JPS6355164A - Manufacture of aluminum nitride base green sheet - Google Patents

Manufacture of aluminum nitride base green sheet

Info

Publication number
JPS6355164A
JPS6355164A JP61200803A JP20080386A JPS6355164A JP S6355164 A JPS6355164 A JP S6355164A JP 61200803 A JP61200803 A JP 61200803A JP 20080386 A JP20080386 A JP 20080386A JP S6355164 A JPS6355164 A JP S6355164A
Authority
JP
Japan
Prior art keywords
particle size
aluminum nitride
volume
green sheet
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61200803A
Other languages
Japanese (ja)
Other versions
JPH0774105B2 (en
Inventor
健一郎 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61200803A priority Critical patent/JPH0774105B2/en
Publication of JPS6355164A publication Critical patent/JPS6355164A/en
Priority to US07/222,381 priority patent/US5314850A/en
Priority to US07/770,336 priority patent/US5154863A/en
Publication of JPH0774105B2 publication Critical patent/JPH0774105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高熱伝導性、高密度窒化アルミニウム質シート
状焼結体を得るための窒化アルミニウム質グリーンシー
トの製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing an aluminum nitride green sheet for obtaining a high thermal conductivity, high density aluminum nitride sheet-like sintered body.

〔背景技術〕[Background technology]

近年LSIの発達に伴い高集積回路、パワートランジス
タ、レーザーダイオード等高発熱量型の半導体を実装す
るために熱伝導率の貰い基板材料が必要とされている。
In recent years, with the development of LSI, substrate materials with high thermal conductivity are required to mount high-heat-generating semiconductors such as highly integrated circuits, power transistors, and laser diodes.

このような高熱伝導性のセラミックとして、窒化アルミ
ニウム質基板材料が注目されている。中でもこのような
基板面に印刷技術でもって厚膜回路等の導体パターンを
形成するものでは、グリーンシート面にスクリーン印刷
し、印刷されたシートを打抜加工によりブロック化して
これを積層した後焼成するといった成形及び焼成法が安
価であり且つ多量生産に適しており、そのため良好なグ
リーンシートを得るための製法が検討されている。
Aluminum nitride substrate materials are attracting attention as such highly thermally conductive ceramics. Among these, when forming conductor patterns such as thick film circuits on the surface of a substrate using printing technology, screen printing is performed on the green sheet surface, the printed sheets are formed into blocks by punching, and the blocks are laminated and then fired. The molding and firing method is inexpensive and suitable for mass production, and therefore manufacturing methods for obtaining good green sheets are being studied.

〔先行技術〕[Prior art]

近時、酸化物の還元法による窒化アルミニウム原料粉末
を用いた窒化アルミニウム質グリーンシートの製法が提
案されている。(例えば特開昭60−171270号公
報、特開昭60−180954号公報及び特開昭60−
180964号公報)〔発明が解決しようとする問題点
〕 しかし乍ら、現在得られている酸化物の還元法により得
られる窒化アルミニウム粉末は第3図の電子顕微鏡写真
に示すように粒子形状が均一であり且つ略球状である。
Recently, a method for manufacturing aluminum nitride green sheets using aluminum nitride raw material powder by an oxide reduction method has been proposed. (For example, JP-A-60-171270, JP-A-60-180954, and JP-A-60-1989)
180964) [Problems to be solved by the invention] However, the aluminum nitride powder obtained by the currently available oxide reduction method has a uniform particle shape, as shown in the electron micrograph in Figure 3. and is approximately spherical.

