JPS6354917B2 - - Google Patents

Info

Publication number
JPS6354917B2
JPS6354917B2 JP55146738A JP14673880A JPS6354917B2 JP S6354917 B2 JPS6354917 B2 JP S6354917B2 JP 55146738 A JP55146738 A JP 55146738A JP 14673880 A JP14673880 A JP 14673880A JP S6354917 B2 JPS6354917 B2 JP S6354917B2
Authority
JP
Japan
Prior art keywords
oil
motor
compressor
switch
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146738A
Other languages
Japanese (ja)
Other versions
JPS5770974A (en
Inventor
Shunji Suzuki
Michio Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP55146738A priority Critical patent/JPS5770974A/en
Publication of JPS5770974A publication Critical patent/JPS5770974A/en
Publication of JPS6354917B2 publication Critical patent/JPS6354917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は、冷却用油及び油タンクが冷えている
状態で運転を開始したドレンの発生し易い運転開
始時から、積極的に油温を上昇させて、油及び油
タンクが十分に暖まつたドレンの発生し難くなる
定常運転域へ移行するまでの運転初期域の時間を
極力短くする一方、積極的に油温を上昇させるの
に要するエネルギーを極力小さくするようにした
油冷式圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention actively raises the oil temperature from the start of operation when the cooling oil and oil tank are cold, when condensation is likely to occur. While minimizing the time in the initial operation region until the tank shifts to a steady operation region where it is sufficiently warm and condensate is less likely to occur, the energy required to actively raise the oil temperature is minimized. This article relates to an oil-cooled compressor.

油冷式圧縮機、例えばスクリユ圧縮機において
は、圧縮すべき気体(通常は空気)と共に吸込ん
だ油により圧縮機本体の冷却と潤滑とを行うよう
になつている。そして、圧縮機本体より吐出され
た圧縮気体は、油タンクで油を除去された後、貯
留タンクあるいは直接圧縮気体を必要とする機器
類へ導びかれる一方、分離された油は、圧縮熱に
より高温となつているので、冷却された後再び圧
縮機本体の冷却と潤滑とに使用される。
In an oil-cooled compressor, such as a screw compressor, the compressor body is cooled and lubricated by oil sucked together with the gas to be compressed (usually air). The compressed gas discharged from the compressor body is then removed from oil in an oil tank and then led to a storage tank or directly to equipment that requires compressed gas. Since it is at a high temperature, it is cooled down and used again to cool and lubricate the compressor body.

ところで、圧縮機本体より吐出された直後の圧
縮気体は高温多湿であるため、特に運転開始時の
ように油および油タンクそのものが十分に暖まつ
てないときは、油タンク内で冷却されてドレンが
発生し、油劣化及び発錆の原因となる。すなわ
ち、油は、圧縮機本体を冷却する関係上低温であ
ることが好ましいが、ドレン発生防止上からはあ
る程度高温(圧縮気体の露点温度により定まる
が、圧縮気体の圧力が8−9Kg/cm2のとき、通常
被圧縮気体の温度としての室温+50℃以上すなわ
ち70゜〜90℃以上)とする必要がある。
By the way, compressed gas immediately after being discharged from the compressor main body is high temperature and humid, so especially when the oil and oil tank itself are not sufficiently warm, such as at the start of operation, the compressed gas is cooled in the oil tank and drained. occurs, causing oil deterioration and rusting. In other words, it is preferable that the oil be at a low temperature in order to cool the compressor body, but in order to prevent the generation of condensate, the oil should be at a certain high temperature (this is determined by the dew point temperature of the compressed gas, but it is preferable that the pressure of the compressed gas is 8-9 kg/cm 2 In this case, it is usually necessary to keep the temperature of the gas to be compressed at room temperature +50°C or higher, that is, 70° to 90°C or higher).

このため従来は、油タンクと油冷却器との系路
間に温度調整弁を接続し、該温度調整弁と圧縮機
本体の吸込口とを油冷却器をバイパスするバイパ
ス管で接続し、油の温度に応じて油冷却器とバイ
パス管とを流れる流量の割合を制御するようにし
ていた。
For this reason, conventionally, a temperature adjustment valve was connected between the oil tank and the oil cooler system, and the temperature adjustment valve and the suction port of the compressor body were connected by a bypass pipe that bypassed the oil cooler. The ratio of the flow rate flowing through the oil cooler and the bypass pipe is controlled according to the temperature of the oil cooler.

