JPS6355234B2 - - Google Patents

Info

Publication number
JPS6355234B2
JPS6355234B2 JP55094303A JP9430380A JPS6355234B2 JP S6355234 B2 JPS6355234 B2 JP S6355234B2 JP 55094303 A JP55094303 A JP 55094303A JP 9430380 A JP9430380 A JP 9430380A JP S6355234 B2 JPS6355234 B2 JP S6355234B2
Authority
JP
Japan
Prior art keywords
resin
film
substrate
resins
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094303A
Other languages
Japanese (ja)
Other versions
JPS5718386A (en
Inventor
Toshio Yada
Atsushi Endo
Juji Hizuka
Torahiko Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9430380A priority Critical patent/JPS5718386A/en
Publication of JPS5718386A publication Critical patent/JPS5718386A/en
Publication of JPS6355234B2 publication Critical patent/JPS6355234B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【発明の詳細な説明】 この発明は、セラミツク基板やガラス強化エポ
キシ基板などの配線パターンを形成する基板の表
面平坦化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for flattening the surface of a substrate on which a wiring pattern is formed, such as a ceramic substrate or a glass-reinforced epoxy substrate.

一般に、この種の基板は混成集積回路や半導体
素子を実装する基板として使われており、その表
面には厚膜または薄膜の配線パターンが形成され
る。厚膜パターンはスクリーン印刷法により導電
性インキや抵抗体インキを印刷することによつて
形成されるが、スクリーンの厚さやインキのにじ
みなどに影響されるため、パターン巾は100μm位
が限界である。これに対して薄膜パターンでは膜
厚数100Å〜数μm上に形成するので、本来は微細
パターンが形成できるはずであるが、基板の表面
平坦性が悪いために従来では100μm巾前後のパタ
ーンしか形成できなかつた。
Generally, this type of substrate is used as a substrate for mounting hybrid integrated circuits or semiconductor elements, and a thick or thin film wiring pattern is formed on its surface. Thick film patterns are formed by printing conductive ink or resistive ink using the screen printing method, but the pattern width is limited to about 100 μm because it is affected by screen thickness and ink bleeding. . On the other hand, thin film patterns are formed at a thickness of several 100 Å to several μm, so it should be possible to form fine patterns, but due to the poor surface flatness of the substrate, conventional patterns can only be formed with a width of around 100 μm. I couldn't do it.

ところが最近、実装する混成集積回路や半導体
素子の高密度化が進むにつれ、基板上に形成する
配線パターンの微細化が要望されている。したが
つて、この要望を満足させるためには基板の表面
平坦化が必要となる。
However, recently, as the density of hybrid integrated circuits and semiconductor devices to be mounted has increased, there has been a demand for finer wiring patterns formed on substrates. Therefore, in order to satisfy this demand, it is necessary to flatten the surface of the substrate.

配線パターンを形成する基板の表面を平坦化す
る方法としては、研磨やガラスコートによる方法
が一般に採用されているが、処理するのに時間を
要し、大きな設備投資が必要となるので非常に製
造コストが高くなる。
Polishing and glass coating are generally used as methods to flatten the surface of the substrate on which wiring patterns are formed, but these processes require time and large capital investment, making them extremely difficult to manufacture. The cost will be higher.

そのため、たとえば、特公昭46−38460号公報
に開示されているように、基板の表面に有機物か
らなる被膜を形成することにより、基板の平坦化
を図る方法が知られている。ここで、上記被膜を
形成する方法としては、回転塗布、スプレー塗
布、ローラー塗布、浸漬塗布などによつて基板表
面に耐熱性樹脂を塗布する方法が考えられるが、
この方法においても一回の塗布によつて基板の凹
凸を埋めて平坦な塗膜面で覆うためには高濃度樹
脂溶液を用いて厚い被膜とする必要がある。しか
し、高濃度溶液を使うと塗布された基板の周辺部
分で表面張力による盛り上がりを生じて塗膜の厚
い部分ができる。
Therefore, for example, as disclosed in Japanese Patent Publication No. 46-38460, a method is known in which a film made of an organic material is formed on the surface of the substrate to planarize the substrate. Here, as a method for forming the above-mentioned film, there may be a method of applying a heat-resistant resin to the substrate surface by spin coating, spray coating, roller coating, dip coating, etc.
Even in this method, it is necessary to use a highly concentrated resin solution to form a thick film in order to fill in the unevenness of the substrate and cover it with a flat coating surface by one application. However, when a highly concentrated solution is used, surface tension causes bulges around the coated substrate, resulting in thicker coatings.