このような粉末の粒度分布を調べると第4図に示すよう
に最大粒径が約5μm程度まであり、粒径3μm以上が
約10体積%以下、粒径3μm未満が約90体積%以上
と微粒子の量が多い。このような粒度分布を存する窒化
アルミニウム粉末はグリーンシート成形体中で粒子の充
填性が良いため、即ち粒子相互の詰まりが良いために、
グリーンシート作成中の乾燥工程においてこれら粒子間
の溶剤が容易に揮散せず、また脱バインダ時にも熱分解
されたバインダの脱ガスが出来にくい。したがって、ド
クターブレード法によるグリーンシートの作成に際して
はクラックが発生し易く、クランクの発生の少ないもの
が得られたとしても耐折れ性が劣り、そのため脱バイン
ダ後においてもクランクが発生し易い欠点がある。
When examining the particle size distribution of such powder, as shown in Figure 4, the maximum particle size is about 5 μm, and the particles with a particle size of 3 μm or more are about 10% by volume or less, and the particle size of less than 3 μm is about 90% by volume or more. There is a large amount of Aluminum nitride powder with such a particle size distribution has good particle filling properties in the green sheet molded body, that is, the particles are well packed together.
During the drying process during green sheet production, the solvent between these particles does not easily volatilize, and even during binder removal, it is difficult to degas the thermally decomposed binder. Therefore, when creating a green sheet using the doctor blade method, cracks are likely to occur, and even if a green sheet with less occurrence of cranks is obtained, the bending resistance is poor, and therefore, there is a drawback that cracks are likely to occur even after removing the binder. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記欠点を解消するため鋭意研究の結果、粒
径3μm以上の粒子が比較的多く存在する窒化アルミニ
ウム粉末を出発原料とすることにより良好な充填性を有
するグリーンシート成形体が得られることを知見した。
As a result of intensive research in order to eliminate the above-mentioned drawbacks, the inventors of the present invention have found that a green sheet molded body with good filling properties can be obtained by using aluminum nitride powder as a starting material, which contains a relatively large number of particles with a particle size of 3 μm or more. I found out that.

本発明においては窒化アルミニウム粉末の粒子相互が良
好な充填性を有するため、グリーンシートの作成に際し
てクラックが発生し難く、耐折れ性に優れ、そのため脱
バインダ後においてもクラックが発生し難い成形性の優
れた窒化アルミニウム質グリーンシートの製法が提供さ
れる。
In the present invention, since the particles of aluminum nitride powder have good mutual filling properties, cracks are difficult to occur when creating a green sheet, and the bending resistance is excellent. A method for producing an excellent aluminum nitride green sheet is provided.

本発明によれば、粒径3μm以上が22〜45体積%で
、粒径3μm未満が55〜78体積χの粒度分布を有す
る窒化アルミニウム原料粉末に、適当な焼結助剤を添加
し混合粉砕後、適当な有機結合剤を混合して得られたス
ラリーをテープ成形することを特徴とする窒化アルミニ
ウム質グリーンシートの製法が提供される。
According to the present invention, an appropriate sintering aid is added to an aluminum nitride raw material powder having a particle size distribution of 22 to 45 volume % of particle diameters of 3 μm or more and 55 to 78 volume χ of particle diameters of less than 3 μm, and then mixed and pulverized. There is also provided a method for producing an aluminum nitride green sheet, which comprises tape-forming a slurry obtained by mixing a suitable organic binder.