しかしながら、上記従来のものでは、油が、運
転開始時の室温程度の低い温度からドレンが発生
しなくなる圧縮気体の露点温度になるまで時間が
かかり、特に圧縮気体系路内の圧力によつて作動
する圧力スイツチによりモータの起動、停止を行
うものは連続運転する時間が短いため、油温が十
分に上昇するまでは相当の長時間を要することと
なる。とりわけ、運転開始時に貯留タンクがほぼ
最高圧に近いときは、この現象が著しいこととな
る。
However, in the above-mentioned conventional systems, it takes time for the oil to reach the dew point temperature of the compressed gas at which condensation does not occur from a temperature as low as room temperature at the start of operation. Since the continuous operation time of a motor that starts and stops using a pressure switch is short, it takes a considerable amount of time until the oil temperature rises sufficiently. This phenomenon is particularly noticeable when the storage tank is close to its maximum pressure at the start of operation.

本発明は上記欠点を解消するもので、油タンク
内でドレンが発生し難くなる定常運転域となるま
では、モータを駆動し続けて積極的に油温の上昇
を可及的速やかに行う一方、過分な油温上昇を行
わないようにして、積極的な油温上昇のために要
するエネルギーが極力小さくて済むようにした油
冷式圧縮機を提供することを目的とする。
The present invention solves the above-mentioned drawbacks, and the present invention actively raises the oil temperature as quickly as possible by continuing to drive the motor until the steady operating range is reached where condensation is less likely to occur in the oil tank. It is an object of the present invention to provide an oil-cooled compressor in which the energy required for proactively increasing the oil temperature is minimized by preventing an excessive increase in the oil temperature.

そして、従来の問題点を解決する手段として
は、圧縮機本体を駆動するためのモータの制御
を、圧縮機本体の下流側の系路に設けられ、系路
内の圧力が一定値以上に上昇したときに作動し
て、前記モータの運転を停止させる圧力スイツチ
と、油タンク内に設けられ、油タンク内の圧縮気
体の相対湿度がドレンを生じ易い範囲で予め設定
した設定値内にあるときに作動する湿度スイツチ
と、圧縮機本体の駆動時に、前記湿度スイツチが
作動したときには、前記圧力スイツチが作動して
もモータを運転させておくように制御する回路
と、で行なうようにしたことにある。
As a means to solve the conventional problems, the motor control for driving the compressor body is installed in the system downstream of the compressor body, and the pressure in the system increases above a certain value. A pressure switch is provided in the oil tank that operates to stop the operation of the motor when the relative humidity of the compressed gas in the oil tank is within a preset value within a range where condensation is likely to occur. A humidity switch that operates when the compressor main body is operated, and a circuit that controls the motor so that when the humidity switch is activated while the compressor main body is operated, the motor is kept running even if the pressure switch is activated. be.

この構成によると、運転開始時に、圧縮機本体
の下流側の圧力が一定値以上になつた場合、圧力
スイツチが作動するが、油タンク内の圧縮気体の
相対湿度がドレンを生じ易い範囲で設定した設定
値(例えば、相対湿度90%〜100%)内にあると
きには、湿度スイツチが作動して、接続回路によ
りモータを引き続き運転させておくことにより、
いち早く油温を上昇させ、ドレンの発生を低減す
る。
According to this configuration, when the pressure on the downstream side of the compressor body exceeds a certain value at the start of operation, the pressure switch is activated, but the pressure switch is set so that the relative humidity of the compressed gas in the oil tank is likely to cause drainage. When the relative humidity is within the set value (for example, 90% to 100%), the humidity switch is activated and the connected circuit continues to operate the motor.
Raise the oil temperature quickly and reduce the occurrence of condensate.