以下、この現象を回転塗布法を例として説明す
る。第1図は、耐熱性樹脂として半導体用トレニ
ース〔東レ株式会社製ポリイミド樹脂(ポリアミ
ド酸樹脂)、樹脂分17%、溶媒:N,N′−ジメチ
ルアセトアミド、粘度1100cps)を5cmのセラミ
ツク基板(京都セラミツク株式会社製A476)上
に滴下して回転塗布したときの基板周辺での膜厚
変化を示す。第1図において、回転数4000rpmの
とき、塗膜の平坦部1の膜厚は約3μmで盛り上が
り部分2の巾は周端から約30μmまでであるが、
厚い膜を得るために回転数を低下させていくと盛
上り部分が徐々に増加し、400rpmにすると膜厚
は12μmとなるが、盛り上がり部分2の巾は約7
mmと大きなる。このように、盛り上がり部分2が
大きいと、この上に薄膜の配線パターンを形成す
るとき、マスクの密着が悪くなり、微細な配線パ
ターンの形成が困難となる。
This phenomenon will be explained below using a spin coating method as an example. Figure 1 shows a 5 cm ceramic substrate (Kyoto, Japan) using Trenise for semiconductors as a heat-resistant resin (polyimide resin (polyamic acid resin) manufactured by Toray Industries, Inc., resin content 17%, solvent: N,N'-dimethylacetamide, viscosity 1100 cps). This shows the change in film thickness around the substrate when it was dropped onto A476 (manufactured by Ceramics Co., Ltd.) and spin-coated. In Fig. 1, when the rotation speed is 4000 rpm, the thickness of the flat part 1 of the coating film is about 3 μm, and the width of the raised part 2 is about 30 μm from the peripheral edge.
As the rotation speed is lowered to obtain a thick film, the bulge gradually increases, and when the speed is increased to 400 rpm, the film thickness becomes 12 μm, but the width of bulge 2 is approximately 7 μm.
mm and large. If the raised portion 2 is large as described above, when forming a thin film wiring pattern thereon, the adhesion of the mask becomes poor, making it difficult to form a fine wiring pattern.

このような盛り上がり部分2を少なくして基板
の粗面を平坦化するためには、高速回転で薄い樹
脂膜を何回も重ね塗りをしなければならない。重
ね塗りは、塗布するごとに加熱して溶媒を完全に
除去するか、もしくは樹脂を半硬化または完全硬
化させて、先に塗布した塗膜の溶媒による再溶解
を防止する必要がある。このように薄い膜を何回
も重ね塗りする工程は非常に煩雑であり、大量に
処理するには多大の労力を要する。また、角型の
基板上に樹脂を回転塗布すると、円形に均一な塗
膜が形成されるが、角の部分の膜厚が極端に薄く
なる欠点がある。
In order to reduce such raised portions 2 and flatten the rough surface of the substrate, thin resin films must be coated many times with high speed rotation. For multiple coatings, it is necessary to heat the resin each time to completely remove the solvent, or to semi-cure or completely cure the resin to prevent the previously applied coating film from being redissolved by the solvent. The process of coating such thin films over and over again is extremely complicated and requires a great deal of effort to process in large quantities. Further, when a resin is spin-coated onto a square substrate, a uniform coating film is formed in a circular shape, but there is a drawback that the film thickness at the corner portions becomes extremely thin.

この発明は、上記のような従来の方法の欠点を
除去したもので、周辺の盛り上がりが少なく表面
が平坦な厚い被膜を形成することができ、しかも
処理工程が簡単な方法を提供することを目的とし
ている。
The purpose of this invention is to eliminate the drawbacks of the conventional methods as described above, and to provide a method that can form a thick film with a flat surface and less bulges around the periphery, and that has simple processing steps. It is said that

この発明は、配線パターンを形成する基板の表
面に周辺部の盛り上がりの少ない薄い樹脂塗膜を
形成し、ついで樹脂フイルムを圧着または熱圧着
により固定して基板の粗面を完全に被覆し、表面
を平坦化する方法である。
This invention forms a thin resin coating film with little swelling around the periphery on the surface of the substrate on which the wiring pattern is to be formed, and then fixes the resin film by pressure bonding or thermocompression bonding to completely cover the rough surface of the substrate. This is a method to flatten the surface.

以下、この発明を実施例にて説明する。 This invention will be explained below with reference to Examples.