即ち、良好なグリーンシートを得るための手段は適度な
粒子充填性を持った窒化アルミニウム原料粉末の使用が
不可欠である。このような粒子充填性を持った窒化アル
ミニウム原料粉末として上記粒度分布を有するものが最
適である。このような粒度分布を有する現在市販の原料
では金属アルミニウムの直接窒化法で得られるものが多
い。そこで、現在市販の金属アルミニウムの直接窒化法
で得られる窒化アルミニウム原料粉末の電子顕微鏡写真
を第1図に示す。この様な粉末は第3図の原料粉末と異
なり不規則多角形状の一次粒子の凝集体(粒径が大きい
)と凝集していない粒子(粒径が小さい)とが混在して
いる。この粉末の粒度分布を調べると、第2図に示す如
く最大粒径が約7〜9μmであり、粒径3μm以上が約
22〜45体積%、粒径3μm未満が約55〜78体積
%である。第3図に示す酸化物還元法により得られる原
料粉末と比べ、最大粒径が太き(かつ粒径3μm以上の
粒子の占める割合が比較的多くなる。
That is, in order to obtain a good green sheet, it is essential to use aluminum nitride raw material powder with appropriate particle filling properties. The most suitable aluminum nitride raw material powder having such particle filling properties is one having the above particle size distribution. Many of the currently commercially available raw materials having such a particle size distribution are obtained by direct nitriding of metallic aluminum. FIG. 1 shows an electron micrograph of aluminum nitride raw material powder obtained by the direct nitriding method of metal aluminum, which is currently commercially available. Unlike the raw material powder shown in FIG. 3, such powder contains aggregates of irregular polygonal primary particles (large particle size) and non-agglomerated particles (small particle size). When examining the particle size distribution of this powder, as shown in Figure 2, the maximum particle size is approximately 7 to 9 μm, with approximately 22 to 45 volume% having a particle size of 3 μm or more, and approximately 55 to 78 volume% having a particle size of less than 3 μm. be. Compared to the raw material powder obtained by the oxide reduction method shown in FIG. 3, the maximum particle size is thicker (and the proportion of particles with a particle size of 3 μm or more is relatively large).

この様な窒化アルミニウム原料粉末に適当な焼結助剤を
添加し混合粉砕後、有機結合剤を加えて混合し、得られ
たスラリーをテープ成形すると、粒子相互の充填性が適
度な状態を保ち、グリーンシート作成時の乾燥工程にお
いて窒化アルミニウム粒子間の溶剤の揮散が容易で、ま
た脱バインダ時の熱分解されたバインダの脱ガスも容易
である。
When an appropriate sintering aid is added to such aluminum nitride raw material powder, mixed and pulverized, an organic binder is added and mixed, and the resulting slurry is tape-formed, the mutual filling properties of the particles are maintained in an appropriate state. It is easy to volatilize the solvent between the aluminum nitride particles during the drying process during green sheet production, and it is also easy to degas the thermally decomposed binder during binder removal.

そのため、グリーンシート作成に際し、クランクの発生
が少なく且つ耐折れ性が良好であり、脱バインダ時に発
生し易いクランクをも抑制することができる。
Therefore, when producing a green sheet, the occurrence of cranks is small and the bending resistance is good, and it is possible to suppress the occurrence of cranks that are likely to occur when removing the binder.

粒径3μm以上が22体積%未満及び粒径3μm未満が
78体積%を越えると、前記第3図及び第4図に示す原
料に近づき粒子の充填性が良くなり過ぎ、クランクが発
生し易く且つ耐折れ性が劣る。
If the particle size of 3 μm or more is less than 22% by volume and the particle size of less than 3 μm exceeds 78% by volume, the particles will approach the raw materials shown in FIGS. Poor bending resistance.

粒径3μm以上が45体積%を越え粒径3μm未満が5
5体積%未満であると逆に粒子の充填性が悪化しクラッ
クが発生し易く且つ耐折れ性が劣るものと考えられる。
More than 45% by volume of particles with a particle size of 3 μm or more, and 5% with a particle size of less than 3 μm
On the other hand, if it is less than 5% by volume, the filling properties of the particles deteriorate, cracks are likely to occur, and the bending resistance is considered to be poor.

好ましくは粒径3μm以上が23〜38体積%、。Preferably, 23 to 38% by volume have particle diameters of 3 μm or more.

粒径3μm未満が62〜77体積%である。The particle size of less than 3 μm accounts for 62 to 77% by volume.