以下に本発明の実施例を図面に基いて説明す
る。第1図において、1は圧縮機本体、2は圧縮
機本体を駆動するモータで、圧縮機本体1として
は、例えば互いに噛み合う雄、雌ロータを備えた
スクリユ式のものあるいはベーン式のもの等が用
いられる。この圧縮機本体1の吸込側には切換弁
3を介して吸込フイルタ4が接続され、該圧縮機
本体1の吐出側より伸びる吐出管5が油タンク6
の油面上に開口されている。油タンク6は、その
油面上において油分離器7が内蔵され、該油分離
器7と圧縮気体の貯留タンク8とが配管9を介し
て接続され、該配管9には油分離器7側より順次
保圧弁10、逆止弁11が接続されている。ま
た、油タンク6内の油液中より伸びる油配管12
が圧縮機本体1の吸込側に接続され、該油配管1
2には、油タンク6側より順次温度調整弁13、
油冷却器14、油フイルタ15が接続され、要素
14,15間の油配管12と温度調整弁13との
間が、油冷却器14をバイパスするバイパス管1
6により接続されている。さらに、油分離器7と
圧縮機本体1の吸込側とが、絞り17を備えた油
戻し管18により接続されている。
Embodiments of the present invention will be described below with reference to the drawings. In Fig. 1, 1 is a compressor main body, and 2 is a motor that drives the compressor main body.The compressor main body 1 may be, for example, a screw type or a vane type with male and female rotors that mesh with each other. used. A suction filter 4 is connected to the suction side of the compressor body 1 via a switching valve 3, and a discharge pipe 5 extending from the discharge side of the compressor body 1 is connected to an oil tank 6.
The opening is above the oil level. The oil tank 6 has an oil separator 7 built-in above its oil surface, and the oil separator 7 and a compressed gas storage tank 8 are connected via a pipe 9. A pressure holding valve 10 and a check valve 11 are connected in this order. Also, an oil pipe 12 extending from the oil in the oil tank 6
is connected to the suction side of the compressor main body 1, and the oil pipe 1
2, temperature control valves 13 are sequentially installed from the oil tank 6 side;
A bypass pipe 1 to which an oil cooler 14 and an oil filter 15 are connected, and which bypasses the oil cooler 14, is connected between the oil pipe 12 between the elements 14 and 15 and the temperature control valve 13.
6. Furthermore, the oil separator 7 and the suction side of the compressor main body 1 are connected by an oil return pipe 18 provided with a throttle 17.

油タンク6には放気弁19が接続され、これ
は、励磁時に閉となる電磁弁からなり、実質的に
起動時の負荷軽減装置を構成する。
A discharge valve 19 is connected to the oil tank 6, and is composed of a solenoid valve that is closed during excitation, and substantially constitutes a load reduction device at the time of startup.

20は圧力スイツチ、21は湿度スイツチであ
り、圧力スイツチ20は、貯留タンク8内の圧力
が所定圧にまで上昇したら開となる常閉型とされ
ている。また、湿度スイツチ21は、油分離器7
の直下流側の相対湿度すなわち油がほぼ完全に分
離された後の圧縮気体の相対湿度を検出するもの
で、例えば、相対湿度が90〜100%であるときに
閉となる常開型とされている。
20 is a pressure switch, 21 is a humidity switch, and the pressure switch 20 is a normally closed type that opens when the pressure in the storage tank 8 rises to a predetermined pressure. Further, the humidity switch 21 is connected to the oil separator 7.
It detects the relative humidity immediately downstream of the compressed gas after the oil has been almost completely separated.For example, it is a normally open type that closes when the relative humidity is between 90% and 100%. ing.

