JPS6354509B2 - - Google Patents

Info

Publication number
JPS6354509B2
JPS6354509B2 JP18960281A JP18960281A JPS6354509B2 JP S6354509 B2 JPS6354509 B2 JP S6354509B2 JP 18960281 A JP18960281 A JP 18960281A JP 18960281 A JP18960281 A JP 18960281A JP S6354509 B2 JPS6354509 B2 JP S6354509B2
Authority
JP
Japan
Prior art keywords
axis
displacement element
cutting
tool
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18960281A
Other languages
Japanese (ja)
Other versions
JPS5890442A (en
Inventor
Masatoshi Murofushi
Isamu Tanimoto
Toshio Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP18960281A priority Critical patent/JPS5890442A/en
Publication of JPS5890442A publication Critical patent/JPS5890442A/en
Priority to US06/701,811 priority patent/US4602540A/en
Publication of JPS6354509B2 publication Critical patent/JPS6354509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding sub-groups G05B19/21, G05B19/27, and G05B19/33
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34161Superposition curves, combine xy slides with other xy or polar slides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37275Laser, interferometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42075Two position loops
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50313Tool offset, tool wear

Description

【発明の詳細な説明】 本発明は軸対称な二次曲面を鏡面状に仕上げ加
工する精密切削加工装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precision cutting device for finishing an axially symmetric quadratic curved surface into a mirror surface.

近年、精密加工の分野ではレーザー技術、超
LSI技術等の影響から0.1ミクロン以上の加工精度
の加工機械が望まれている。しかしながら従来の
加工機械で0.1ミクロン以上の加工精度を有する
ものは主として研削加工によるものであつてその
加工対象は単なる平面か棒状部材の外周を研削し
て得られる円周面に限られていた。このために放
物面、双曲面等を鏡面仕上げに加工することがで
き、しかも切削加工によつてそれを行なうという
技術的課題はこれまでの加工機械では解決できな
かつた。
In recent years, laser technology and super
Due to the influence of LSI technology, etc., processing machines with processing accuracy of 0.1 micron or higher are desired. However, conventional machining machines with a machining accuracy of 0.1 micron or higher mainly rely on grinding, and the objects to be machined are limited to simple flat surfaces or circumferential surfaces obtained by grinding the outer periphery of rod-shaped members. For this reason, it is possible to process paraboloids, hyperboloids, etc. to a mirror finish, and the technical problem of doing so through cutting has not been solvable with conventional processing machines.

この理由は二次曲面等を鏡面仕上げ加工を行な
う需要は限られていた事情を別としても、純粋に
技術的に考えた場合、加工機械の機械部材の温度
の加工精度への影響および工具に対する送り駆動
系の加工精度への影響、たとえば案内面の精度、
駆動モータ自体のリゾルーシヨン、送りネジ精
度、位置フイードバツク用検出器の精度、あるい
は駆動系の応答性等の誤差要因が考えられる。特
に後者の問題点は前述した平面、円周面等の研削
加工は基本的には一軸方向に関する砥石等の工具
と工作物との相対移動を行なう制御を対象として
いるのに対して、二次曲面を対象とする切削加工
では同時に二軸方向に関して制御を行なうことを
要求される。
The reason for this is that, apart from the fact that there was limited demand for mirror-finishing quadratic surfaces, etc., from a purely technical standpoint, the temperature of the machine parts of the processing machine affects the processing accuracy, and the The influence of the feed drive system on the machining accuracy, such as the accuracy of the guide surface,
Possible error factors include the resolution of the drive motor itself, the accuracy of the feed screw, the accuracy of the position feedback detector, or the responsiveness of the drive system. In particular, the latter problem is caused by the fact that the aforementioned grinding of flat surfaces, circumferential surfaces, etc. basically targets the control of relative movement between a tool such as a grindstone and a workpiece in a uniaxial direction, whereas secondary Cutting of curved surfaces requires simultaneous control in two axes.

従来、同時に二軸(X、Y)制御を行なう送り
駆動制御はその加工精度を考慮外とすれば所謂
NC工作機械によつて実現されている。しかしな
がらNC工作機械ではテーブル等の移動量の検出
精度は高精度なものでも1ミクロンであり、特別
なものでも±0.5ミクロン程度である。さらにNC
工作機械自体についても、今最小分解指令値を
0.01(ミクロン/パルス)とし、最大切削送り速
度を600mm/分とすると 600×103/60〔ミクロン/秒〕×1/0.01〔パルス/ミ
クロン〕= 1MHz となりパルスの分配速さは高速を要求されるため
にNC工作機械の補間演算等の遂行も困難にな
る。
Conventionally, feed drive control that simultaneously controls two axes (X, Y) is so-called if the machining accuracy is not considered.
This is realized using NC machine tools. However, in NC machine tools, the accuracy of detecting the amount of movement of tables, etc. is 1 micron even with high precision machines, and about ±0.5 microns even with special machines. Further NC
Regarding the machine tool itself, we are currently setting the minimum disassembly command value.
0.01 (micron/pulse) and the maximum cutting feed rate is 600mm/min, then 600 x 10 3 /60 [micron/sec] x 1/0.01 [pulse/micron] = 1MHz, which requires a high pulse distribution speed. This makes it difficult for NC machine tools to perform interpolation calculations, etc.