実施例 セラミツク基板(前出)を洗浄、乾燥ののち、
回転塗布機上に載置し、トレニース(前出)を約
1ml滴下し、4000rpmで1分間回転させた。つい
で、窒素雰囲気中で100℃にて15分間および200℃
にて5分間の段階的な加熱を行ない、溶媒を揮散
させた。このとき、トレニースのポリアミツク酸
の一部が環化して半硬化した。続いて、この塗膜
上に、湿式流延法でトレニースを完全硬化して作
製した厚さ12μmのフイルムをホツトロールラミ
ネータを使つて200℃でラミネート、つまり熱圧
着した。これを窒素雰囲気中で200℃にて15分お
よび300℃にて15分の段階的加熱を行なつて完全
硬化させ、塗膜とラミネートフイルムが一体とな
つた厚さ15μmのポリイミド被膜を形成させた。
Example After cleaning and drying the ceramic substrate (described above),
It was placed on a spin coater, about 1 ml of Trenise (described above) was added dropwise, and the plate was rotated at 4000 rpm for 1 minute. Then, in a nitrogen atmosphere at 100°C for 15 minutes and at 200°C.
The solution was heated in stages for 5 minutes to volatilize the solvent. At this time, a part of the polyamic acid in Trenice was cyclized and semi-cured. Next, on top of this coating film, a 12 μm thick film prepared by completely curing Trenice using a wet casting method was laminated, that is, thermocompressed, at 200°C using a hot roll laminator. This was heated in stages at 200°C for 15 minutes and at 300°C for 15 minutes in a nitrogen atmosphere to completely cure it, forming a 15 μm thick polyimide film that integrated the paint film and the laminate film. Ta.

第2図は、表面粗さ計(小坂製作所製)を用い
て、上記実施例におけるセラミツク基板の表面1
0、溶媒揮散後の塗膜表面11、ならびにラミネ
ート後のポリイミド被膜の表面12のそれぞれの
表面粗さを測定した結果を示す。第2図に示され
るように、基板表面10の表面粗さは約2μmであ
るが、溶媒揮散後の塗膜表面11の表面粗さは約
1.4μmとやや改善され、樹脂フイルムのラミネー
トによつてその表面12の表面粗さは約0.3μmと
なつて平坦性が大幅に改善されることが判る。ま
た、塗膜形成のときに生じた周辺部の盛り上がり
部分2も、樹脂フイルムのラミネートによつて少
なくなつていることが明らかである。
Figure 2 shows the surface roughness of the ceramic substrate in the above example using a surface roughness meter (manufactured by Kosaka Seisakusho).
0, the results of measuring the surface roughness of the coating surface 11 after solvent volatilization and the surface 12 of the polyimide coating after lamination are shown. As shown in FIG. 2, the surface roughness of the substrate surface 10 is approximately 2 μm, but the surface roughness of the coating film surface 11 after solvent volatilization is approximately
It can be seen that the surface roughness of the surface 12 is approximately 0.3 μm, which is a slight improvement in flatness due to the lamination of the resin film. It is also clear that the raised portion 2 at the periphery that occurred during coating film formation was also reduced by laminating the resin film.

上記のように、樹脂塗膜上に樹脂フイルムを熱
圧着することにより、塗膜表面11が粗面であつ
ても熱圧着後の表面12では優れた平坦性が得ら
れ、これにより、上記表面12に微細な配線パタ
ーン(金属層)を形成することが可能となり、各
種回路素子の高密度化を実現できる。
As described above, by thermocompression bonding the resin film onto the resin coating, even if the coating surface 11 is rough, excellent flatness can be obtained on the surface 12 after thermocompression bonding. It becomes possible to form a fine wiring pattern (metal layer) on the 12, and high density of various circuit elements can be realized.

また、上記樹脂塗膜と上記樹脂フイルムの二層
構造とすることにより、樹脂塗膜を薄くかつ粗面
に形成しても全体として十分な厚みと平坦性が得
られる。しかも、樹脂フイルムを熱圧着するだけ
で基板を平坦化できる。したがつて、樹脂塗膜の
形成および樹脂フイルムの固定が容易となり、処
理工程が簡略化される。
Further, by forming the two-layer structure of the resin coating film and the resin film, sufficient thickness and flatness can be obtained as a whole even if the resin coating film is formed to be thin and have a rough surface. Moreover, the substrate can be flattened simply by thermocompression bonding the resin film. Therefore, formation of the resin coating film and fixation of the resin film are facilitated, and the processing steps are simplified.

