JPS5890442A - Precision cutting system - Google Patents

Precision cutting system

Info

Publication number
JPS5890442A
JPS5890442A JP18960281A JP18960281A JPS5890442A JP S5890442 A JPS5890442 A JP S5890442A JP 18960281 A JP18960281 A JP 18960281A JP 18960281 A JP18960281 A JP 18960281A JP S5890442 A JPS5890442 A JP S5890442A
Authority
JP
Japan
Prior art keywords
tool
axis
cutting
minute displacement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18960281A
Other languages
Japanese (ja)
Other versions
JPS6354509B2 (en
Inventor
Masatoshi Murofushi
室伏 正俊
Isamu Tanimoto
谷本 勇
Toshio Sagara
相良 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP18960281A priority Critical patent/JPS5890442A/en
Publication of JPS5890442A publication Critical patent/JPS5890442A/en
Priority to US06/701,811 priority patent/US4602540A/en
Publication of JPS6354509B2 publication Critical patent/JPS6354509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding sub-groups G05B19/21, G05B19/27, and G05B19/33
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34161Superposition curves, combine xy slides with other xy or polar slides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37275Laser, interferometer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42075Two position loops
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50313Tool offset, tool wear

Abstract

PURPOSE:To restrict the amount of compensation to the inside of a prescribed value by driving a tool supporting part provided on a cutter holder with a micro-displacement driving part, measuring a tool position with a laser measuring machine, and compensating a difference between the measured and theoretical values thereof while driving the cutter holder every time the amount of compensation exceeds the prescribed value. CONSTITUTION:The XY positions of a tool supporting part 4 are measured with a laser measuring mchine, and the theoretical positions Y on a Y axis responding to the cut curved surface is estimated from detected X axis position with an arithmetic circuit 15. By comparing an actual measured value y with a theoretical one Y on the Y axis with the first comparator to control a micro-displacement element 6 by the difference thereof, while by comparing said actual measured value y with said theoretical one which were held in a hold circuit 20 with the second comparator 18 to output DELTAY to an NC control part 8 every time the difference exceeds the prescribed value DELTAY, the cutter holder is stepwise driven in the Y axis direction by the DELTAY.

Description

【発明の詳細な説明】 本発明は軸対称な二次曲面を鏡面状に仕上げ加工する精
密切削加ニジステムに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precision cutting system for finishing an axially symmetric quadratic curved surface into a mirror surface.

近時、精密加工の分野ではレーデ−技術、超LSI技術
等の影替から0.1ミクロン以上の加工精度の加工機械
が望まれている。しかしながら従来の加工機械で0.1
ミクロン以上の加工精度を有するものは主として研削加
工によるものであってその加工対象は単なる平面か棒状
部材の外周を研削して得られる円周面に限られていた。
Recently, in the field of precision machining, processing machines with a processing accuracy of 0.1 micron or more are desired due to changes in radar technology, VLSI technology, etc. However, with conventional processing machines, 0.1
Machining precision of microns or higher is mainly achieved by grinding, and the objects to be machined are limited to simple planes or circumferential surfaces obtained by grinding the outer periphery of rod-shaped members.

このために放物面、双曲面等を鏡開仕上げに加工するこ
とができ、しかも切削加工によってそれを行なうという
技術的課題はこれまでの加工機械では解決できなかった
For this reason, it is possible to machine paraboloids, hyperboloids, etc. to a mirror finish, and the technical problem of doing so by cutting has not been solved with conventional processing machines.

この理由は二次曲面等を鏡面仕上げ加工を行なう需要は
限られていた事情を別としても、純粋に技術的に考えた
場合、加工機械の機械部材の温度の加工精度への影響お
よび工具に対する送り駆動系の加工精度への影響、たと
えば案内面の精度、駆動モータ自体のリゾルージョン、
送りネジ精度、位置フィードバック用検出器の精度、あ
るいは駆動系の応答性等の誤差要因が考えられる。特に
後者の問題点は前述した平面、円周面等の研削加工は基
本的には一軸方向に関する砥石等の工具と工作物との相
対移動を行なう制御を対象としているのに対して、二次
曲面を対象とする切削加工では同時に二軸方向に関して
制御を行なうことを要求される。
The reason for this is that, apart from the fact that there was limited demand for mirror-finishing quadratic surfaces, etc., from a purely technical standpoint, the temperature of the machine parts of the processing machine affects the processing accuracy, and the The influence of the feed drive system on the machining accuracy, such as the accuracy of the guide surface, the resolution of the drive motor itself,
Possible error factors include the accuracy of the feed screw, the accuracy of the position feedback detector, or the responsiveness of the drive system. In particular, the latter problem is caused by the fact that the aforementioned grinding of flat surfaces, circumferential surfaces, etc. is basically aimed at controlling the relative movement between a tool such as a grindstone and a workpiece in a uniaxial direction. Cutting of curved surfaces requires simultaneous control in two axial directions.