さらにフイードバツク制御のための位置検出器
についてもある程度の移動量を計測することがで
き、かつ0.01ミクロン程度の精度を得られるもの
は現在レーザー測長器に限られる。しかしながら
このようなレーザー測長器を用いても得られた誤
差信号に対して駆動系が応答できないという問題
がある。
Furthermore, the only position detectors for feedback control that can measure a certain amount of movement and have an accuracy of about 0.01 microns are currently limited to laser length measuring devices. However, even if such a laser length measuring device is used, there is a problem that the drive system cannot respond to the obtained error signal.

本発明は上記の事情に鑑みてなされたもので
0.1ミクロン以上の加工精度で二次曲面の切削加
工を行なうことができる精密切削加工装置を提供
することを目的とするものである。
The present invention was made in view of the above circumstances.
The object of the present invention is to provide a precision cutting device capable of cutting a quadratic curved surface with a processing accuracy of 0.1 micron or more.

本発明はX軸駆動系およびY軸駆動系により
XY平面上の任意の位置へ駆動される刃物台にY
軸に沿つて高速かつ高精度に位置決めを行なう微
小変位駆動部を介して刃物を保持する工具保持部
を設け、この工具保持部の位置を光学的測長器を
用いて測長し、この測長値と理論値との差分を上
記微小変位駆動部で補償するとともに、この微小
変位駆動部における補償量が所定の設定値を越え
る毎に上記Y軸駆動系を駆動して上記補償量を所
定値内にすることを特徴とするものである。
The present invention uses an X-axis drive system and a Y-axis drive system.
Y to the tool post driven to any position on the XY plane
A tool holder is provided that holds the cutter via a micro-displacement drive unit that performs high-speed and highly accurate positioning along the axis, and the position of this tool holder is measured using an optical length measuring device. The difference between the long value and the theoretical value is compensated by the minute displacement drive section, and each time the compensation amount in this minute displacement drive section exceeds a predetermined set value, the Y-axis drive system is driven to adjust the compensation amount to a predetermined value. It is characterized by keeping the value within the range.

以下本発明の一実施例を第1図に示すブロツク
図を参照して詳細に説明する。図中1は切削工具
で回転軸2に保持されて回転駆動される工作物3
に当接して切削加工する。そして上記切削工具1
を工作物3に対して相対移動させるように駆動
し、その表面を所望の形状に切削加工するもので
ある。以下の説明では切削工具1の駆動方向は上
記回転軸2に平行なY軸と、この回転軸2に直角
なX軸からなる直交座標系とする。そして切削工
具1を工具保持部4に保持し、この工具保持部4
を刃物台5に微小変位素子6を介して保持するよ
うにしている。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the block diagram shown in FIG. In the figure, 1 is a cutting tool, and a workpiece 3 is held on a rotating shaft 2 and driven to rotate.
Cutting is performed by contacting with. And the above cutting tool 1
is driven to move relative to the workpiece 3, and its surface is cut into a desired shape. In the following description, the driving direction of the cutting tool 1 is assumed to be an orthogonal coordinate system consisting of a Y axis parallel to the rotation axis 2 and an X axis perpendicular to the rotation axis 2. Then, the cutting tool 1 is held in the tool holding part 4, and this tool holding part 4
is held on the tool rest 5 via a minute displacement element 6.

第2図乃至第4図は上記刃物台5を示す平面
図、側面図および第2図−線矢視断面図であ
る。すなわち工具保持部4は静圧軸受を介して刃
物台5に対して図示Y軸方向へ進退自在に保持さ
れる。そしてこの工具保持部4の前端部に切削工
具1を取着し、後端部と刃物台5の端部に突設し
た端壁5Aとの間に微小変位素子6を介在させそ
の両端を固着している。
2 to 4 are a plan view, a side view, and a sectional view taken along the line in FIG. 2, showing the tool rest 5. FIG. That is, the tool holding part 4 is held with respect to the tool rest 5 via a hydrostatic bearing so that it can move forward and backward in the Y-axis direction shown in the figure. The cutting tool 1 is attached to the front end of the tool holder 4, and a minute displacement element 6 is interposed between the rear end and the end wall 5A protruding from the end of the tool rest 5, and both ends thereof are fixed. are doing.

また第5図は微小変位素子6の一例を示す側面
図で、たとえば3個の圧電素子61を両端および
層間に銀箔等の電極62,63,64,65を介
在して層状に積み重ね、さらに両端の電極62,
63の外側に絶端体66,66を介して結合部材
67を設けたものである。そして電極63,64
を接地し、この接地電位と電極62,65との間
に数百ボルトの電圧を印加して圧電素子61を積
層方向へ伸縮させるようにしている。
FIG. 5 is a side view showing an example of the minute displacement element 6. For example, three piezoelectric elements 61 are stacked in a layer with electrodes 62, 63, 64, 65 such as silver foil interposed at both ends and between the layers. electrode 62,
A connecting member 67 is provided on the outside of the connecting member 63 via stumps 66, 66. and electrodes 63, 64
is grounded, and a voltage of several hundred volts is applied between this ground potential and the electrodes 62 and 65 to cause the piezoelectric element 61 to expand and contract in the stacking direction.

