性の点から、
特に窒化ほう素を主成分とし常圧成形後焼結したものが
最良との結果を得た。
FIG. 3 shows a structural view of the stress adjusting section F. FIG.
F 1 is adjustment screw, F 2 is the spring, F 3 is a bushing, with only the spring F 2 friction coefficient at the wall resulting bending by compression is to issue change in. Therefore can reduce friction of the side wall surface with respect to the expansion and contraction of the spring F 2 by the addition of bushings F 3, stable performance is extremely effective means obtained. The pressure sensors S 1 , S 2 , and S 3 are adjusted with the pressure adjusting screw F 1 so that equal pressure is applied to the pressure sensors S 1 , S 2 , and S 3 via the pressure support plate 10. Press detection unit E is DD
It has a structure that can be divided in cross section, and is fitted and fixed with bolts 11. Water supply ports G 11 and G 12 and drain ports G 21 and G 22 are provided for cooling, so that the detection unit E is maintained at a constant temperature. Reference numeral 12 denotes a screw hole for fixing the stress adjusting portion F to the support arm A. FIG. 2B is a plan view showing the installation state of the pressure sensors, and the pressure sensors S 1 , S 2 ,
S3 is provided three every 120 degrees, 13 is a groove for taking out the lead wire of the pressure sensor, and the lead wire is taken out from this groove to the outside. Reference numeral 11-1 denotes a screw hole for the bolt 11, which is used to fit and fix the upper and lower portions of the pressure detecting portion E. The hollow cylindrical rod K is preferably made of a heat-resistant ceramic such as alumina graphite, silicon nitride, and silica. Although they are used, according to the inventors, from the viewpoint of wettability and durability,
In particular, the best result was obtained by sintering after normal pressure molding with boron nitride as a main component.

【0009】図4は、演算処理装置Bの機能を示す。圧
力センサは複数個、本実施例では3個設けており、図2
の(b)に示すように120度毎に設置されている各圧
力センサの信号は、ホイートストンブリッジ回路1a,
1b,1cに入力され、押圧力に相当する直流信号を出
力する。2は加算器で各センサ出力の加算値を出力す
る。6は流体の密度補正のための利得調整器、3はベク
トル和演算器、4は液体レベル変換器、5は流速演算器
である。図4において、中空円柱棒Kが液体に侵漬して
いない状態で初期応力調整ネジF1 で各センサに等分に
圧力が掛かるように設定しておいて、ホイートストンブ
リッジ回路1a,1b,1cの零調整を行う。次いで中
空円柱棒Kを液体に浸漬し各圧力センサから浮力に対応
する出力信号が得られ加算器2で加算され、さらにレベ
ル変換器4で浸漬深さに変換されレベル信号が出力され
る。予め利得調整6により液体密度に対応する利得に設
定しておくことはいうまでもない。圧力センサからの信
号は各120度点における電圧出力とするベクトル量と
して表すことができる。従って3個の圧力センサのベク
トル和をとることで液体の流れ方向・速度を知ることが
できる。各圧力センサからの信号がベクトル和演算器3
に入力されると演算され、その結果として図5に示すベ
クトルが得られる。図5において各圧力センサS1 ,S
2 ,S3 の出力電圧をそれぞれVS1 ,VS2 ,VS3
とすると、それらのベクトル和としてVS0 が得られ、
ここでVS1 を基準にとると−θ[度]方向に力VS0
中空円柱棒Kにかかったことになりこの結果+θ[度]方
向からの流れを確認できる。
FIG. 4 shows the functions of the arithmetic processing unit B. A plurality of pressure sensors, three in this embodiment, are provided.
As shown in (b), the signals of the pressure sensors installed at every 120 degrees are the signals of the Wheatstone bridge circuit 1a,
1b, 1c, and outputs a DC signal corresponding to the pressing force. Reference numeral 2 denotes an adder which outputs an added value of the outputs from the respective sensors. 6 is a gain adjuster for correcting the density of the fluid, 3 is a vector sum calculator, 4 is a liquid level converter, and 5 is a flow rate calculator. 4, the initial stress adjusting screw F 1 in a state in which the hollow cylindrical bar K is not immersed in the liquid had been set so that the pressure equally to each sensor is applied, Wheatstone bridge circuit 1a, 1b, 1c Zero adjustment of. Next, the hollow cylindrical rod K is immersed in the liquid, and an output signal corresponding to the buoyancy is obtained from each pressure sensor, added by the adder 2, further converted into the immersion depth by the level converter 4, and the level signal is output. It goes without saying that a gain corresponding to the liquid density is set in advance by the gain adjustment 6. The signal from the pressure sensor can be represented as a vector quantity which is a voltage output at each 120-degree point. Therefore, the flow direction and velocity of the liquid can be known by taking the vector sum of the three pressure sensors. The signal from each pressure sensor is a vector sum calculator 3
Is calculated, and as a result, the vector shown in FIG. 5 is obtained. In FIG. 5, each pressure sensor S 1 , S
2, VS 1 S 3 output voltages respectively, VS 2, VS 3
Then VS 0 is obtained as the sum of the vectors,
Here Taking reference to the VS 1 - [theta] [degrees] force VS 0 in direction will be applied to the hollow cylindrical bar K can see the flow from the result + theta [degrees] direction.