従来、同時に二軸(x、y)制御を行なう送シ駆動制御
はその加工精度を考慮外とすれば所謂NC工作機械によ
って実現されている。しかしながらNC工作機械ではテ
ーブル等の移動量の検出精度は高精度なものでも1ミク
ロンであり、特別なものでも±0.5ミクロン程度であ
る。ざらK NC工作機械自体にっbても、今最小分解
指令値を0.01(ミクロン/パルス)とし、最大切削
送シ速度を600 II+/分とするととなり・ぐルス
の分配速さは高速を要求されるためにNC工作機械の補
間演算等の遂行も困難になる。
Conventionally, feed drive control that performs two-axis (x, y) control simultaneously has been realized by a so-called NC machine tool, if machining accuracy is not considered. However, in NC machine tools, the accuracy of detecting the amount of movement of a table, etc. is 1 micron even with a high precision machine tool, and about ±0.5 micron even with a special machine tool. Regarding the NC machine tool itself, if the minimum disassembly command value is set to 0.01 (microns/pulse) and the maximum cutting feed speed is set to 600 II+/min, the dispensing speed of the gusset is high. This makes it difficult for NC machine tools to perform interpolation calculations, etc.

さらにフィードバック制御のための位置検出器について
もある程度の移動量を計測することができ、かつo、o
tミクロン程度の精度を得られるものは現在レーデ−測
長器に限られる。しかしながらこのようなレーデ−測長
器を用いても得られた誤差信号に対して駆動系が応答で
きないという問題がある。
Furthermore, the position detector for feedback control can measure a certain amount of movement, and o, o
At present, only radar length measuring instruments are capable of achieving accuracy on the order of t microns. However, even when such a radar length measuring device is used, there is a problem in that the drive system cannot respond to the error signal obtained.

本発明は上記の事情に鑑みてなされたもので0.1ミク
ロン以上の加工精度で二次曲面の切削加工を行なうこと
ができる精密切削加ニジステムを提供することを目的と
するものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a precision cutting system capable of cutting a quadratic curved surface with a processing accuracy of 0.1 micron or more.

本発明はX軸駆動系およびX軸駆動系によりxy平面上
の任意の位置へ駆動される刃物台にY軸に沿って高速か
つ高精度に位置決めを行なう微小変位駆動部を介して刃
物を保持する工具保持部を設け、この工具保持部の位置
を光学的測長器を用いて測長し、この測長値と理論値と
の差分を上記微小変位駆動部で補償するとともK、この
微小変位駆動部における補償量が所定の設定値を越える
毎に上記X軸駆動系を駆動して上記補償量を所定値内に
することを特徴とするものである。
The present invention holds a cutter tool through an X-axis drive system and a minute displacement drive section that positions the tool post at high speed and with high precision along the Y-axis, which is driven to any position on the xy plane by the X-axis drive system. The position of the tool holder is measured using an optical length measuring device, and the difference between this measured length value and the theoretical value is compensated for by the minute displacement drive section. The present invention is characterized in that each time the amount of compensation in the displacement drive unit exceeds a predetermined set value, the X-axis drive system is driven to bring the amount of compensation within a predetermined value.

以下本発明の一実施例を第1図に示す!コツ2図を参照
して詳細に説明する。図中1は切削工具で回転軸2に保
持されて回転駆動される工作物3に当接して切削加工す
る。そして上記切削工具1を工作物3に対して相対移動
させるように駆動し、その表面を所望の形状に切削加工
するものである。以下の説明では切削工具Iの駆動方向
は上記回転軸2に平行なY軸と、この回転軸2に直角な
X軸からなる直交座標系とする。そして切削工具1を工
具保持部4に保持し、この工具保持部4を刃物台5に微
小変位素子6:ン介して保持するようにしている。
An embodiment of the present invention is shown in FIG. 1 below! Tip 2 This will be explained in detail with reference to Figure 2. In the figure, reference numeral 1 denotes a cutting tool which comes into contact with a workpiece 3 that is held on a rotary shaft 2 and is driven to rotate, thereby cutting the workpiece. The cutting tool 1 is then driven to move relative to the workpiece 3 to cut its surface into a desired shape. In the following description, the driving direction of the cutting tool I is assumed to be an orthogonal coordinate system consisting of a Y axis parallel to the rotation axis 2 and an X axis perpendicular to the rotation axis 2. The cutting tool 1 is held in a tool holder 4, and the tool holder 4 is held in a tool rest 5 via a minute displacement element 6.