第6図はこのような微小変位素子6の印加電圧
Kと伸長量Δlとの関係の一例を示す図で、たと
えば厚みl=1mmの圧電素子に対してK=500V
の電圧を印加して0.25μの伸びを与えることがで
きるとする。ここで印加電圧を500±300Vの範囲
で制御して圧電素子61個当り±0.15μの変位を
生じさせるとすれば3個の圧電素子を積層するこ
とにより全体で0.3μ〜1.2μの範囲で厚みを制御す
ることができる。一方、このような微小変位素子
の印加電圧に対する厚みの変化は電圧を適当な範
囲で制御した場合、略直線的になり、しかも応答
性も極めて良好である。したがつて上記微小変位
素子6の印加電圧を制御することにより刃物台5
に対して工具保持部4を相対的にY軸方向へ駆動
し、切削工具1の位置を制御することができる。
FIG. 6 is a diagram showing an example of the relationship between the applied voltage K and the extension amount Δl of such a minute displacement element 6. For example, for a piezoelectric element with a thickness l = 1 mm, K = 500V.
Suppose that it is possible to apply a voltage of 0.25μ to give an elongation of 0.25μ. If we control the applied voltage in the range of 500±300V to produce a displacement of ±0.15μ per 61 piezoelectric elements, then by stacking three piezoelectric elements, the total displacement will be in the range of 0.3μ to 1.2μ. Thickness can be controlled. On the other hand, the change in thickness of such a minute displacement element with respect to the applied voltage becomes approximately linear when the voltage is controlled within an appropriate range, and the response is also extremely good. Therefore, by controlling the voltage applied to the minute displacement element 6, the tool rest 5
The position of the cutting tool 1 can be controlled by driving the tool holder 4 in the Y-axis direction relative to the cutting tool 1.

そして第1図において、7は刃物台5をX軸方
向へ駆動するX軸駆動機構で、たとえば駆動モー
タと、このモータによつて回転駆動されるととも
に上記刃物台5に螺合する送りネジを設けてい
る。そしてこのX軸駆動機構7はNC制御部8か
ら与えられるX軸制御信号に応じてX軸サーボア
ンプ9によりX軸方向へ刃物台5を駆動する。ま
た10は刃物台5をY軸方向へ駆動するY軸駆動
機構で、たとえば駆動モータと、このモータによ
つて回転駆動されるとともに上記刃物台5に螺合
する送りネジを設けている。そして上記駆動モー
タはY軸サーボアンプ11により制御され刃物台
5をY軸方向へ駆動する。そして12,13は工
具保持部4の位置を非接触に検出するX軸測長器
およびY軸測長器で、たとえばレーザー光の干渉
を利用したレーザー測長器である。なおここで工
具保持部4に切削工具1を取着しているのでこの
工具保持部4の位置から切削工具1の先端の切刃
の位置を知ることができる。そして工具保持部4
のX軸方向への移動に応じてX軸測長器12から
一定距離毎に、たとえば0.01μ毎にパルスが出力
される。またY軸方向への移動に応じてY軸測長
器13から同様にパルスが出力される。そしてX
軸方向の位置検出を行なうX軸測長器12の出力
パルスをX軸位置カウンタ14でカウントして切
削工具1の先端のX軸方向の位置を検出する。そ
してこのX軸位置カウンタ14のカウント値xを
f(x)演算回路15へ与える。このf(x)演算回路15
は切削工具1のX軸上の位置xに対応してY軸上
の理論値置f(x)を所望の切削曲面に応じて演算す
るものである。そしてこのf(x)演算回路15の演
算値をデータレジスタ16へ与えこのデータレジ
スタ16の内容を第1、第2の比較器17,18
へ与える。一方Y軸測長器13の出力パルスをY
軸位置カウンタ19でカウントし切削工具1の切
刃の位置に対応するカウント値、すなわちY軸実
測値yを第1の比較器17およびホールド回路2
0を介して第2の比較器18へ与える。そして第
1の比較器17の出力は微小変位素子駆動回路2
1により所定比で電圧に変換して微小変位素子6
へ印加する。また第2の比較器18にはホールド
回路20に保持されたY軸位置カウンタ19のカ
ウント値、すなわち実測値yとデータレジスタ1
6の理論値Yとが与えられてその内容を比較しこ
の差分が予め設定した所定値Δyを越える毎にNC
制御部8に対してY軸方向へ一定距離を駆動すべ
き駆動信号ΔYを与える。そして第2の比較器1
8から駆動信号ΔYを与えられるNC制御部8は
この駆動信号ΔYに応動して刃物台5を所定量
ΔYだけステツプ的に駆動する。したがつてこの
所定値ΔYを適値に設定することにより、微小変
位素子6に対する制御電圧を適正な範囲に維持
し、直線性を損ないあるいは過大な電圧を印加す
ることのないようにしている。
In FIG. 1, 7 is an X-axis drive mechanism that drives the tool rest 5 in the X-axis direction, and includes, for example, a drive motor and a feed screw that is rotationally driven by this motor and is screwed into the tool rest 5. It is set up. The X-axis drive mechanism 7 drives the tool rest 5 in the X-axis direction by an X-axis servo amplifier 9 in response to an X-axis control signal given from the NC control section 8. Reference numeral 10 denotes a Y-axis drive mechanism for driving the tool rest 5 in the Y-axis direction, and includes, for example, a drive motor and a feed screw that is rotationally driven by the motor and is screwed into the tool rest 5. The drive motor is controlled by the Y-axis servo amplifier 11 to drive the tool rest 5 in the Y-axis direction. Reference numerals 12 and 13 designate an X-axis length measuring device and a Y-axis length measuring device that detect the position of the tool holder 4 in a non-contact manner, such as a laser length measuring device that utilizes laser light interference. Note that since the cutting tool 1 is attached to the tool holder 4 here, the position of the cutting edge at the tip of the cutting tool 1 can be known from the position of the tool holder 4. and tool holding part 4
According to the movement in the X-axis direction, a pulse is output from the X-axis length measuring device 12 at every fixed distance, for example every 0.01μ. Similarly, pulses are output from the Y-axis length measuring device 13 in response to movement in the Y-axis direction. And X
The X-axis position counter 14 counts output pulses from the X-axis length measuring device 12 that detects the position in the axial direction, and detects the position of the tip of the cutting tool 1 in the X-axis direction. Then, the count value x of this X-axis position counter 14 is
f (x) is given to the arithmetic circuit 15. This f (x) calculation circuit 15
is to calculate a theoretical value position f (x) on the Y-axis corresponding to the position x of the cutting tool 1 on the X-axis according to a desired cutting curved surface. Then, the calculated value of this f (x) calculation circuit 15 is given to the data register 16, and the contents of this data register 16 are sent to the first and second comparators 17 and 18.
give to On the other hand, the output pulse of the Y-axis length measuring device 13 is
The axis position counter 19 counts the count value corresponding to the position of the cutting edge of the cutting tool 1, that is, the Y-axis actual measurement value y, which is counted by the first comparator 17 and the hold circuit 2.
0 to the second comparator 18. The output of the first comparator 17 is the micro displacement element drive circuit 2.
1, it is converted into voltage at a predetermined ratio and applied to the minute displacement element 6.
Apply to. The second comparator 18 also contains the count value of the Y-axis position counter 19 held in the hold circuit 20, that is, the actual measurement value y, and the data register 1.
The theoretical value Y of
A drive signal ΔY is given to the control unit 8 to drive the controller 8 a certain distance in the Y-axis direction. and second comparator 1
The NC control unit 8, which is supplied with a drive signal ΔY from the NC controller 8, drives the tool post 5 by a predetermined amount ΔY in a stepwise manner in response to this drive signal ΔY. Therefore, by setting this predetermined value ΔY to an appropriate value, the control voltage for the minute displacement element 6 is maintained within an appropriate range, and linearity is not impaired or excessive voltage is not applied.

