JPS63306854A - Tool control system for machine tool device - Google Patents

Tool control system for machine tool device

Info

Publication number
JPS63306854A
JPS63306854A JP13812587A JP13812587A JPS63306854A JP S63306854 A JPS63306854 A JP S63306854A JP 13812587 A JP13812587 A JP 13812587A JP 13812587 A JP13812587 A JP 13812587A JP S63306854 A JPS63306854 A JP S63306854A
Authority
JP
Japan
Prior art keywords
hysteresis
memory
displacement
piezoelectric actuator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13812587A
Other languages
Japanese (ja)
Inventor
Masahiko Katsuragi
桂城 正彦
Fumihiko Uchida
内田 史彦
Eiichi Seya
瀬谷 栄一
Tatsuto Suzuki
達人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13812587A priority Critical patent/JPS63306854A/en
Publication of JPS63306854A publication Critical patent/JPS63306854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To permit NC machining to be performed in high accuracy of the order of submicron or less by forming a control system by a feedback system, which compensates the displacement when this displacement of a tool cut driving piezo-electric actuator reaches no target value, and by a memory which instantaneously stores a compensated value of that displacement in memory. CONSTITUTION:Before cutting work, a device uses a route of a feedback system circulating the actual NC data. The device, whose control in this time is a closed loop control, compensates hysteresis of the dynamic displacement. Simultaneously the device applies a voltage value to an actuator, compensating the hysteresis, to be left as fetched into a memory 2. Next the device switches the route to a route, in which the piezo-electric actuator 8 is directly controlled by a data output from the memory 2, by a switch 4 performing a perfect open loop control by the data compensating the hysteresis in the time of the cutting work. This control system enables the dynamic displacement hysteresis of the piezoelectric actuator 8 to be compensated even by using the open loop control, and machining in the order of submicron or less can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 試料工作用バイトの切込み駆動に圧電アクチユエータを
利用し、特にNCデータによりバイトの切込みを制御す
るのに好適な工作機械装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a machine tool device that uses a piezoelectric actuator to drive the cut of a cutting tool for sample machining, and is particularly suitable for controlling the cutting of the cutting tool using NC data.

〔従来の技術〕[Conventional technology]

機械工作用バイトの切込み駆動に、圧電アクチュエータ
を利用したフライカッティング装置の従来の制御方式の
原理を第4図に示す。
FIG. 4 shows the principle of a conventional control system for a fly-cutting device that uses a piezoelectric actuator to drive the cut of a cutting tool for machining.

従来の装置は、DCサーボモータ12.エアスピンドル
14などからなる工具回転部と、摺動子16をすベリ案
内に用いた送りねじ駆動型の試料移動部、およびNCデ
ータ信号発生回路1、高圧アンプ5などからなる工具切
込み量制御部から構成されており、以下のように制御さ
れていた。
The conventional device uses a DC servo motor 12. A tool rotating section consisting of an air spindle 14, etc., a feed screw-driven specimen moving section using a slider 16 for full guide, and a tool cutting amount control section consisting of an NC data signal generation circuit 1, a high voltage amplifier 5, etc. It was composed of and controlled as follows.

すなわち、DCサーボモータ12によって回転駆動する
切削工具の回転角位置をロータリエンコーダ1oで検出
し、NCデータ信号発生回路1によって工具切込み信号
を発生する。工具切込み信号は、高圧アンプ5により圧
電アクチュエータ8の駆動に必要な高電圧信号に増幅さ
れ、スリップリング13を介して回転中の圧電アクチュ
エータ8に伝達される。上記の伝達信号に応じて圧電ア
クチュエータ8を伸縮させ、この結果、アクチュエータ
に固定したダイヤモンドバイト18の切込み量を切削加
工中に変化させる。
That is, the rotary encoder 1o detects the rotational angular position of a cutting tool rotationally driven by the DC servo motor 12, and the NC data signal generation circuit 1 generates a tool cutting signal. The tool cutting signal is amplified by the high voltage amplifier 5 to a high voltage signal necessary for driving the piezoelectric actuator 8, and is transmitted to the rotating piezoelectric actuator 8 via the slip ring 13. The piezoelectric actuator 8 is expanded or contracted in response to the above transmission signal, and as a result, the depth of cut of the diamond bit 18 fixed to the actuator is changed during cutting.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の装置では、工具切込み量制御部の圧電ア
クチュエータに対する切込み制御がオープンループ制御
になっているため、第5図に示したアクチュエータの動
的な変位ヒステリシスに対する切込み量の補償が十分で
なかった。すなわち、従来、全くヒステリシスの補償が
なされていないか、もしくは、数式計算あるいは、第5
図に示したヒステリシス特性図を用いてアクチュエータ
の変位ヒステリシスを補償したNCデータを作成し、制
御していた。ところが、第5図のマイナーループ変位特
性20が存在するため、全ての電圧変化に対して、ヒス
テリシスを補償することは困難であった。
However, in conventional devices, the depth of cut control for the piezoelectric actuator in the tool depth of cut control section is open-loop control, so the depth of cut cannot be adequately compensated for the dynamic displacement hysteresis of the actuator shown in Figure 5. Ta. In other words, in the past, hysteresis compensation was not performed at all, or mathematical calculations or
Control was performed by creating NC data that compensated for the displacement hysteresis of the actuator using the hysteresis characteristic diagram shown in the figure. However, since the minor loop displacement characteristic 20 shown in FIG. 5 exists, it is difficult to compensate for hysteresis for all voltage changes.