【0010】一方VS0 は中空円柱棒Kの浸漬深さと動
圧によって変化する。その変化量は流速υで流れる密度
ρの液体の中におかれた物体に働く力f(VS0 に相
当)を基に式(2)から流速υ[cm/sec]を演算すること
ができる。
On the other hand, VS 0 changes depending on the immersion depth of the hollow cylindrical rod K and the dynamic pressure. The amount of change may be calculated the velocity υ [cm / sec] from the equation (2) based on (corresponding to VS 0) the force f acting on an object placed in a liquid of density ρ flowing at a flow rate upsilon .

【0011】 υ=√(2fg/sρC d ) ・・・・(2) s:液体中にある中空円柱棒の断面積[cm 2 d :実験係数[cm/sec 2 ρ:液体の密度[g/cm 3 ] g:重力加速度[cm/sec 2 ここで実験係数C d (無名数)を求めるため液槽上部の
検出器を取り付けた走行台車を走行し、等価的に液体の
流速および浸漬深さを得ることによって未知数C d
(2)式から導出した。オンライン計測においては予め
導出した前記C d 値を用い(2)式を実行する流速演算
器5にVS o (流力)と液面レベル信号を入力し流速値
を得る。本実施例では、液面レベルを逐次検出しこのレ
ベル信号により塵速補正を行う、 これらの演算処理はマ
イクロコンピ−タを用いれば容易に実現できる。尚実施
例では3個の圧力センサを使用したが、さらに増やせば
検出精度の向上を期待できる。
Υ = √ (2fg / sρC d ) (2) s: cross-sectional area of hollow cylindrical rod in liquid [cm 2 ] C d : experimental coefficient [cm / sec 2 ] ρ: liquid Density [g / cm 3 ] g: Gravitational acceleration [cm / sec 2 ] Here, in order to obtain an experimental coefficient C d (absolute number),
Traveling on a traveling carriage equipped with a detector, the equivalent of liquid
The unknown C d is obtained by obtaining the flow velocity and the immersion depth.
It was derived from equation (2). In online measurement
Flow velocity calculation using the derived C d value to execute equation (2)
VS o (fluid force) and liquid level signal are input to the vessel 5, and the flow velocity value
Get. In this embodiment, the liquid level is sequentially detected and the level is detected.
These arithmetic processes for correcting the dust velocity by the bell signal can be easily realized by using a micro computer. Incidentally in the embodiment was used three pressure sensors, by increasing further
An improvement in detection accuracy can be expected.

【0012】図6は中空円柱棒Kを液体に一定深さ浸漬
しておいて液体を揺動させそれぞれの圧力センサ出力と
加算出力(液体レベル)のチャート図を示す。図から明
らかなように揺動による動圧変化を受けても加算出力は
常に一定レベルを示している。例えば図中Z軸との交点
イ,ロ,ハの挙動を見ると振幅値と位相が異なるが加算
出力いわゆる液面レベルは一定である。液体の流れによ
る力即ち流力(動圧変化)は浸漬棒を介し各圧力センサ
ーへ伝達され浮力値に重畳されて出力されるが加算演算
によりレベル情報のみを得ることができる。各センサは
レベルに対するキャリブレーションしているので逐次得
られる各センサ出力から浮力値分を減算することにより
流力成分を抽出することができる。この結果流力情報の
みによる流速演算に加え浸漬棒の深さ情報による流速補
正を実現しているので精度良い流速計測を可能とするも
のである。図7は本実施例における湯面計測結果を示す
図である。X軸は溶鋼湯面、Y軸にセンサ出力の相対値
を示すが、良好な線形入出力特性が得られ同時に流速・
流れ方向計測を簡便な装置構成で実現した。
FIG. 6 is a chart showing the output of each pressure sensor and the added output (liquid level) by immersing the hollow cylindrical rod K in the liquid at a certain depth and oscillating the liquid. As is clear from the figure, the added output always shows a constant level even when the dynamic pressure changes due to the swing. For example, looking at the behavior of the intersections a, b, and c with the Z axis in the figure, the amplitude value and the phase are different, but the addition output, the so-called liquid level, is constant. The force due to the flow of the liquid, that is, the fluid force (dynamic pressure change) is transmitted to each pressure sensor via the immersion rod and is output superimposed on the buoyancy value. However, only the level information can be obtained by the addition operation. Since each sensor is calibrated for its level, it is possible to extract the fluid component by subtracting the buoyancy value from each sensor output obtained sequentially. As a result, in addition to the flow velocity calculation based only on the flow force information, the flow velocity correction based on the immersion rod depth information is realized, so that the flow velocity can be measured accurately. FIG. 7 is a diagram showing a result of measuring the molten metal level in the present embodiment. The X-axis shows the molten steel surface and the Y-axis shows the relative value of the sensor output.
Flow direction measurement was realized with a simple device configuration.