なお第7図は上記NC制御部8の要部を示すブ
ロツク図で、X軸およびY軸の各位置信号は各補
間演算部8ax,8ayを介して各コマンドカウン
タ8bx,8byに与えられこの出力が各D/A変
換器8cx,8cyでアナログ信号に変換され各サ
ーボアンプ9,11に入力される。そして第2の
比較器18から与えられる駆動信号ΔYは上記Y
軸側のコマンドカウンタ8byへ入力され補間演
算部8ayの出力に加算されることになる。
FIG. 7 is a block diagram showing the main parts of the NC control unit 8, in which the X-axis and Y-axis position signals are given to the command counters 8bx and 8by via the interpolation units 8ax and 8ay, respectively, and the outputs thereof are is converted into an analog signal by each D/A converter 8cx, 8cy and input to each servo amplifier 9, 11. The drive signal ΔY given from the second comparator 18 is the Y
It is input to the command counter 8by on the axis side and added to the output of the interpolation calculation unit 8ay.

このような構成であれば切削加工の開始に先だ
つて、NC制御部8は切削工具1を工作物3の加
工原点Xo,Yoへ駆動し、全てのカウンタおよび
レジスタをリセツトする。そして切削加工を開始
すると、予め紙テープ等からインプツトしたデー
タに応じてX軸サーボアンプ9を介してX軸駆動
機構7により切削工具1を加工物3の外周から中
心へ向かつて設定速度で駆動する。そして上記切
削工具1を保持する刃物台4のX軸方向の位置に
応じてX軸測長器12から、たとえば0.01μ毎に
パルスが出力される。そしてこのパルスをX軸位
置カウンタ14でカウントして加工原点Xoに対
する切削工具1の実測値xを得る。この実測値x
はf(x)演算回路15へ与えて演算しその値に対応
するY軸方向の理論値Yをデータレジスタ16か
ら出力する。なおこの場合、実測値xはX軸位置
カウンタ14からデジタル値として与えられるの
で駆動系の精度、応答性等に応じて一定の移動量
Δx毎、たとえば5μ毎にf(x)演算回路15へ与える
実測値xの値を更新して演算を行なうようにして
いる。
With such a configuration, before starting cutting, the NC control section 8 drives the cutting tool 1 to the machining origin Xo, Yo of the workpiece 3, and resets all counters and registers. When the cutting process is started, the cutting tool 1 is driven from the outer periphery of the workpiece 3 toward the center by the X-axis drive mechanism 7 via the X-axis servo amplifier 9 at a set speed in accordance with data input in advance from a paper tape or the like. . Then, pulses are output from the X-axis length measuring device 12 at intervals of, for example, 0.01 μ, depending on the position in the X-axis direction of the tool rest 4 that holds the cutting tool 1. Then, this pulse is counted by the X-axis position counter 14 to obtain an actual value x of the cutting tool 1 with respect to the machining origin Xo. This actual value x
is given to the f (x) calculation circuit 15 for calculation, and a theoretical value Y in the Y-axis direction corresponding to the calculated value is outputted from the data register 16. In this case, since the actual measured value x is given as a digital value from the X-axis position counter 14, it is sent to the f (x) calculation circuit 15 every fixed movement amount Δx, for example every 5μ, depending on the accuracy and responsiveness of the drive system. The calculation is performed by updating the actual measured value x.