一方、フィードバック制御を加工バイトの変位制御に用
いようとしても、加工バイトであるが故に変位量の測定
を切削中に計測することは、容易でない。また、切削後
に実際の変位量が測定できても無意味である。
On the other hand, even if feedback control is used to control the displacement of the processing tool, it is not easy to measure the amount of displacement during cutting because the tool is a processing tool. Moreover, even if the actual displacement amount can be measured after cutting, it is meaningless.

本発明の目的は、上記従来技術で配慮されていなかった
圧電アクチュエータの動的に変化する印加電圧に対する
変位ヒステリシスを切削加工データの変化にリアルタイ
ムに即応して補償することにある。これにより、工具回
転角に同期して、工具切込み量を制御する機能を備えた
フライ力ッテイクグ装置において、従来の制御では実現
することが困難であったサブミクロンオーダ以下のより
高精度なNG機械加工が可能になる。
An object of the present invention is to compensate for the displacement hysteresis of a piezoelectric actuator in response to a dynamically changing applied voltage, which has not been taken into consideration in the prior art, by immediately responding to changes in cutting data in real time. As a result, in a fly force taking device that has a function to control the depth of cut of the tool in synchronization with the tool rotation angle, it is possible to achieve a higher precision NG machine of sub-micron order or less, which was difficult to achieve with conventional control. Processing becomes possible.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、バイト切込み駆動用圧電ア
クチュエータの印加電圧によって誘起される実際のアク
チュエータの変位をモニタし、それが目標値に達してい
なければ、その偏差を補償するフィードバック系と、そ
の偏差補償値を格納するメモリ系とで制御系を構成する
In order to achieve the above objective, we have developed a feedback system that monitors the actual displacement of the actuator induced by the applied voltage to the piezoelectric actuator for driving cutting tools, and compensates for the deviation if it does not reach the target value. A control system is composed of a memory system that stores deviation compensation values.

なお、圧電アクチュエータへの電圧印加のルートとして
、フィードバック系からのルートと、メモリ系からの直
接ルートが存在し、そのルートの切換えを可能としてお
く。
Note that there are two routes for applying voltage to the piezoelectric actuator: a route from the feedback system and a direct route from the memory system, and it is possible to switch between these routes.

〔作用〕[Effect]

第3図の制御ブロック図を使って、制御動作を説明する
The control operation will be explained using the control block diagram shown in FIG.

まず、切削加工前に、上記手段で記述したフィードバッ
ク系のルートを使用し、実際のNCデータを流す。この
ときの制御は、クローズドループ制御であるため、動的
変位ヒステリシスは補償されている。また、このとき同
時に、ヒステリシスを補償したアクチュエータへの印加
電圧値をメモリ2へ取り込んでおく。
First, before the cutting process, actual NC data is sent using the feedback system route described in the above means. Since the control at this time is closed loop control, dynamic displacement hysteresis is compensated for. At the same time, the voltage value applied to the actuator with hysteresis compensated for is stored in the memory 2.

次に、圧電アクチュエータ8をメモリ2がら出力される
データによって直接制御するルートに切換え、切削加工
時にヒステリシスを補償したデータによって完全オープ
ンループ制御する。
Next, the piezoelectric actuator 8 is switched to a route in which it is directly controlled by the data output from the memory 2, and complete open loop control is performed using data with hysteresis compensated for during cutting.