上記両スイツチ20,21は、協働してモータ
2の運転を制御するもので、以下にその回路例に
ついて説明する。モータ2は三相交流型のものと
なつていて、その第1線2a、第2線2b、第3
線2cが電源22に接続され、各線2a,2b,
2cには電磁開閉器23の常開接点23a,23
b,23cが接続されている。この電磁開閉器2
3におけるコイル23dの一端が、接点23cよ
りも電源22側において第3線2cに接続されて
いる。また、コイル23dの他端が、湿度スイツ
チ21を介して、接点23bよりもモータ2側に
おいて第2線2bに接続されると共に、互いに直
列な圧力スイツチ20とメインスイツチ24とを
介して、接点23bよりも電源22側において第
2線2bに接続されている。そして、両接点23
a,23bよりもモータ2側において、第1線2
aと第2線2bとの間に放気弁19のコイル19
aが接続されている。
Both switches 20 and 21 work together to control the operation of the motor 2, and an example of the circuit will be described below. The motor 2 is of a three-phase AC type, and the first line 2a, second line 2b, and third line are
Line 2c is connected to power supply 22, and each line 2a, 2b,
2c is the normally open contact 23a, 23 of the electromagnetic switch 23.
b, 23c are connected. This electromagnetic switch 2
One end of the coil 23d in No. 3 is connected to the third wire 2c on the side closer to the power source 22 than the contact 23c. The other end of the coil 23d is connected via the humidity switch 21 to the second wire 2b on the motor 2 side than the contact 23b, and is connected to the second wire 2b via the pressure switch 20 and main switch 24 which are in series with each other. It is connected to the second line 2b on the side closer to the power supply 22 than 23b. And both contacts 23
On the motor 2 side from a and 23b, the first line 2
The coil 19 of the air release valve 19 is connected between a and the second wire 2b.
a is connected.

次に、上記構成の作用について説明する。先
ず、油及び油タンク6が室温程度に十分冷えてお
り、かつ貯留タンク8が空である状態からメイン
スイツチ24を閉とすると、圧力スイツチ20が
閉となつているので、コイル23dが励磁されて
各接点23a,23b,23cが閉となり、モー
タ2に通電されると同時に、コイル19aが励磁
されて放気弁19が閉となる。このモータ2への
通電により圧縮機本体1が駆動され、該圧縮機本
体1は、油及び吸込フイルタ4を経た被圧縮気体
としての大気を吸込み(切換弁3は、油タンク6
内の圧力が小さいので図示のように圧縮機本体1
の吸込側を大気と連通させている)、該吸込んだ
油による冷却、潤滑、シール作用をうけつつ、圧
縮作用を行うことになる。この圧縮機本体1で圧
縮された圧縮気体は、圧縮熱で加熱された油と共
に油タンク6上に吐出され、ここで大まかに油が
分離される。そして、圧縮気体は、油分離器7を
通過するときにほぼ完全に油分を除去された後、
貯留タンク8に貯留される。一方、分離された油
は、油配管12、油戻し管18を経て圧縮機本体
1へ還流されるが、油温がまだ十分に上昇してい
ないので、油配管12に流入した油の殆んどは、
油冷却器14を通ることなくバイパス管16を通
ることとなる。
Next, the operation of the above configuration will be explained. First, when the main switch 24 is closed when the oil and oil tank 6 are sufficiently cooled to about room temperature and the storage tank 8 is empty, the pressure switch 20 is closed, so the coil 23d is energized. The contacts 23a, 23b, and 23c are closed, and at the same time the motor 2 is energized, the coil 19a is excited and the discharge valve 19 is closed. By energizing the motor 2, the compressor main body 1 is driven, and the compressor main body 1 sucks in air as the compressed gas that has passed through the oil and the suction filter 4 (the switching valve 3 is connected to the oil tank 6).
Since the pressure inside is small, compressor main body 1 is
(The suction side of the oil is communicated with the atmosphere), and the compressed oil is cooled, lubricated, and sealed by the sucked oil. The compressed gas compressed by the compressor main body 1 is discharged onto the oil tank 6 together with the oil heated by the heat of compression, where the oil is roughly separated. Then, when the compressed gas passes through the oil separator 7, the oil content is almost completely removed, and then,
It is stored in the storage tank 8. On the other hand, the separated oil is returned to the compressor main body 1 via the oil pipe 12 and the oil return pipe 18, but since the oil temperature has not yet risen sufficiently, most of the oil that has flowed into the oil pipe 12 What?
It passes through the bypass pipe 16 without passing through the oil cooler 14.

このように、圧縮熱をうけて油温が上昇する
が、これと併行して両タンク6,8内の圧力も上
昇する。貯留タンク8内の圧力が所定圧にまで達
すると、圧力スイツチ20が作動して開となり、
この開となるときの油タンク6内の圧力をうけて
切換弁3が切換えられて、圧縮機本体1の吸込側
を油タンク6内と連通させる。
In this way, the oil temperature rises due to the heat of compression, but at the same time, the pressure in both tanks 6 and 8 also rises. When the pressure inside the storage tank 8 reaches a predetermined pressure, the pressure switch 20 is activated and opened.
The switching valve 3 is switched in response to the pressure inside the oil tank 6 when it is opened, and the suction side of the compressor main body 1 is communicated with the inside of the oil tank 6.