一方切削工具1のY軸方向の位置に応じてY軸
測長器13から出力されるパルスをY軸位置カウ
ンタ19でカウントし、この実測値yを第1の比
較器17および上記X軸位置カウンタ14の出力
データの更新に同期して上記実測値yをホールド
するホールド回路20へ与える。
On the other hand, pulses output from the Y-axis length measuring device 13 according to the position of the cutting tool 1 in the Y-axis direction are counted by the Y-axis position counter 19, and this measured value y is counted by the first comparator 17 and the above-mentioned X-axis position. In synchronization with the update of the output data of the counter 14, the actual measured value y is provided to a hold circuit 20 that holds it.

そして上記ホールド回路20から出力される実
測値yとデータレジスタ16から与えられる理論
値Yとを第2の比較器18へ与えて比較しその差
分が所定値Δyを越える毎にNC制御部8へ与えこ
の出力によりY軸サーボアンプ11を介してY軸
駆動機構10を駆動し切削工具1のY軸方向の位
置をΔYだけステツプ的に駆動する。また同時に
第1の比較器17により実測値yと理論値Yとの
差分を得、この値に応じて微小変位素子駆動回路
21を介して電圧に変換し、微小変位素子6に与
える電圧を制御して工具保持部4の位置を制御す
る。
Then, the actual measured value y output from the hold circuit 20 and the theoretical value Y given from the data register 16 are provided to the second comparator 18 for comparison, and each time the difference exceeds a predetermined value Δy, the value is sent to the NC control section 8. This output drives the Y-axis drive mechanism 10 via the Y-axis servo amplifier 11 to stepwise drive the position of the cutting tool 1 in the Y-axis direction by ΔY. At the same time, the difference between the measured value y and the theoretical value Y is obtained by the first comparator 17, and according to this value, it is converted into a voltage via the minute displacement element drive circuit 21, and the voltage applied to the minute displacement element 6 is controlled. to control the position of the tool holding section 4.

ここで第1図において、第2の比較器18、お
よびホールド回路20を設けずデータレジスタ1
6の出力を第1の比較器17およびNC制御部8
を介してY軸サーボアンプ11へ与えるものにつ
いて考える。この場合にはたとえば第8図に示す
ように切削工具1を加工原点Xo,YoからX軸方
向へ駆動すると所定値Δx毎にf(x)演算回路15か
ら理論値f(xp)、f(x1)、f(x2)…が与えられる。なおこ
の理論値f(x)は所望の加工曲面の目標である理想
曲線F(x)から与えられるものである。そして上記
理論値f(x)に応じてY軸サボアンプ11を介して
Y軸駆動機構10を駆動しその実測値yは次第に
理論値f(x)に接近する。そしてこの過程において
実測値yと理論値f(x)との差分を第1の比較器1
7で得てこの値Yσを微小変位素子駆動回路21
を介して微小変位素子6へ与えて駆動するように
している。しかしながらこのようなものでは図示
X軸の位置x3のように実測値yと理論値f(x)との
差分が著るしく大きくなると微小変位素子6を制
御する信号Yσも著るしく大きくなり、その適正
な制御範囲を逸脱して直線性が損なわれ、あるい
は制御不可能に陥ることもある。
Here, in FIG. 1, the second comparator 18 and the hold circuit 20 are not provided, and the data register 1 is
6 to the first comparator 17 and the NC controller 8
Let us consider what is applied to the Y-axis servo amplifier 11 via the Y-axis servo amplifier 11. In this case, for example, as shown in FIG. 8, when the cutting tool 1 is driven in the X-axis direction from the machining origins Xo, Yo, the theoretical values f ( xp) , f ( x1) , f (x2) ... are given. Note that this theoretical value f (x) is given from the ideal curve F (x) that is the target of the desired machined surface. Then, the Y-axis drive mechanism 10 is driven via the Y-axis savo amplifier 11 in accordance with the theoretical value f (x), and the actual value y gradually approaches the theoretical value f (x) . In this process, the difference between the measured value y and the theoretical value f (x) is calculated by the first comparator 1.
7 and this value Yσ is applied to the minute displacement element drive circuit 21.
It is applied to the minute displacement element 6 via the . However, in such a device, when the difference between the measured value y and the theoretical value f (x) becomes significantly large, such as at position x 3 on the X-axis shown in the figure, the signal Yσ that controls the minute displacement element 6 also becomes significantly large. , it may deviate from its proper control range, resulting in loss of linearity or loss of control.