この制御方式によって、圧電アクチュエータ8の動的ヒ
ステリシスがオープンループ制御を使用しても補償でき
るので、高速応答、かつサブミクロンオーダ以下の高精
度なNG機械加工が可能になる。
With this control method, the dynamic hysteresis of the piezoelectric actuator 8 can be compensated for even if open-loop control is used, so high-speed response and high-precision NG machining on the order of submicrons or less becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

本装置は、NCデータ制御により試料の非球面の創成を
実現するフライカッティング装置である。
This device is a fly-cutting device that creates an aspherical surface on a sample using NC data control.

本装置は、タコジェネレータ11とロータリエンコーダ
10に連結したDCサーボモータ12゜エアスピンドル
14などからなる工具回転部と、試料19を移動させる
移動台15と移動台を駆動する駆動装置17などか己な
る試料移動部、およびNCデータ発生回路1.測長計7
.偏差検出回路3.高圧アンプ5とダイヤモンドバイト
18付切込み用圧電アクチュエータ8などからなる工具
切込み制御部から構成されている。
This device consists of a tool rotating section consisting of a DC servo motor 12 and an air spindle 14 connected to a tacho generator 11 and a rotary encoder 10, a moving table 15 for moving a sample 19, a drive device 17 for driving the moving table, and other parts. Sample moving section and NC data generation circuit 1. Length meter 7
.. Deviation detection circuit 3. It is composed of a tool cutting control section consisting of a high voltage amplifier 5, a cutting piezoelectric actuator 8 with a diamond cutting tool 18, and the like.

第1図に対応して、まず以下のように動作する。Corresponding to FIG. 1, the operation is first performed as follows.

すなわち、DCサーボモータ12によって回転駆動する
切削工具8.18の回転角位置をロータリエンコーダ1
0で検出し、NGデータ発生回路1によって工具切込み
信号VOを発生させる。
That is, the rotational angular position of the cutting tool 8.18 that is rotationally driven by the DC servo motor 12 is determined by the rotary encoder 1.
0 is detected, and the NG data generating circuit 1 generates the tool cutting signal VO.

工具切込み信号Voは、切込み用圧電アクチュエータの
実際の変化量を検出する測長計7の計測値Nfが、設定
値Nrになるようにフィードバック制御された値である
。したがって、このときの工具切込み信号Voは、圧電
アクチュエータの動的ヒステリシスを補償した信号にな
っているので、設定値に1対1に対応した値になってい
る。
The tool cutting signal Vo is a value that is feedback-controlled so that the measurement value Nf of the length measuring meter 7 that detects the actual amount of change in the piezoelectric actuator for cutting becomes the set value Nr. Therefore, since the tool cutting signal Vo at this time is a signal that compensates for the dynamic hysteresis of the piezoelectric actuator, it has a value that corresponds one-to-one to the set value.

本信号Voを切削加工前に実際のNGデータを使って発
生させ、そのとき同時にVoの値をメモリ2に取り込ん
でおく。
This signal Vo is generated using actual NG data before the cutting process, and at the same time, the value of Vo is stored in the memory 2.

次に、圧電アクチュエータへの電圧印加ルートを第2図
のように切換えて実際の切削運転に入る。
Next, the voltage application route to the piezoelectric actuator is switched as shown in FIG. 2, and the actual cutting operation begins.

この場合の切削中のメモリから出力されてくるデータは
、アクチュエータ8の動的ヒステリシスを補償した値に
なっており、さらに、この値を高圧アンプ5に伝達する
だけのオープンループ制御になっているので、制御系の
応答速度も高速である。
In this case, the data output from the memory during cutting is a value that compensates for the dynamic hysteresis of the actuator 8, and open-loop control is performed in which this value is simply transmitted to the high-voltage amplifier 5. Therefore, the response speed of the control system is also fast.

なお、第1図、第2図を使って説明した上記実施例では
、偏差補償格納メモリ2への格納方法として、全NCデ
ータに対応してその偏差補償値をメモリへ格納する方法
を示したが、加工前にNC設定データの今回データと前
回データの差に対応して変化補償値を格納し、加工時に
その変化補償値をNC設定データに加減算して実際の偏
差補償済データを得る演算器を追加した方式も容易に実
施できることは言うまでもない。
In the above embodiment described using FIGS. 1 and 2, the method of storing the deviation compensation value in the deviation compensation storage memory 2 in correspondence with all NC data was shown. However, before machining, a change compensation value is stored corresponding to the difference between the current data and the previous data of the NC setting data, and during machining, the change compensation value is added or subtracted from the NC setting data to obtain the actual deviation compensated data. Needless to say, a method with additional devices can also be implemented easily.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果がある。 According to the present invention, there are the following effects.