第2図乃至第4図は上記刃物台5を示す平面図、側面図
および第2図■−■縁矢視#br面IAである。すなわ
ち工具保持部4は静圧軸受を介して刃物台Sに対して図
示Y軸方向へ進退自在に保持される。そしてこの工具保
持部4の前端部に切削工具1を取着し、後端部と刃物台
5の端部に突設した端壁5Aとの間に微小変位索子6を
介在させその両端を固着している。
2 to 4 are a plan view, a side view, and a #br plane IA shown in FIG. That is, the tool holding part 4 is held with respect to the tool post S via a hydrostatic bearing so that it can move forward and backward in the Y-axis direction shown in the figure. The cutting tool 1 is attached to the front end of the tool holder 4, and a minute displacement cable 6 is interposed between the rear end and the end wall 5A protruding from the end of the tool rest 5, and both ends of the cutting tool 1 are attached. It's stuck.

まfc第5図は微小変位素子6の一例を示す側面図で、
たとえば3個の圧電素子61を両端および層間に銀箔等
の電極62.63.64.65を介在して層状に積み重
ね、さらに両端の電極62.63の外側に絶縁体66.
66を介して結合部材67を設けたものである。そして
電極63.64を接地し、この接地電位と1極62゜6
5との間に数百デルトの電圧を印加して圧電素子61を
積層方向へ伸縮させるようにしている。
Fig. 5 is a side view showing an example of the minute displacement element 6.
For example, three piezoelectric elements 61 are stacked in a layer with electrodes 62, 63, 64, 65 such as silver foil interposed at both ends and between the layers, and an insulator 66.
A connecting member 67 is provided via a connecting member 66. Then, the electrodes 63 and 64 are grounded, and one pole 62°6 is connected to this ground potential.
A voltage of several hundred delts is applied between the piezoelectric element 61 and the piezoelectric element 61 in the stacking direction.

第6図はこのような微小変位索子6の印加電圧にと伸長
量Δtとの関係の一例を示す図で、たとえば厚み4=1
mの圧電素子に対してに=500Vの電圧を印加して0
.25μの伸びを与えることができるとする。ここで印
加電圧を500±300vの範囲で制御して圧電素子1
個当り±0.15μの変位を生じさせるとすれば3個の
圧電素子を積層することにより全体で0.3μ〜1.2
μの範囲で厚みを制御することができる。一方、このよ
うな微小変位素子の印加電圧に対する厚みの変化は電圧
を適当な範囲で制御した場合、略直線的になり、しかも
応答性も極めて良好である。
FIG. 6 is a diagram showing an example of the relationship between the voltage applied to the minute displacement cord 6 and the amount of extension Δt. For example, when the thickness 4=1
Applying a voltage of =500V to the piezoelectric element of m
.. Suppose that it is possible to give an elongation of 25μ. Here, the applied voltage is controlled in the range of 500±300v, and the piezoelectric element 1
If a displacement of ±0.15μ is produced for each piezoelectric element, the total displacement is 0.3μ to 1.2μ by stacking three piezoelectric elements.
The thickness can be controlled within the μ range. On the other hand, the change in thickness of such a minute displacement element with respect to the applied voltage becomes approximately linear when the voltage is controlled within an appropriate range, and the response is also extremely good.

したがって上記微小変位素子6の印加電圧を制御するこ
とによシ刃物台5に対して工具保持部4を相対的にY軸
方向へ駆動し、切削工具Iの位置を制御することができ
る。
Therefore, by controlling the voltage applied to the minute displacement element 6, the tool holder 4 can be driven in the Y-axis direction relative to the tool rest 5, and the position of the cutting tool I can be controlled.

そして第1図において、7は刃物台5をX軸方向へ駆動
するX軸駆動機構で、たとえば駆動モータと、とのモー
タによって回転駆動されるとともに上記刃物台5に螺合
する送りネジを設けている。そしてこのX軸駆動機構7
はNC制御部8から与えられるX軸制御信号に応じてX
軸す−ぎアンプ9によシX軸方向へ刃物台5を駆動する
。また10は刃物台5をY軸方向へ駆動するY軸駆動機
構で、たとえば駆動モータと、このモータによって回転
駆動されるとともに上記刃物台5に螺合する送りネジを
設けている。
In FIG. 1, reference numeral 7 denotes an X-axis drive mechanism for driving the tool rest 5 in the X-axis direction, which is rotatably driven by, for example, a drive motor, and is provided with a feed screw screwed into the tool rest 5. ing. And this X-axis drive mechanism 7
is X according to the X-axis control signal given from the NC control section 8.
The turret 5 is driven in the X-axis direction by the shaft overpass amplifier 9. Reference numeral 10 denotes a Y-axis drive mechanism for driving the tool rest 5 in the Y-axis direction, and includes, for example, a drive motor and a feed screw that is rotationally driven by the motor and is screwed into the tool rest 5.