これに対して上記実施例では第9図に示すよう
に実測値yと理論値f(x)との差分が所定値Δyを越
えたことを第2の比較器18で検出すると所定距
離を駆動すべき駆動信号ΔYをNC制御部8へ与
えるようにしている。したがつてY軸サーボアン
プ11には理論値f(x)と上記駆動信号ΔYを加えた
信号が与えられみかけ上の理論値f(x)と実測値y
との差分が大きくなつたことになる。したがつて
NC制御部8はこのみかけの差分を目標としてY
軸駆動機構10を駆動するので実測値yは急速に
理論値f(x)に接近する。したがつて微小変位素子
6に対する駆動信号Yσは所定の適正な範囲±
σmaxに制御することができ良好な直線性と正確
な制御を行なうことができる。
On the other hand, in the above embodiment, as shown in FIG. 9, when the second comparator 18 detects that the difference between the measured value y and the theoretical value f (x) exceeds the predetermined value Δy, the drive is driven a predetermined distance. The drive signal ΔY to be used is given to the NC control section 8. Therefore, the Y-axis servo amplifier 11 is given a signal that is the sum of the theoretical value f (x) and the drive signal ΔY, and the apparent theoretical value f (x) and the actual measured value y are given.
This means that the difference between the two has become larger. Therefore
The NC control unit 8 uses this apparent difference as a target.
Since the shaft drive mechanism 10 is driven, the actual value y rapidly approaches the theoretical value f (x) . Therefore, the drive signal Yσ for the minute displacement element 6 falls within a predetermined appropriate range ±
σmax can be controlled and good linearity and accurate control can be achieved.

したがつて切削工具の切込み方向の位置に関し
て機械的な駆動機構によつて生じる誤差を電気的
な圧電効果を利用した微小変位素子によつて補正
し、かつこの微小変位素子に与える電圧が適正範
囲を越えると、上記駆動機構により補正量を減少
させるように切削工具を駆動するようにしている
ので微小変位素子は常に適正範囲で動作すること
になる。
Therefore, the error caused by the mechanical drive mechanism regarding the position of the cutting tool in the cutting direction is corrected by a micro-displacement element that utilizes electrical piezoelectric effect, and the voltage applied to this micro-displacement element is within an appropriate range. If the value exceeds this value, the cutting tool is driven by the drive mechanism to reduce the amount of correction, so that the minute displacement element always operates within an appropriate range.

なお本発明は上記実施例に限定されるものでは
なく、たとえばX軸測長器12の出力パルスから
得られた実測値xを各別のf(x)演算回路で演算し
て第1、第2の比較器17,18へそれぞれ与え
るようにしてもよい。またf(x)演算回路としては
与えられた実測値xから所望の切削曲面のY軸方
向の理論値Yを高速演算するものに限定されず、
たとえば予め演算した理論値Yを記憶したメモリ
を設け、この記憶内容を順次に読み出すようにし
てもよい。
Note that the present invention is not limited to the above-mentioned embodiments; for example, the actual measurement value x obtained from the output pulse of the X-axis length measuring device 12 is calculated by separate f (x) calculation circuits, and The signal may be supplied to two comparators 17 and 18, respectively. Furthermore, the f (x) calculation circuit is not limited to one that quickly calculates the theoretical value Y in the Y-axis direction of the desired cutting surface from the given actual measurement value x.
For example, a memory may be provided in which a theoretical value Y calculated in advance is stored, and the stored contents may be sequentially read out.

さらに微小変位素子6はその駆動信号に対する
応答性が極めて良好なために過敏な場合は第1図
に破線で示すように第1の比較器17の出力と微
小変位素子駆動回路21との間に積分回路22を
介挿するようにしてもよい。第10図はこのよう
な積分回路21の一例を示す図で、たとえば第1
の比較器17から与えられる複数ビツトのデジタ
ル信号をデジタル−アナログ変換器DAでアナロ
グ信号に変換して抵抗R1および第1のスイツチ
SW1を介して演算増幅器OP1へ入力する。この演
算増幅器OP1は入出力間に積分コンデンサCおよ
び放電抵抗R2と第2のスイツチSW2の直列回路
を並列に接続している。そして第1のスイツチ
SW1は抵抗R1を選択し、第2のスイツチSW2
開放して上記アナログ信号を積分し、積分終了後
第1のスイツチSW1は接地電位側を選択し第2の
スイツチSW2を閉成して積分コンデンサCの充電
電荷を放電する。
Furthermore, since the micro-displacement element 6 has extremely good responsiveness to its drive signal, if it is sensitive, there is a gap between the output of the first comparator 17 and the micro-displacement element drive circuit 21, as shown by the broken line in FIG. An integration circuit 22 may also be inserted. FIG. 10 is a diagram showing an example of such an integrating circuit 21.
The digital-to-analog converter DA converts the multi-bit digital signal provided from the comparator 17 into an analog signal and connects it to the resistor R1 and the first switch.
Input to operational amplifier OP 1 via SW 1 . This operational amplifier OP1 has a series circuit of an integrating capacitor C, a discharge resistor R2 , and a second switch SW2 connected in parallel between its input and output. and the first switch
SW 1 selects the resistor R 1 , and the second switch SW 2 is opened to integrate the above analog signal. After the integration, the first switch SW 1 selects the ground potential side and the second switch SW 2 is opened. It is closed to discharge the charge in the integrating capacitor C.