(1)バイトを駆動する圧電アクチュエータの動的ヒス
テリシスを完全に補償している。
(1) The dynamic hysteresis of the piezoelectric actuator that drives the cutting tool is completely compensated.

(2)測長針の測定分解能の上昇に比例して、動的ヒス
テリシスの補償精度の向上が見込める。
(2) The compensation accuracy of dynamic hysteresis can be expected to improve in proportion to the increase in measurement resolution of the length measuring needle.

(3)高速応答が期待できるオープンループ制御で動的
ヒステリシスを補償している。
(3) Dynamic hysteresis is compensated for by open-loop control that allows for high-speed response.

(4)圧電アクチュエータの種類を選ばない、交換。(4) Replacement of any type of piezoelectric actuator.

保守が容易である。Easy to maintain.

(5)上記(1) (2)により、従来方法で実現困難
であったサブミクロンオーダ以下の高精度なNC機械加
工が可能になる。
(5) Due to (1) and (2) above, high-precision NC machining on the submicron order or less, which was difficult to achieve with conventional methods, becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における試料加工前の制御構
成を示すブロック図、第2図は第1図の試料加工時の制
御構成を示すブロック図、第3図は第1図の制御回路部
のブロック図、第4図は従来装置の制御構成を示すブロ
ック図、第5図は電圧アクチュエータの動的変位ヒステ
リシスの特性図である。 1・・・NOデータ発生回路、2・・・偏差補償済デー
タの格納メモリ、3・・・偏差補償回路、4・・・制御
データ発生ルート切換器、5・・・高圧アンプ、6・・
・計数カウンタ、7・・・測長計、8・・・圧電アクチ
ュエータ、9・・・変位検出板、10・・・ロータリエ
ンコーダ、11・・・タコジェネレータ、12・・・D
Cサーボモータ、13・・・スリップリング、14・・
・エアスピンドル、15・・・移動台、16・・・摺動
子、17・・・駆動装置、18・・・ダイヤモンドバイ
ト、19・・・試料、;11; ノ ]!] 纂 2 国 猶 3 図 第4記 第 5!!] /l?氏 ff)
Figure 1 is a block diagram showing the control configuration before sample processing in an embodiment of the present invention, Figure 2 is a block diagram showing the control configuration during sample processing in Figure 1, and Figure 3 is the control configuration in Figure 1. FIG. 4 is a block diagram of the circuit section, FIG. 4 is a block diagram showing the control configuration of the conventional device, and FIG. 5 is a characteristic diagram of dynamic displacement hysteresis of the voltage actuator. DESCRIPTION OF SYMBOLS 1... NO data generation circuit, 2... Storage memory for deviation compensated data, 3... Deviation compensation circuit, 4... Control data generation route switch, 5... High voltage amplifier, 6...
・Counter, 7... Length meter, 8... Piezoelectric actuator, 9... Displacement detection plate, 10... Rotary encoder, 11... Tacho generator, 12... D
C servo motor, 13... slip ring, 14...
- Air spindle, 15... Moving table, 16... Slider, 17... Drive device, 18... Diamond bite, 19... Sample, ;11; ノ]! ] Summary 2 National Government 3 Figure 4, No. 5! ! ] /l? Mr. ff)

Claims (1)

【特許請求の範囲】[Claims] 1、バイト切込み駆動に圧電アクチュエータを利用した
工作機械装置において、圧電アクチュエータの印加電圧
によつて誘起される圧電アクチュエータの実際の変位を
モニタし、それが目標値に未達であれば、その偏差を補
償するフィードバック系と、その偏差補償値を即時格納
できるメモリとで制御系を構成し、かつ圧電アクチュエ
ータへの電圧印加のループとして、フィードバック系か
らのクローズドループと、メモリから出力される直接デ
ータによるオープンループが存在し、そのループの切換
えを可能にすることを特徴とする工作機機装置のバイト
制御方式。
1. In a machine tool device that uses a piezoelectric actuator to drive cutting tools, the actual displacement of the piezoelectric actuator induced by the voltage applied to the piezoelectric actuator is monitored, and if it does not reach the target value, the deviation is The control system consists of a feedback system that compensates for the deviation, and a memory that can immediately store the deviation compensation value, and a closed loop from the feedback system and direct data output from the memory as a loop for applying voltage to the piezoelectric actuator. A tool control method for a machine tool device, which is characterized by the existence of an open loop due to the following, and which enables switching of the loop.
JP13812587A 1987-06-03 1987-06-03 Tool control system for machine tool device Pending JPS63306854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13812587A JPS63306854A (en) 1987-06-03 1987-06-03 Tool control system for machine tool device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13812587A JPS63306854A (en) 1987-06-03 1987-06-03 Tool control system for machine tool device