ここで、上述のように圧力スイツチ20が開と
なつたとき、モータ2及び放気弁19は、湿度ス
イツチ21の作動に応じて、異なる作動態様をと
る。すなわち、油分を除去された後の圧縮気体の
相対湿度が90〜100%のように、ドレンを発生し
易い値であるときは、湿度スイツチ21は閉とな
つており、したがつて、モータ2に通電され続け
ると同時に放気弁19も閉状態を維持している。
したがつて、圧縮機本体1は、油タンク6内の圧
縮気体を再度圧縮する態様をとり、これにより、
大気を圧縮する場合に比して小さい圧縮熱を生じ
させつつ、油温を更に上昇させる。この更なる油
温上昇により油を除去された圧縮気体の相対湿度
が90%以下になれば(この状態が定常運転域とな
る)、湿度スイツチ21が開となり、これにより
モータ2への通電が断たれてこれが停止すると同
時に、放気弁19が開となつて油タンク6内の圧
力を解放する(なお、圧力スイツチ20は前述の
如く既に開となつている)。
Here, when the pressure switch 20 is opened as described above, the motor 2 and the air release valve 19 take different operating modes depending on the operation of the humidity switch 21. That is, when the relative humidity of the compressed gas after oil content is removed is 90 to 100%, which is a value that tends to cause drainage, the humidity switch 21 is closed, and therefore the motor 2 At the same time, the air release valve 19 also remains closed.
Therefore, the compressor main body 1 takes a mode in which the compressed gas in the oil tank 6 is compressed again, and thereby,
While generating less heat of compression than when compressing the atmosphere, the oil temperature is further increased. When the relative humidity of the compressed gas from which the oil has been removed falls below 90% due to this further increase in oil temperature (this state becomes the steady operating range), the humidity switch 21 is opened, and the motor 2 is thereby no longer energized. At the same time as this is cut off and stopped, the release valve 19 opens to release the pressure inside the oil tank 6 (note that the pressure switch 20 has already been opened as described above).

モータ2の停止後、貯留タンク8内の圧縮気体
を消費することによりこの内部の圧力が低下する
と、圧力スイツチ20が閉となつてモータ2を再
び駆動させ、この後は、湿度スイツチ21が閉と
ならない限り、該圧力スイツチ20のみにてモー
タ2の起動・停止が制御される。
After the motor 2 stops, when the pressure inside the storage tank 8 decreases by consuming the compressed gas, the pressure switch 20 closes and drives the motor 2 again, and after this, the humidity switch 21 closes. Unless this happens, starting and stopping of the motor 2 is controlled only by the pressure switch 20.

ところで、一旦モータ2を停止させた後は、湿
度スイツチ21が閉となつても、圧力スイツチ2
0が閉とならない限り、モータ2は起動されな
い。すなわち、実施例では、運転初期域におい
て、圧力スイツチ20が専らモータ2の起動を制
御し、湿度スイツチ21は専らモータ2の停止を
制御する。このような制御方式をとることは、モ
ータ2の起動は事実上圧縮気体が不足した場合に
要求されるという観点、またモータ2の停止時に
起動負荷軽減のために油タンク6内を放気した
際、断熱膨張により一時的に油タンク6内の相対
湿度が高くなつて湿度スイツチ21が閉となつて
も、モータ2の起動を防ぐという観点からして、
好ましいものである。
By the way, once the motor 2 is stopped, even if the humidity switch 21 is closed, the pressure switch 2
The motor 2 will not be started unless 0 is closed. That is, in the embodiment, the pressure switch 20 exclusively controls starting of the motor 2 and the humidity switch 21 exclusively controls stopping of the motor 2 in the initial operation range. The adoption of this control method is based on the viewpoint that starting the motor 2 is practically required when there is a shortage of compressed gas, and also because the oil tank 6 is vented to reduce the starting load when the motor 2 is stopped. At this time, even if the relative humidity in the oil tank 6 temporarily increases due to adiabatic expansion and the humidity switch 21 is closed, from the viewpoint of preventing the motor 2 from starting,
This is preferable.