【0013】[0013]

【発明の効果】以上述べたように、本発明は簡便な装置
構成で単に被検出物体中に必要に応じて中空円柱棒を挿
入浸漬することにより偏押圧を解消した湯面計測を実現
すると共に簡単な信号処理装置を付加することにより流
速・流れ方向計測を可能にした。実際のプロセスライン
では通常動圧が発生するので、従来の浮力方式の適用で
きる範囲は限定されそれらの環境下では課題が多く実用
化例は見あたらない。近年モールドの小断面化が進み、
従来の他の方式の電磁式,放射線式等の湯面計では寸法
・構造上設置することが困難であり断念しているのが現
状である。本発明によればそれらの欠点を解消し、手軽
に適用できると共に新たに流速・流れ方向情報が得られ
るので例えば連続鋳造プロセスの鋳片品質の管理指標と
して、あるいは操業の安定化に大きく寄与し、その効果
は大きい。
As described above, according to the present invention, a simple apparatus configuration is used to realize a level measurement that eliminates partial pressure by simply inserting and immersing a hollow cylindrical rod in an object to be detected as necessary. By adding a simple signal processor, the flow velocity and flow direction can be measured. Since dynamic pressure is usually generated in an actual process line, the applicable range of the conventional buoyancy method is limited, and in such an environment, there are many problems and there is no practical application. In recent years, the miniaturization of the mold has progressed,
At present, it has been abandoned because it is difficult to install other conventional electromagnetic gauges, radiation gauges and the like in terms of size and structure. According to the present invention, these drawbacks can be solved, and can be easily applied and new information on flow velocity and flow direction can be obtained. Therefore, the present invention greatly contributes to the management index of the slab quality of the continuous casting process or to stabilize the operation. The effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の溶鋼流速・流れ方向検出
装置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a molten steel flow velocity / flow direction detection device according to an embodiment of the present invention.

【図2】 (a)は図1に示す押圧検出部Eの詳細断面
図、(b)は(a)図のD−D線断面図である。
2A is a detailed cross-sectional view of a pressure detecting unit E shown in FIG. 1, and FIG. 2B is a cross-sectional view taken along a line DD in FIG.

【図3】 図2の(a)に示す初期応力調整部Fの構造
を示す断面図である。
FIG. 3 is a cross-sectional view showing a structure of an initial stress adjusting unit F shown in FIG.

【図4】 図1に示す演算処理装置Bの構成を示すブロ
ック図である。
FIG. 4 is a block diagram illustrating a configuration of an arithmetic processing unit B illustrated in FIG. 1;

【図5】 図2の(b)に示す圧力センサS1,S2,S
3の出力の和演算結果を示すベクトル図である。
FIG. 5 shows the pressure sensors S 1 , S 2 , S shown in FIG.
Sum operation result of the output of 3 is a vector diagram showing a.

【図6】 図1に示す実施例における各圧力センサの出
力挙動と加算出力を示すグラフである。
FIG. 6 is a graph showing output behavior and added output of each pressure sensor in the embodiment shown in FIG.

【図7】 図1に示す実施例による湯面測定結果を示す
グラフである。
FIG. 7 is a graph showing a result of measuring a molten metal level according to the embodiment shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 ,S2 ,S3 :圧力センサ 1a,1b,1c:ホイートストンブリッジ 2:加算器 3:ベク
トル和演算器 4:流体レベル変換器 5:流速
演算器 6:利得調整器 10:圧力
支持板 11:ボルト 13:リ
ード線溝 A:支持アーム B:演
算処理装置 C:溶鋼 E:押
圧検出部 F:圧力調整部 G11,G12:給
水口 G21,G22:排水口 K:中
空円柱棒 M:モールド
S 1 , S 2 , S 3 : Pressure sensors 1a, 1b, 1c: Wheatstone bridge 2: Adder 3: Vector sum calculator 4: Fluid level converter 5: Flow velocity calculator 6: Gain adjuster 10: Pressure support plate 11: bolt 13: lead wire grooves A: supporting arm B: processing unit C: molten steel E: press detection unit F: pressure regulator G 11, G 12: water inlet G 21, G 22: water outlet K: hollow cylinder Rod M: Mold