なお、上記樹脂塗膜は接着剤的な働きをするの
で、樹脂フイルムを基板上に強固に接着させるこ
とができ、これにより、回路基板としての信頼性
が高まる。
In addition, since the resin coating film acts like an adhesive, the resin film can be firmly adhered to the substrate, thereby increasing reliability as a circuit board.

上記の実施例では、絶縁性基板としてセラミツ
ク基板を示したが、ガラス強化エポキシ基板や他
の絶縁性材料からなる基板の表面平坦化にも利用
できる。また、塗布用樹脂材料として、上記トレ
ニースの他に、PIQ(日立化成製、商品名)、ピラ
リン(デユポン製、商品名)などのポリイミド系
樹脂、HI−600(日立化成製、商品名)などのポ
リアミド系樹脂、エポキシ系樹脂、フエノール系
樹脂、ポリカーボネイト系樹脂、ポリベンツイミ
ダゾール系樹脂、ポリパラバニツク酸系樹脂など
の耐熱性樹脂が使われる。さらに、ラミネートフ
イルムは上記のポリイミド系樹脂、ポリアミドイ
ミド系樹脂、ポリカーボネイト系樹脂、ポリベン
ツイミダゾール系樹脂、ポリオキサジアゾール系
樹脂、ポリパラバニツク酸系樹脂などが使用可能
である。
In the above embodiments, a ceramic substrate is used as the insulating substrate, but the present invention can also be used to flatten the surface of a glass-reinforced epoxy substrate or a substrate made of other insulating materials. In addition to the above-mentioned Trenice, coating resin materials include polyimide resins such as PIQ (manufactured by Hitachi Chemical, trade name), Pyraline (manufactured by Dupont, trade name), HI-600 (manufactured by Hitachi Chemical, trade name), etc. Heat-resistant resins such as polyamide resins, epoxy resins, phenol resins, polycarbonate resins, polybenzimidazole resins, and polyparabanic acid resins are used. Furthermore, the above-mentioned polyimide resin, polyamideimide resin, polycarbonate resin, polybenzimidazole resin, polyoxadiazole resin, polyparabanic acid resin, etc. can be used for the laminate film.

実施例では塗布用樹脂とラミネートフイルムと
して同質の材料を用いたが、異質の材料の組み合
わせでもかまわない。回転速度は樹脂の種類と溶
媒によつて異なるが、トレニースの場合2000rpm
以上が望ましい。
In the examples, the same materials were used for the coating resin and the laminate film, but a combination of different materials may be used. The rotation speed varies depending on the type of resin and solvent, but in the case of Trenise it is 2000 rpm.
The above is desirable.

なお、トレニース溶液はポリアミツク酸の状態
で溶解しており、加熱することにより脱水環化反
応を生起してポリイミド樹脂を形成するため、ポ
リアミツク酸の状態で膜厚が厚いと水分が揮散し
ないで膜内に残留することがある。このような残
留水分があるとポリイミドが加水分解を起こし劣
化するが、この発明では薄い塗膜でよいため、溶
媒と水を揮散除去し易く、しかもその上にフイル
ムをラミネートすると、高温加熱硬化のときに水
分が完全に揮散除去され、劣化しにくいポリイミ
ド膜が形成される。
In addition, the Trenice solution is dissolved in the state of polyamic acid, and when heated, a dehydration cyclization reaction occurs to form a polyimide resin. It may remain inside. If such residual moisture is present, polyimide will hydrolyze and deteriorate, but in this invention, a thin coating film is sufficient, making it easy to volatilize and remove the solvent and water, and if a film is laminated on top of it, it can be cured by high temperature heating. In some cases, the moisture is completely volatilized and removed, forming a polyimide film that does not easily deteriorate.

また、トレニースは加熱硬化させるとき数%の
収縮を起こすが、ラミネートフイルムはすでに硬
化した状態にあるため、薄い塗布膜の硬化収縮に
よる小さな歪だけしか残らない。
In addition, Trenise shrinks by several percent when it is heated and cured, but since the laminate film is already in a cured state, only small distortions due to curing shrinkage of the thin coating remain.

さらに、回転塗布法に塗膜を形成するとき、滴
下した樹脂溶液の70〜80%は基板外へ吹き飛ばさ
れて無駄となるが、この発明の方法ではその量が
非常に少なくなり、省資源としても有効であり、
大量処理に適する。
Furthermore, when forming a coating film using the spin coating method, 70 to 80% of the dropped resin solution is blown off to the outside of the substrate and is wasted, but with the method of this invention, this amount is extremely small, and it can be used to save resources. is also valid,
Suitable for mass processing.