以上実施例について説明したが、本発明はこれ
に限らず、例えば次のような場合をも含むもので
ある。
Although the embodiments have been described above, the present invention is not limited thereto, and includes, for example, the following cases.

圧力スイツチ20は、圧縮機本体の下流側の
系路内の適宜の箇所の圧力により作動するもの
であればよい。
The pressure switch 20 may be one that is activated by pressure at an appropriate location in the system downstream of the compressor main body.

湿度スイツチ21は、油分離器7の直下流側
等、油タンク6内のドレン発生と因果関係を有
する要素の湿度により作動するものであればよ
い。
The humidity switch 21 may be one that operates based on the humidity of an element that has a causal relationship with the generation of drain in the oil tank 6, such as immediately downstream of the oil separator 7.

圧力スイツチ20が開となつたときになおも
モータ2を運転し続ける際、圧縮気体系路が過
圧になるのを防止する手段としては、例えば、
油タンク6内に圧縮気体を放出するための放気
弁(放気弁19とは別の機能を有するもので、
第2図のような回路構式においては、圧力スイ
ツチ20が開でかつ湿度スイツチ21が閉とな
るような条件で放気するもの)を設ける等、適
宜の手段を採用し得る。
When the motor 2 continues to operate even after the pressure switch 20 is opened, the means for preventing the compressed gas line from becoming overpressured includes, for example,
A release valve for releasing compressed gas into the oil tank 6 (has a different function from the release valve 19,
In the circuit configuration as shown in FIG. 2, appropriate means may be adopted, such as providing a device that releases air under conditions such that the pressure switch 20 is open and the humidity switch 21 is closed.

本発明は以上述べたことから明らかなように、
ドレンが発生し難くなる定常運転域に至るまでの
時間、すなわち運転初期域の時間を短くすること
ができ、ドレン発生防止上好ましいものである。
As is clear from the above description, the present invention has the following features:
It is possible to shorten the time required to reach the steady operation range in which drainage is less likely to occur, that is, the time in the initial operation range, which is preferable in terms of preventing drainage.

また湿度スイツチによりモータの運転を制御し
ているので、例えば温度スイツチを用いたときの
ように、室温と油タンク内との温度差を勘案して
モータの運転を制御する場合に比して、油温上昇
のためのみのモータの運転時間を短くすることが
でき省エネルギーの見地から好ましい。すなわ
ち、上記温度差を利用したものは、使用雰囲気の
最高室温のときにおいてドレンが発生しないよう
にモータの停止時期を定めるので、室温が十分に
低温であるときは、ドレンが最早発生しなくなつ
たにも拘らず、上記最高室温に対応した所定の温
度差(約50℃deg)となるまで油温を上昇させ続
け(モータを駆動させ続け)、エネルギーの浪費
を生じる。
Also, since the motor operation is controlled by a humidity switch, compared to the case where the motor operation is controlled by taking into account the temperature difference between the room temperature and the inside of the oil tank, such as when using a temperature switch, for example, It is possible to shorten the operating time of the motor only for raising the oil temperature, which is preferable from the viewpoint of energy saving. In other words, the motor that utilizes the temperature difference determines when to stop the motor so that no condensate is generated at the maximum room temperature of the operating atmosphere, so when the room temperature is sufficiently low, condensate no longer occurs. Despite this, the oil temperature continues to rise (the motor continues to be driven) until a predetermined temperature difference (approximately 50 degrees Celsius) corresponding to the maximum room temperature is reached, resulting in wasted energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2
図は本発明の一実施例を示す電気回路図である。 1……圧縮機本体、2……モータ、6……油タ
ンク、8……貯留タンク、12……油配管、20
……圧力スイツチ、21……湿度スイツチ。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure is an electrical circuit diagram showing one embodiment of the present invention. 1... Compressor body, 2... Motor, 6... Oil tank, 8... Storage tank, 12... Oil piping, 20
...Pressure switch, 21...Humidity switch.