Publications (1)

Publication Number Publication Date
JPS63306854A true JPS63306854A (en) 1988-12-14

Family

ID=15214556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13812587A Pending JPS63306854A (en) 1987-06-03 1987-06-03 Tool control system for machine tool device

Country Status (1)

Country Link
JP (1) JPS63306854A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058844A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
WO2007059063A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
WO2007058758A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
WO2007058840A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures
JP2010535640A (en) * 2007-08-06 2010-11-25 スリーエム イノベイティブ プロパティズ カンパニー Fly cutting system and method, and associated tools and articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214942A (en) * 1985-03-14 1986-09-24 トラウブ・アーゲー Driving means
JPS61224005A (en) * 1985-03-29 1986-10-04 Toyoda Mach Works Ltd Numerically controlled machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214942A (en) * 1985-03-14 1986-09-24 トラウブ・アーゲー Driving means
JPS61224005A (en) * 1985-03-29 1986-10-04 Toyoda Mach Works Ltd Numerically controlled machine tool

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058844A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
WO2007059063A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
WO2007058758A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
WO2007058840A1 (en) * 2005-11-15 2007-05-24 3M Innovative Properties Company Cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures
US7290471B2 (en) 2005-11-15 2007-11-06 3M Innovative Properties Company Cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
US7293487B2 (en) 2005-11-15 2007-11-13 3M Innovative Properties Company Cutting tool having variable and independent movement in an x-direction and a z-direction into and laterally along a work piece for making microstructures
US7350441B2 (en) 2005-11-15 2008-04-01 3M Innovative Properties Company Cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures
US7350442B2 (en) 2005-11-15 2008-04-01 3M Innovative Properties Company Cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
US7395742B2 (en) 2005-11-15 2008-07-08 3M Innovative Properties Company Method for using a cutting tool having variable movement in a z-direction laterally along a work piece for making microstructures
US7395741B2 (en) 2005-11-15 2008-07-08 3M Innovative Properties Company Method for using a cutting tool having variable and independent movement in an x-direction and z-direction into and laterally along a work piece for making microstructures
US7398715B2 (en) 2005-11-15 2008-07-15 3M Innovative Properties Company Method for using a cutting tool having variable rotation about a y-direction transversely across a work piece for making microstructures
US7487701B2 (en) 2005-11-15 2009-02-10 3M Innovative Properties Company Method for using a cutting tool having variable movement at two simultaneously independent speeds in an x-direction into a work piece for making microstructures
JP2010535640A (en) * 2007-08-06 2010-11-25 スリーエム イノベイティブ プロパティズ カンパニー Fly cutting system and method, and associated tools and articles
US9003934B2 (en) 2007-08-06 2015-04-14 3M Innovative Properties Company Fly-cutting system and method, and related tooling and articles

Similar Documents

Publication Publication Date Title
Altintas et al. Sliding mode controller design for high speed feed drives
US5059881A (en) Numerical control apparatus having a backlash compensation function and method thereof
JP2735153B2 (en) Precision position control device and precision position control method
US5231335A (en) Double spindle synchronous driving apparatus
WO1999044108A1 (en) Synchronization controller
JPH02290187A (en) Synchronous control and device therefor
SU1165226A3 (en) Device for stopping spindle in preset position
JPS63306854A (en) Tool control system for machine tool device
Kawaji et al. Control of cutting torque in the drilling process using disturbance observer
JPH08350B2 (en) Origin setting method for work etc. in machine tools
JPS61214942A (en) Driving means
JPS5890442A (en) Precision cutting system
JP3412208B2 (en) Tool cutting machine
JPS624568A (en) Feed device
JPS58182706A (en) Numerical control method of robot
JPS6354508B2 (en)
SU875338A1 (en) Device for maintaining constant cutting rate
JP2000035814A (en) Production of circular arc-shaped command
US4403181A (en) Control system for stopping spindle at predetermined rotational position
JPH0976141A (en) Straightness correcting system of ultra precise processing machine
JPH04101749A (en) Method and device for controlling driving shaft of machine tool
JPH044405A (en) Numerical controller
JPH05265537A (en) Automatic teaching method for robot
JPS6228803A (en) Servo control device having feedforward compensation
JPH02243244A (en) Positioning device for moving body