さらに、より好ましくは粒径1.5μm以下が30〜5
4体積%、粒径2μm以下(粒径1.5μm以下を含む
)が40〜66体積%、粒径4μm以下(粒径3μm以
下も含む)が6′4〜86体積%、粒径5μm以下(粒
径4μm以下も含む)が64〜86体積%、粒径6μm
以下(粒径5μm以下も含む)が75〜98体積%、粒
径6μmを越えるものが2〜24体積%であることが望
まれる。
Furthermore, it is more preferable that the particle size is 1.5 μm or less.
4% by volume, 40-66% by volume of particles with a particle size of 2μm or less (including particles with a size of 1.5μm or less), 6'4-86% by volume with a particle size of 4μm or less (including particles with a size of 3μm or less), and a particle size of 5μm or less. (including particles with a particle size of 4 μm or less) is 64 to 86 volume%, particle size is 6 μm
It is desirable that particles with a particle diameter of 5 μm or less account for 75 to 98% by volume, and particles with a particle size of more than 6 μm account for 2 to 24% by volume.

また、本発明において使用し得る焼結助剤は■a族、m
a族、rVa族、mb族、lVb族元素の単体、酸化物
、炭化物、窒化物、ホウ化物等の化合物、特にY2O3
またはCaOが好ましい。
In addition, the sintering aids that can be used in the present invention are
Compounds such as simple substances, oxides, carbides, nitrides, borides, etc. of elements of group a, rVa group, mb group, lVb group, especially Y2O3
Or CaO is preferable.

さらに、本発明において使用し得る有機結合剤はポリビ
ニールブチラール(PVB) 、ポリイソブチルメタア
クリレート(PIBMA) 、ポリブチルメタアクリレ
ート(PBMA)、メチルメタアクリレート(HMA)
及びエチルアクリレ−1−(EA)等のブチラール系又
はアクリル系及びこれらの共重合体が用いられる。
Furthermore, organic binders that can be used in the present invention include polyvinyl butyral (PVB), polyisobutyl methacrylate (PIBMA), polybutyl methacrylate (PBMA), and methyl methacrylate (HMA).
and butyral-based or acrylic-based materials such as ethyl acrylate-1-(EA), and copolymers thereof.

〔実施例1〜9〕 第2図A及びBに示す粒度分布を有する金属アルミニウ
ムの直接窒化法により得られた窒化アルミニウム原料粉
末に焼結助剤としてイツトリア(Yz(h)及び結合剤
としてポリビニールブチラール(PVB) 、ポリイソ
ブチルメタアクリレート(PIB門A)ポリブチルメタ
アクリレート(PBMA)及びメチルメタアクリレート
(MMA)  とエチルアクリレート(EA)との共重
合体とを第1表に示す割合で添加し、溶媒としてトルエ
ンを用いこれらをボールミルにて17時間混合して所定
粘度を有するスラリーを作成した。これらのスラリーを
ドクターブレード法によりグリーンシート化した。得ら
れたグリーンシートのテープ成形状態(クランクやシワ
の発生状態)、テープ成形厚み、生密度、脱バインダ後
のテープ形成状態(クラック発生状B)、耐折れ性及び
脱バインダ後の生密度を夫々評価して第1表に示した。
[Examples 1 to 9] Itria (Yz(h)) was added as a sintering aid and polyester was added as a binder to aluminum nitride raw powder obtained by direct nitriding of metal aluminum having the particle size distribution shown in FIGS. 2A and B. Vinyl butyral (PVB), polyisobutyl methacrylate (PIB Category A), polybutyl methacrylate (PBMA), and a copolymer of methyl methacrylate (MMA) and ethyl acrylate (EA) are added in the proportions shown in Table 1. Using toluene as a solvent, these were mixed in a ball mill for 17 hours to prepare a slurry having a predetermined viscosity.These slurries were formed into green sheets by the doctor blade method.The state of tape molding of the obtained green sheets (crank Table 1 shows the results of evaluation of the tape forming condition (crack occurrence B), bending resistance, and green density after binder removal.