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01F 23/60,1/30 G01P 5/02,13/02 B22D 46/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01F 23 / 60,1 / 30 G01P 5 / 02,13 / 02 B22D 46/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融金属に浸漬した耐熱セラミック質の
中空円柱棒により伝達する浮力による押圧力を検出する
センサを複数個設け、それぞれのセンサの出力和から湯
面レベルを検出する装置において、等間隔に配列したそ
れぞれのセンサ出力のベクトル和演算を行う演算器と該
演算器出力を湯面レベル信号で補正を行う演算器とから
構成されることを特徴とする湯面レベル検出装置におけ
る流速・流れ方向検出装置
An apparatus for detecting a level of a molten metal from a sum of outputs of respective sensors provided with a plurality of sensors for detecting a pressing force due to buoyancy transmitted by a heat-resistant ceramic hollow cylindrical bar immersed in a molten metal. put the molten metal surface level detection device characterized in that it is an arithmetic unit and the arithmetic unit outputs to perform the vector sum operation of the respective sensor output arranged in distance from an arithmetic unit for correcting at bath level level signal
Speed / flow direction detector .
【請求項2】 圧力センサの感圧面側にコイルスプリン
グと初期応力調整ネジを設け、浮力による押圧力により
圧力センサ出力を減少するように構成した事を特徴とす
る請求項1記載の湯面レベル検出装置における流速・流
れ方向検出装置
Wherein the coil spring and the initial stress adjusting screws provided in pressure-sensitive surface side of the pressure sensor, molten metal surface level according to claim 1, characterized in that configured to reduce the pressure sensor output by the pressing force by buoyant Flow velocity and flow in the detector
Direction detector .
JP28729092A 1992-10-26 1992-10-26 Flow velocity / flow direction detector in the level detector Expired - Lifetime JP2763719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28729092A JP2763719B2 (en) 1992-10-26 1992-10-26 Flow velocity / flow direction detector in the level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28729092A JP2763719B2 (en) 1992-10-26 1992-10-26 Flow velocity / flow direction detector in the level detector

Publications (2)

Publication Number Publication Date
JPH06137923A JPH06137923A (en) 1994-05-20
JP2763719B2 true JP2763719B2 (en) 1998-06-11

Family

ID=17715479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28729092A Expired - Lifetime JP2763719B2 (en) 1992-10-26 1992-10-26 Flow velocity / flow direction detector in the level detector

Country Status (1)

Country Link
JP (1) JP2763719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162945A (en) * 2011-02-08 2012-08-30 Ohbayashi Corp Flowability measuring apparatus in shield machine, and shield machine equipped with the measuring apparatus
CN103480813B (en) * 2013-09-30 2015-11-25 南京钢铁股份有限公司 A kind of continuous cast mold high-temperature molten steel flow rate measuring device and measuring method
JP6460573B2 (en) * 2014-10-18 2019-01-30 シスメット株式会社 Weather information notification system
CN113172207B (en) * 2021-04-09 2022-07-29 北京科技大学 Device for measuring surface flow field of molten steel in crystallizer based on current change

Also Published As

Publication number Publication date
JPH06137923A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US5315873A (en) Liquid level detection apparatus and method thereof
JP2763719B2 (en) Flow velocity / flow direction detector in the level detector
KR20150035827A (en) Load sensing arrangement on a bearing component, method and computer program product
JPH06304727A (en) Device for controlling casting velocity
CN113084109B (en) Method for continuously correcting continuous casting infrared camera shooting sizing error on line
JPH0712904Y2 (en) Molten metal level detector
JP2916830B2 (en) Flow control method of molten metal in continuous casting
JP3549318B2 (en) Unsteady bulging detection method in continuous casting
Iguchi et al. A new probe for directly measuring flow velocity in a continuous casting mold
JPS6355465A (en) Device and method for measuring molten steel flow velocity
KR200234106Y1 (en) Flow rate measuring device for molten steel in continuous casting mold
JPH04178525A (en) Velocity of flow measuring device for molten steel
JPH0560774A (en) Apparatus for measuring flow velocity of fused steel
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JPS59147987A (en) Method and device for measuring temperature
JPH08267207A (en) Continuous casting method
JPH09168847A (en) Method for continuously casting steel
JP2962788B2 (en) Control method of drift of molten steel in continuous casting mold
JP4499016B2 (en) Slab continuous casting method
JP2789211B2 (en) Method of detecting mold level in mold
KR19990021052U (en) Flow rate and temperature measurement system of molten steel
JPH01224154A (en) Method and instrument for measuring molten flux layer thickness on molten metal surface
KR20000040915A (en) Floating sensor for analyzing temperature and flux of molten steel inside casing mold of continuous casting equipment
JP2795516B2 (en) Liquid level detection device for molten metal
SU1620207A1 (en) Arrangement for measuring level of metal in mould

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980310