この発明の他の実施例として、樹脂フイルムを
熱圧着ではなく、加熱を伴なわない単なる圧着に
より樹脂塗膜に固定するようにしてもよい。
As another embodiment of the present invention, the resin film may be fixed to the resin coating film not by thermocompression bonding but by simple pressure bonding without heating.

以上説明したように、この発明によれば、絶縁
性基板上に樹脂塗膜と樹脂フイルムとを積層した
から、樹脂フイルムの表面では優れた平坦性が得
られ、上記樹脂フイルム上に微細な配線パターン
を形成できる。また、樹脂塗膜と樹脂フイルムと
の二層構造とすることにより、樹脂塗膜の形成お
よび樹脂フイルムの固定が容易となり、処理工程
を簡略化できる。
As explained above, according to the present invention, since a resin coating film and a resin film are laminated on an insulating substrate, excellent flatness can be obtained on the surface of the resin film, and fine wiring can be formed on the resin film. Can form patterns. Further, by forming the resin coating film into a two-layer structure consisting of a resin coating film and a resin film, formation of the resin coating film and fixing of the resin film are facilitated, and the processing steps can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1回の回転塗布によつて基板上に樹脂
塗膜を形成したときの塗布機の回転数と基板周辺
近傍の塗膜厚との関係を示す特性図、第2図はこ
の発明の実施例における使用したセラミツク基板
の表面、樹脂塗膜の表面、ならびに樹脂フイルム
のラミネート後の被膜表面のそれぞれの表面粗さ
を示す特性図である。 1……平坦部、2……周辺の盛り上がり部、1
0……セラミツク基板の表面、11……樹脂塗膜
の表面、12……樹脂フイルムのラミネート後の
被膜表面。なお、図において、同一番号は同一ま
たは相当部分を示す。
Fig. 1 is a characteristic diagram showing the relationship between the number of rotations of the coating machine and the coating film thickness near the periphery of the substrate when a resin coating film is formed on the substrate by one rotational coating, and Fig. 2 is a characteristic diagram of the present invention. FIG. 2 is a characteristic diagram showing the surface roughness of the surface of the ceramic substrate, the surface of the resin coating film, and the surface of the coating film after lamination of the resin film used in the example. 1... Flat part, 2... Surrounding raised part, 1
0...Surface of ceramic substrate, 11...Surface of resin coating film, 12...Surface of coating after lamination of resin film. In the figures, the same numbers indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 配線パターンが形成される絶縁性基板上に樹
脂塗膜を形成する第1の工程と、この樹脂塗膜の
上面に樹脂フイルムを圧着または熱圧着により固
定する第2の工程とを備えてなる基板表面の平坦
化方法。 2 上記絶縁性基板はセラミツク基板またはガラ
ス強化エポキシ基板であり、上記樹脂塗膜は、ポ
リイミド系樹脂、ポリアミドイミド系樹脂、エポ
キシ系樹脂、フエノール系樹脂、ポリカーボネー
ト系樹脂、ポリベンツイミダゾール系樹脂、ポリ
パラバニツク酸系樹脂より選ばれる少なくとも1
種の耐熱性高分子からなり、上記樹脂フイルム
は、ポリイミド系樹脂、ポリアミドイミド系樹
脂、ポリカーボネイト系樹脂、ポリベンツイミダ
ゾール系樹脂、ポリオキサジアゾール系樹脂、ポ
リパラバニツク酸系樹脂から選ばれる少なくとも
1種の耐熱高分子からなる特許請求の範囲第1項
記載の基板表面の平坦化方法。 3 上記樹脂塗膜は、回転塗布、スプレー塗布、
ローラー塗布、浸漬塗布のいずれかの方法で形成
され、上記樹脂フイルムは、ロールラミネーター
で圧着または熱圧着される特許請求の範囲第1項
または第2項記載の基板表面の平坦化方法。 4 上記第1の工程は、基板表面にポリアミツク
酸溶液を塗布し、加熱して溶媒を揮散させること
によつて半硬化したポリイミドもしくはポリアミ
ドイミドからなる樹脂塗膜を形成するものであ
り、上記第2の工程は、上記樹脂塗膜の上に完全
硬化したポリイミド系樹脂もしくはポリアミドイ
ミド系樹脂のフイルムを圧着または熱圧着するも
のである特許請求の範囲第1項または第3項記載
の基板表面の平坦化方法。
[Claims] 1. A first step of forming a resin coating film on an insulating substrate on which a wiring pattern is formed, and a second step of fixing a resin film on the upper surface of this resin coating film by pressure bonding or thermocompression bonding. A method for planarizing a substrate surface, comprising the steps of: 2 The insulating substrate is a ceramic substrate or a glass-reinforced epoxy substrate, and the resin coating film is made of polyimide resin, polyamideimide resin, epoxy resin, phenol resin, polycarbonate resin, polybenzimidazole resin, polyparabanic resin. At least one selected from acid-based resins
The resin film is made of at least one type of heat-resistant polymer selected from polyimide resins, polyamideimide resins, polycarbonate resins, polybenzimidazole resins, polyoxadiazole resins, and polyparabanic acid resins. A method for planarizing a surface of a substrate according to claim 1, comprising a heat-resistant polymer. 3 The above resin coating film can be applied by spin coating, spray coating,
3. The method for flattening a substrate surface according to claim 1, wherein the resin film is formed by roller coating or dip coating, and the resin film is bonded by pressure or thermocompression with a roll laminator. 4 The first step is to apply a polyamic acid solution to the surface of the substrate and heat it to volatilize the solvent to form a resin coating film made of semi-cured polyimide or polyamideimide. Step 2 is to press or thermocompress a completely cured polyimide resin or polyamideimide resin film onto the resin coating film. Flattening method.
JP9430380A 1980-07-09 1980-07-09 Method of flattening surface of board Granted JPS5718386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9430380A JPS5718386A (en) 1980-07-09 1980-07-09 Method of flattening surface of board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9430380A JPS5718386A (en) 1980-07-09 1980-07-09 Method of flattening surface of board