また第11図は微小変位素子駆動回路22の一
例を示す回路図で、微小変位素子6に対する数百
ボルトの印加電圧を制御するために3個のトラン
ジスタTr1,Tr2,Tr3のコレクタ、エミツタを縦
続接続にしたものである。すなわち入力端子Tに
与えられた信号Yσをバツフア増幅器OP2を介し
てトランジスタTr1のベースへ与える。一方トラ
ンジスタTr1,Tr2,Tr3のエミツタ、クレクタを
縦続接続し、かつトランジスタTr3のコレクタ、
ベース間、トランジスタTr3,Tr2のベース間お
よびトランジスタTr2のベースとトランジスタ
Tr1のエミツタ間にそれぞれ抵抗R1,R2,R3
介挿している。そしてトランジスタTr1のエミツ
タとトランジスタTr3のコレクタとの間に数百ボ
ルトの電源Pと微小変位素子6の直列回路を接続
している。このようにすれば各トランジスタ
Tr1,Tr2,Tr3のエミツタ、コレクタ間に印加さ
れる電圧は略電源電圧の1/3になりトランジスタ
Tr1,Tr2,Tr3のコレクタ耐圧に対する要求を緩
和することができる。
FIG. 11 is a circuit diagram showing an example of the minute displacement element drive circuit 22, in which the collectors of three transistors Tr 1 , Tr 2 , Tr 3 are connected to control the applied voltage of several hundred volts to the minute displacement element 6; This is a cascade connection of emitters. That is, the signal Yσ applied to the input terminal T is applied to the base of the transistor Tr 1 via the buffer amplifier OP 2 . On the other hand, the emitters and collectors of transistors Tr 1 , Tr 2 , and Tr 3 are connected in cascade, and the collector of transistor Tr 3 is
between the bases, between the bases of transistors Tr 3 and Tr 2 , and between the base of transistor Tr 2 and the transistor
Resistors R 1 , R 2 , and R 3 are inserted between the emitters of Tr 1 , respectively. A power supply P of several hundred volts and a series circuit of a minute displacement element 6 are connected between the emitter of the transistor Tr 1 and the collector of the transistor Tr 3 . In this way, each transistor
The voltage applied between the emitters and collectors of Tr 1 , Tr 2 , and Tr 3 is approximately 1/3 of the power supply voltage, and the transistors
The requirements for collector breakdown voltage of Tr 1 , Tr 2 , and Tr 3 can be relaxed.

さらに上記実施例ではf(x)演算回路15は加工
原点Yoに対する理論値Yを出力するようにして
いるが、このようなものに限定されず前回のX軸
方向の位置Xo-1と当該時点のX軸方向の位置Xn
に対応する理論値Ynとの差分Yn−Yn-1を出力
するようにしてもよい。
Further, in the above embodiment, the f (x) calculation circuit 15 outputs the theoretical value Y with respect to the machining origin Yo, but it is not limited to this, and the previous X-axis direction position X o-1 and the corresponding Position Xn in the X-axis direction at the time
The difference Yn−Yn −1 between the theoretical value Yn and the corresponding value Yn may be output.

以上詳述したように本発明によれば機械的な駆
動機構によつて生じる切削工具の切込み方向の位
置誤差を電気的に変位量を制御される微小変位素
子によつて補正し、かつこの微小変位素子へ与え
る電圧が適正範囲を越えると上記駆動機構によつ
て補正量を減少させるように切削工具を駆動する
ようにしたものである。
As described in detail above, according to the present invention, the positional error of the cutting tool in the cutting direction caused by the mechanical drive mechanism is corrected by the micro-displacement element whose displacement is electrically controlled, and the micro-displacement element When the voltage applied to the displacement element exceeds an appropriate range, the cutting tool is driven by the drive mechanism to reduce the amount of correction.