脱バインダは実施例1〜5については大気中昇温速度5
0℃/時間で600℃×1時間保持し、実施例6〜9に
ついてはN2中昇温速度50℃/時間で1000℃×1
時間保持して行った。耐折れ性は直径3mmの断面半円
形の辺をもった板に得られたグリーンシートを押し付け
、折曲げてクランクの発生具合を評価した。
For Examples 1 to 5, the binder removal was performed at a heating rate of 5 in the atmosphere.
Hold at 600°C for 1 hour at 0°C/hour, and hold at 1000°C for 1 hour at a temperature increase rate of 50°C/hour in N2 for Examples 6 to 9.
I kept the time. The bending resistance was evaluated by pressing the obtained green sheet against a plate having sides of a semicircular cross section and having a diameter of 3 mm, and bending the sheet to evaluate the degree of occurrence of cranks.

〔比較例1〜4〕 第4図C及びDに示す粒度分布を有する酸化アルミニウ
ムの還元法により得られた窒化アルミニウム原料粉末に
焼結助剤としてイツトリア(Y2O,)及び結合剤とし
てポリビニルブチラール(PVB)、ポリイソブチルメ
タアクリレート(PrBMA) 、ポリブチルメタアク
リレート(PB?’lA)とを第1表に示す割合で添加
し、溶媒としてトルエンを用いこれをボールミルにて1
7時間混合して所定粘度を有するスラリーを作成した。
[Comparative Examples 1 to 4] Itria (Y2O,) as a sintering aid and polyvinyl butyral (Y2O,) as a binder were added to aluminum nitride raw powder obtained by the reduction method of aluminum oxide having the particle size distribution shown in FIG. 4C and D. PVB), polyisobutyl methacrylate (PrBMA), and polybutyl methacrylate (PB?'lA) were added in the proportions shown in Table 1, and this was mixed in a ball mill using toluene as a solvent.
A slurry having a predetermined viscosity was prepared by mixing for 7 hours.

これらのスラリーをドクターブレード法によりグリーン
シート化した。
These slurries were made into green sheets using a doctor blade method.

得られたグリーンシートのテープ成形状態(クラックや
シワの発生状態)、テープ成形厚み、生密度、脱バイン
ダ後のテープ成形状態(クランク発生状態)、耐折れ性
及び脱バインダ後の生密度を夫々前記実施例と同様の方
法で評価した。
The tape molding state of the obtained green sheet (crack and wrinkle occurrence state), tape molding thickness, green density, tape molding state after binder removal (crank occurrence state), bending resistance, and green density after binder removal, respectively. Evaluation was made in the same manner as in the above example.

脱バインダは大気中昇温速度50℃/時間で600”C
X 1時間保持した。
Binder removal was performed in the atmosphere at a heating rate of 50°C/hour to 600”C.
X It was held for 1 hour.

上記実施例1〜9及び比較例1〜4から理解されるよう
に粒径3μm以上が22〜45体積%で粒径3μm未満
が55〜78体積χの粒度分布を有する窒化アルミニウ
ム原料粉末を使用した本発明の実施例1〜9のものはグ
リーンシートの生密度が2.08〜2.20g/cm3
程度であり、この程度の生密度を有するグリーンシート
はテープ成形状態においてクランクの発生がないか又は
あっても僅少であり、また脱バインダ後のテープ成形状
態及び耐折れ性評価においてクランクの発生が認められ
ず良好である。さらに、脱バインダ後の生密度も1.7
8〜1.87g/cm’程度と適当であり良好なグリー
ンシートが得られている。
As understood from the above Examples 1 to 9 and Comparative Examples 1 to 4, an aluminum nitride raw material powder having a particle size distribution of 22 to 45% by volume of particles with a particle size of 3 μm or more and 55 to 78 volume χ of particles with a particle size of less than 3 μm was used. In Examples 1 to 9 of the present invention, the green sheet density was 2.08 to 2.20 g/cm3.
Green sheets with this level of green density show no or only a small amount of cranking in the tape-forming state, and also show no cranking in the tape-forming state after binder removal and evaluation of bending resistance. It is not recognized and is good. Furthermore, the green density after removing the binder is 1.7.
A green sheet having a suitable and good quality of about 8 to 1.87 g/cm' was obtained.