Claims (1)

【特許請求の範囲】 1 モータにより駆動され、油により冷却されつ
つ気体を圧縮する圧縮機本体と、該圧縮機本体よ
り吐出された圧縮気体中より油を除去する油タン
クと、該油タンク内の油を前記圧縮機本体に油冷
却器を介して供給するための油配管と、前記圧縮
機本体の下流側の系路に設けられ、該系路内の圧
力が一定値以上に上昇したときに作動して、前記
モータの運転を停止させる圧力スイツチと、から
なる油冷式圧縮機において、 前記油タンク内に設けられ、油タンク内の圧縮
気体の相対湿度がドレンを生じ易い範囲で予め設
定した設定値内にあるときに作動する湿度スイツ
チと、 前記圧縮機本体の駆動時に、前記湿度スイツチ
が作動したときには、前記圧力スイツチが作動し
てもモータを運転させておくように制御する回路
と、 を設けたことを特徴とする油冷式圧縮機。 2 圧縮機本体の下流側の系路内に設けられた貯
留タンク内の圧力が一定値以上に上昇したときに
作動するように圧力スイツチを設けたことを特徴
とする特許請求の範囲第1項記載の油冷式圧縮
機。
[Scope of Claims] 1. A compressor main body driven by a motor and compressing gas while being cooled by oil, an oil tank removing oil from compressed gas discharged from the compressor main body, and an inside of the oil tank. An oil pipe for supplying oil to the compressor body via an oil cooler and a system line downstream of the compressor body, and when the pressure in the system line increases above a certain value. and a pressure switch that is activated to stop the operation of the motor, the pressure switch being installed in the oil tank and having a relative humidity of the compressed gas in the oil tank in advance in a range where condensation is likely to occur. a humidity switch that operates when the humidity is within a set value; and a circuit that controls the motor to continue operating even if the pressure switch is activated when the humidity switch is activated while the compressor main body is being driven. An oil-cooled compressor characterized by having the following. 2. Claim 1, characterized in that a pressure switch is provided to operate when the pressure in a storage tank provided in a system on the downstream side of the compressor body rises above a certain value. The oil-cooled compressor described.
JP55146738A 1980-10-20 1980-10-20 Oil cooling type compressor Granted JPS5770974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146738A JPS5770974A (en) 1980-10-20 1980-10-20 Oil cooling type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146738A JPS5770974A (en) 1980-10-20 1980-10-20 Oil cooling type compressor

Publications (2)

Publication Number Publication Date
JPS5770974A JPS5770974A (en) 1982-05-01
JPS6354917B2 true JPS6354917B2 (en) 1988-10-31

Family

ID=15414471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146738A Granted JPS5770974A (en) 1980-10-20 1980-10-20 Oil cooling type compressor

Country Status (1)

Country Link
JP (1) JPS5770974A (en)

Also Published As

Publication number Publication date
JPS5770974A (en) 1982-05-01

Similar Documents

Publication Publication Date Title
KR900001895B1 (en) Dual pump down cycle for protecting a compressor in a refrigeration system
US4361417A (en) Oil-cooled compressor
US4358247A (en) Oil cooled compressor
JP3384225B2 (en) Oil-cooled screw compressor and operating method thereof
JPH08319976A (en) Oil-cooled type air compressor
JPS6354917B2 (en)
JPS6229640B2 (en)
JPH021516Y2 (en)
WO2017130303A1 (en) Gas compressor and gas compressor system
US2254593A (en) Refrigerating apparatus
JPH0329993B2 (en)
JPS6120718B2 (en)
JPS6155021B2 (en)
JPS6211347Y2 (en)
JP2005009725A (en) Air conditioner and control method of air conditioner
JPH02154957A (en) Accumulator for refrigerating cycle
KR850001189B1 (en) Apparatus for satisfying heating and cooling demands
JPS644078B2 (en)
JPH05172077A (en) Refrigerant compressor
JPS5888489A (en) Oil-cooled compressor
JPS602533Y2 (en) air conditioner
JPS5989960A (en) Preventive device for starting during suspension of air conditioner
JPS5842842Y2 (en) Two-stage compression refrigeration equipment
JPS6323395B2 (en)
JPS6243247Y2 (en)