Publications (2)

Publication Number Publication Date
JPS5718386A JPS5718386A (en) 1982-01-30
JPS6355234B2 true JPS6355234B2 (en) 1988-11-01

Family

ID=14106501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9430380A Granted JPS5718386A (en) 1980-07-09 1980-07-09 Method of flattening surface of board

Country Status (1)

Country Link
JP (1) JPS5718386A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553153A (en) * 1983-10-21 1985-11-12 Eastman Kodak Company Planarizing layer for semiconductor substrates such as solid state imagers
JP2532972B2 (en) * 1990-05-31 1996-09-11 三洋電機株式会社 Overcool protection device for soft ice cream making machine
KR101472234B1 (en) * 2010-11-22 2014-12-11 가부시끼가이샤 도시바 Ceramic heat sink material for compression contact structure, semiconductor module using same, and method for producing semiconductor module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550521A (en) * 1978-10-11 1980-04-12 Kanegafuchi Chemical Ind Electric laminated board and method of manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550521A (en) * 1978-10-11 1980-04-12 Kanegafuchi Chemical Ind Electric laminated board and method of manufacturing same

Also Published As

Publication number Publication date
JPS5718386A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
JP2009105446A (en) Method for manufacturing multilayer printed wiring board
JPS63199497A (en) Multilayer printed interconnection board
US5626774A (en) Solder mask for manufacture of printed circuit boards
JP2777020B2 (en) Wiring layer flattening method
JPS6355234B2 (en)
JP3781118B2 (en) Wiring board manufacturing method
JPH08153951A (en) Formation method of resin layer
JP2000216522A (en) Flexible board and manufacture thereof
JP4301683B2 (en) Laminate manufacturing equipment
JPH0422039B2 (en)
JP2000160107A (en) Production of substrate covered with thin plate
JPS6025104A (en) Substrate with transparent conductive film and method of producing same
JP2834933B2 (en) Manufacturing method of liquid crystal display element
JP4593808B2 (en) Multilayer wiring board
JPH08316687A (en) Multilayer printed circuit board
JP3022065B2 (en) Manufacturing method of hybrid integrated circuit board
JP3244990B2 (en) Manufacturing method of printed wiring board
JPH04207097A (en) Flexible wiring board
JPS6142412B2 (en)
JPH0387089A (en) Film for forming circuit pattern and manufacture of circuit board
JPS6139598A (en) Method of forming resist pattern
JPH06132669A (en) Manufacture of multilayer interconnection board
JPH01209795A (en) Laminated layer circuit substrate
JP2006173638A (en) Method for vacuum-lamination of adhesive film
WO2001059023A1 (en) Adhesive film and method for manufacturing multilayer printed wiring board