したがつて極めて高精度に二次曲面を切削加工
することができしかも微小変位素子を常に適正範
囲で動作させることができる精密切削加工装置を
提供することができる。
Therefore, it is possible to provide a precision cutting device that can cut a quadratic curved surface with extremely high precision and can always operate the minute displacement element within an appropriate range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図、第3図および第4図は上記実施例の刃物
台を示す平面図、側面図および第2図−線矢
視図、第5図は上記実施例の微小変位素子の一例
を示す側面図、第6図は上記微小変位素子の印加
電圧と伸長量との関係を示す図、第7図はNC制
御部の要部を示すブロツク図、第8図は従来の装
置の動作を説明する図、第9図は本考案の装置の
動作を説明する図、第10図は本考案の他の実施
例の積分回路を示す図、第11図は本考案の微小
変位素子駆動回路の一例を示す図である。 1……切削工具、2……回転軸、3……加工
物、4……工具保持部、5……刃物台、6……微
小変位素子、7……X軸駆動機構、8……NC制
御部、10……Y軸駆動機構、12……X軸測長
器、13……Y軸測長器、15……f(x)演算回路、
17……第1の比較器、18……第2の比較器。
FIG. 1 is a block diagram showing one embodiment of the present invention;
2, 3, and 4 are a plan view, a side view, and a view taken along the line in FIG. 2, showing the turret of the above embodiment, and FIG. 5 is an example of the minute displacement element of the above embodiment. A side view, Fig. 6 is a diagram showing the relationship between the applied voltage and the amount of extension of the minute displacement element, Fig. 7 is a block diagram showing the main parts of the NC control section, and Fig. 8 explains the operation of the conventional device. 9 is a diagram explaining the operation of the device of the present invention, FIG. 10 is a diagram showing an integrating circuit of another embodiment of the present invention, and FIG. 11 is an example of a micro displacement element drive circuit of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Cutting tool, 2... Rotating axis, 3... Workpiece, 4... Tool holding part, 5... Turret, 6... Minute displacement element, 7... X-axis drive mechanism, 8... NC Control unit, 10... Y-axis drive mechanism, 12... X-axis length measuring device, 13... Y-axis length measuring device, 15... f (x) calculation circuit,
17...first comparator, 18...second comparator.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸に保持され回転駆動される工作物と、
この工作物を切削加工する切削工具を保持する工
具保持部と、この工具保持部を保持する刃物台
と、この刃物台を上記切削工具の切込み方向へ駆
動するY軸駆動機構と、上記刃物台を上記切削工
具の切込み方向に対して直角な方向へ駆動するX
軸駆動機構と、切削すべき曲面に応じて予めイン
プツトされたデータにより上記Y軸駆動機構およ
びX軸駆動機構を制御するNC制御部と、上記工
具保持部と刃物台との間に介在し上記刃物台を上
記工具保持部に対して切込み方向へ駆動する微小
変位素子と、上記刃物台のX軸およびY軸方向の
位置を非接触に検出するX軸測長器およびY軸測
長器と、X軸測長器から与えられる実測値に応じ
て所望の切削曲面のY軸方向の理論値を出力する
f(x)演算回路と、このf(x)演算回路から与
えられる理論値とY軸測長器から与えられる実測
値との差分に応じて上記微小変位素子を切込み方
向へ変位させる微小変位素子駆動回路と、上記差
分が所定値を越える毎に上記NC制御部を介して
Y軸駆動機構を駆動して上記微小変位素子におけ
る変位量を所定範囲に維持させる第2の比較器と
を具備する精密切削加工装置。
1 A workpiece held on a rotating shaft and rotationally driven,
a tool holder that holds a cutting tool for cutting the workpiece; a tool rest that holds the tool holder; a Y-axis drive mechanism that drives the turret in the cutting direction of the cutting tool; X to drive in a direction perpendicular to the cutting direction of the cutting tool
an NC control unit that controls the Y-axis drive mechanism and the X-axis drive mechanism based on data input in advance according to the curved surface to be cut; a minute displacement element that drives the tool rest in the cutting direction with respect to the tool holding part; an X-axis length measuring device and a Y-axis length measuring device that detect the positions of the tool rest in the X-axis and Y-axis directions in a non-contact manner; , an f(x) calculation circuit that outputs a theoretical value in the Y-axis direction of a desired cutting surface according to an actual measurement value given from an X-axis length measuring device, and a theoretical value given from this f(x) calculation circuit and Y A micro-displacement element drive circuit that displaces the micro-displacement element in the cutting direction according to the difference from the actual measurement value given from the axis length measuring device, and a micro-displacement element drive circuit that displaces the micro-displacement element in the cutting direction according to the difference between the measured value and the actual measurement value given from the axis length measuring device, and a Y-axis displacement element drive circuit that displaces the micro-displacement element in the cutting direction according to the difference from the actual measurement value given from the axis length measuring device. and a second comparator that drives a drive mechanism to maintain the amount of displacement in the minute displacement element within a predetermined range.
JP18960281A 1981-11-26 1981-11-26 Precision cutting system Granted JPS5890442A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18960281A JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system
US06/701,811 US4602540A (en) 1981-11-26 1985-02-19 Precision machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960281A JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system

Publications (2)

Publication Number Publication Date
JPS5890442A JPS5890442A (en) 1983-05-30
JPS6354509B2 true JPS6354509B2 (en) 1988-10-28

Family

ID=16244053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960281A Granted JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system

Country Status (1)

Country Link
JP (1) JPS5890442A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100344A (en) * 1984-10-18 1986-05-19 Inoue Japax Res Inc Machine tool attachment
JPS61214941A (en) * 1985-03-19 1986-09-24 Nachi Fujikoshi Corp Fine positioning mechanism for rectilinear movement apparatus
JPS6234746A (en) * 1985-08-06 1987-02-14 Canon Inc Micro distance driving device
JPS6285302U (en) * 1985-11-15 1987-05-30
JPS63201803A (en) * 1987-02-18 1988-08-19 Hitachi Seiki Co Ltd Data transmitter for machine tool
JPS647317U (en) * 1987-07-01 1989-01-17
JPH087621B2 (en) * 1989-11-22 1996-01-29 工業技術院長 Dual servo controller for optical space transmission system

Also Published As

Publication number Publication date
JPS5890442A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US4602540A (en) Precision machine system
US7571669B2 (en) Machining apparatus for noncircular shapes
JPS6354509B2 (en)
GB2314452A (en) Electromechanical actuator
JPH0431819B2 (en)
JPS6354508B2 (en)
US4811235A (en) Coordinate interpolation in numerical control apparatus
EP0940737B1 (en) Monitoring method for workpiece and tool carriage movement
US3672246A (en) Automatic spindle growth compensation system
KR20130110655A (en) System for compensating error of work machine spindle
WO2021230276A1 (en) Machine tool control device and control system
JP2778159B2 (en) Servo motor feed compensation method
JPS6227945B2 (en)
US5095258A (en) Longitudinal motion error compensation apparatus method and apparatus for multiaxis CNC machine
JP2001179621A (en) Displacement measurement device and grinding attachment
JPH03111148A (en) Machine tool
JPH0655415A (en) Measuring method for and secular change of machine tool
GB1499812A (en) Machine tools
KR100514989B1 (en) Apparatus and method for cutting work-piece according to compensation of in-line error
JPS63306854A (en) Tool control system for machine tool device
JPH02160457A (en) Correcting device for straightness of machine tool
CN117102899B (en) Curved surface grating processing device and method based on ultra-precise servo processing system
JP2575780B2 (en) Positioning error correction device for numerically controlled machine tools
JPH0811354B2 (en) Straightness correction device for feed unit
JPS62176739A (en) Straightness correction device for machine tool