これに対し、粒径3μm以上が約10体積%以下で、粒
径3μm未満が約90体積%以上の粒度分布を有する窒
化アルミニウム原料粉末を使用した比較例1〜4のもの
はグリーンシートの生密度が2.29〜2.34g/c
mゴと本発明の実施例1〜9のものと比べ最密充填性が
高すぎ、テープ成形状態においてはクラックの発生率が
高い。また、耐折れ性評価においてもクラックが生じ易
くなり、脱バインダ後の生密度も本発明の実施例と比べ
1.97〜2.01と高い値を示しておりクラックが発
生し易(なっている。
On the other hand, in Comparative Examples 1 to 4, which used aluminum nitride raw material powder having a particle size distribution in which the particle size of 3 μm or more was about 10% by volume or less and the particle size of less than 3 μm was about 90% by volume or more, the green sheet was Density is 2.29-2.34g/c
Compared to Examples 1 to 9 of the present invention, the close packing properties are too high, and the incidence of cracks is high in the tape molding state. In addition, cracks are more likely to occur in the evaluation of bending resistance, and the green density after binder removal is 1.97 to 2.01, which is higher than the examples of the present invention, making it easier for cracks to occur. There is.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明においては粒径3μm以上が22〜
45体積χで、粒径3μm未満が55〜78体積χの粒
度分布を有する窒化アルミニウム原料粉末をテープ成形
したものであるので、成形されたテープ中の粒子相互の
充填性を適度な状態に保つことができ、テープ成形に際
してクランク及びシワの発生が少なく且つ耐折れ性が良
好であり脱バインダ後に発生し易いクランクを抑制する
ことができ、良好なグリーンシートを提供することがで
きる。
As mentioned above, in the present invention, the particle size of 3 μm or more is 22 to
Since the aluminum nitride raw material powder has a particle size distribution of 55 to 78 volume χ with a particle diameter of less than 3 μm and has a particle size distribution of 55 to 78 volume χ and is formed into a tape, the filling properties of the particles in the formed tape are maintained at an appropriate level. It is possible to provide a good green sheet with less occurrence of cranks and wrinkles during tape forming and good bending resistance, suppressing the occurrence of cranks that are likely to occur after binder removal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で使用している現在市販の金属
アルミニウムの直接窒化法により得られた代表的な窒化
アルミニウム原料粉末の電子顕微鏡写真、第2図は本発
明の窒化アルミニウム原料粉末の粒径積分分布図、(揚
場製作所 CAPA50〇−沈降法による)、第3図は
比較例の原料粉末であり、現在提供されている酸化物還
元法により得られた代表的な窒化アルミニウム原料粉末
の電子顕微鏡写真、第4図は比較例の窒化アルミニウム
原料粉末の粒径積分分布図、(揚場製作所CAPA50
0−沈降法による)である。
Figure 1 is an electron micrograph of a typical aluminum nitride raw material powder obtained by the direct nitriding method of currently commercially available aluminum metal used in the examples of the present invention, and Figure 2 is an electron micrograph of the aluminum nitride raw material powder of the present invention. Particle size integral distribution diagram (by Ageba Seisakusho CAPA500-sedimentation method), Figure 3 is a raw material powder of a comparative example, which is a typical aluminum nitride raw material powder obtained by the currently available oxide reduction method. Fig. 4 is a particle size integral distribution diagram of aluminum nitride raw material powder of a comparative example (Ageba Manufacturing CAPA50).
0-by sedimentation method).

Claims (1)

【特許請求の範囲】[Claims] (1)粒径3μm以上が22〜45体積%で、粒径3μ
m未満が55〜78体積%の粒度分布を有する窒化アル
ミニウム原料粉末に適当な焼結助剤を添加し混合粉砕後
、適当な有機結合剤を混合して得られたスラリーをテー
プ成形することを特徴とする窒化アルミニウム質グリー
ンシートの製法。
(1) 22 to 45% by volume of particles with a particle size of 3 μm or more, and a particle size of 3 μm or more
An appropriate sintering aid is added to an aluminum nitride raw material powder having a particle size distribution of 55 to 78% by volume, and the resulting slurry is tape-formed by mixing with an appropriate organic binder. A unique manufacturing method for aluminum nitride green sheets.
JP61200803A 1985-10-31 1986-08-26 Manufacturing method of aluminum nitride-based green sheet Expired - Lifetime JPH0774105B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61200803A JPH0774105B2 (en) 1986-08-26 1986-08-26 Manufacturing method of aluminum nitride-based green sheet
US07/222,381 US5314850A (en) 1985-10-31 1988-07-19 Aluminum nitride sintered body and production thereof
US07/770,336 US5154863A (en) 1985-10-31 1991-10-03 Aluminum nitride-based sintered body and process for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200803A JPH0774105B2 (en) 1986-08-26 1986-08-26 Manufacturing method of aluminum nitride-based green sheet

Publications (2)

Publication Number Publication Date
JPS6355164A true JPS6355164A (en) 1988-03-09
JPH0774105B2 JPH0774105B2 (en) 1995-08-09

Family

ID=16430451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200803A Expired - Lifetime JPH0774105B2 (en) 1985-10-31 1986-08-26 Manufacturing method of aluminum nitride-based green sheet

Country Status (1)

Country Link
JP (1) JPH0774105B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273381A (en) * 1988-04-25 1989-11-01 Tokin Corp Manufacture of aluminum nitride substrate
JP2013082592A (en) * 2011-10-12 2013-05-09 Tokuyama Corp Method for producing aluminum nitride sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252179A (en) * 1985-08-28 1987-03-06 株式会社トクヤマ Aluminum nitride composition
JPS62138363U (en) * 1986-02-20 1987-09-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252179A (en) * 1985-08-28 1987-03-06 株式会社トクヤマ Aluminum nitride composition
JPS62138363U (en) * 1986-02-20 1987-09-01

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273381A (en) * 1988-04-25 1989-11-01 Tokin Corp Manufacture of aluminum nitride substrate
JP2013082592A (en) * 2011-10-12 2013-05-09 Tokuyama Corp Method for producing aluminum nitride sintered body

Also Published As

Publication number Publication date
JPH0774105B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
JPH07504150A (en) Method for manufacturing co-fired multilayer base material
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
JP2005015654A (en) Binder resin for conductive past and conductive paste
CN100339338C (en) Method for producing a silicon nitride filter
JPS6355164A (en) Manufacture of aluminum nitride base green sheet
TW201202170A (en) Aluminum nitride substrate for circuit board and method for producing the same
JP2004323306A (en) Burning-down sheet and method for manufacturing ceramic laminate using the same
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
JP2003318060A (en) Manufacturing method of laminated electronic component
JPS60239352A (en) Manufacture of ceramic sintered body
JP3707866B2 (en) Method for producing aluminum nitride green body
JP3607712B2 (en) Green sheet for aluminum nitride ceramic substrate
JPH02129055A (en) Production of ceramic green sheet
JPH07149572A (en) Production of aluminum nitride green sheet
JPS63137497A (en) Manufacture of ceramic wiring circuit board
JPS60192605A (en) Manufacture of ceramic sludge
JP2001138317A (en) Ceramic slurry composition, ceramic green sheet, and method for producing laminated ceramic electronic part
JP2761790B2 (en) Manufacturing method of aluminum nitride green sheet
JPH07267739A (en) Production of aluminum nitride green sheet
JPS60231458A (en) Manufacture of ceramic dielectic
JPS6054964A (en) Manufacture of ceramic mud
JPS63151684A (en) Manufacture of sintered body
JPS6217075A (en) Aluminum nitride sintered body and manufacture
JP3038320B2 (en) Method for producing aluminum nitride sintered body for circuit board
JPS6265979A (en) Production of aluminum nitride sintered plate