そして上記駆動モータはY軸す−ノアンノ11により制
御され刃物台5をY軸方向へ駆動する。
The drive motor is controlled by the Y-axis knob 11 and drives the tool rest 5 in the Y-axis direction.

そして12.13は工具保持部イの位置を非接触に検出
するX軸側長機およびY軸側長機で、たとえばレーデ−
光の干渉を利用し走し−デー側長機である。なおここで
工具保持部4に切削工具Iを堆層してbるのでこの工具
保持部4の位置から切削工具ノの先端の切刃の位置を知
ることができる。そして工具保持部4のX軸方向への移
動に応じてX軸側長機12から一定距離毎に、念とえば
0.01μ毎にイルスが出力される。
12.13 is an X-axis side long machine and a Y-axis side long machine that non-contact detects the position of the tool holding part A, such as a radar
It is a side-long machine that uses light interference to travel. Here, since the cutting tool I is stacked on the tool holding part 4, the position of the cutting edge at the tip of the cutting tool can be known from the position of the tool holding part 4. Then, as the tool holder 4 moves in the X-axis direction, an irradiation signal is output from the X-axis side length machine 12 at regular intervals, for example every 0.01μ.

またY軸方向への移動に応じてY軸側長機13から同様
に・やルスが出力される。そしてX軸方向の位置検出を
行なうX軸側長機12の出カッ4ルスをX軸位置カウン
タ14でカウントして切削工AIの先端のX軸方向の位
置を検出する。
In addition, in response to movement in the Y-axis direction, the Y-axis side length machine 13 similarly outputs a y-rus. Then, the X-axis position counter 14 counts output pulses of the X-axis side long machine 12 that detects the position in the X-axis direction, and detects the position of the tip of the cutting tool AI in the X-axis direction.

そしてこのX軸位置カウンタ14のカウン、ト値Xをf
(X)演算回路15へ与える。このf(→演算回路15
は切削工具1のX軸上の位置Xに対応してY軸上の理論
位置fに)を所望の切削曲面に応じて演算するものであ
る。そしてこのf((転)演算回路15の演算値をデー
タレジスタ16へ与13の出力、lルスをY軸位置カウ
ンタ19でカウントし切P3u工具1の切刃の付値に対
応するカウント値、すなわちY軸実測値yを第1の比較
器17およびホールド回路20を介して第2の比較器1
8へ与える。そして第1の比較器17の出力は微小変位
素子駆動回路21により所定比で電圧に変換して微小変
位素子6へ印加する。
Then, the count value X of this X-axis position counter 14 is set to f
(X) Provided to the arithmetic circuit 15. This f(→operating circuit 15
(corresponding to the position X on the X-axis of the cutting tool 1 and the theoretical position f on the Y-axis) is calculated according to the desired cutting surface. Then, the calculated value of the f((rotation) calculation circuit 15 is applied to the data register 16, and the output of 13 is counted by the Y-axis position counter 19, and the count value corresponding to the value assigned to the cutting edge of the cutting P3u tool 1 is obtained. That is, the Y-axis actual measured value y is sent to the second comparator 1 via the first comparator 17 and the hold circuit 20.
Give to 8. The output of the first comparator 17 is converted into a voltage at a predetermined ratio by a minute displacement element drive circuit 21 and applied to the minute displacement element 6.

また第2の比較器I8にはホールド回路2oに保持され
たY軸位置カウンタ19のカウント値、すなわち実測値
yとデータレジスタ16の理論値Yとが与えられてその
内容を比較しこの差分が予め設定した所定値Δyを越え
る毎にNC制御部8に対してY軸方向へ一定距離を駆動
すべき駆動信号ΔYを与える。そして第2の比較器18
がら駆動信号ΔYを与えられるNC制御部8はこの駆動
信号ΔYに応動して刃物台5を所定量ΔYだけステツゾ
的に駆動する。したがってこの所定値ΔYを適値に設定
することにより、微小変位索子6に対する制御電圧を適
正な範囲に維持し、iii?!M性を損ないあるいは過
大な電圧を印加することのないようにしている。
Further, the count value of the Y-axis position counter 19 held in the hold circuit 2o, that is, the actual value y, and the theoretical value Y of the data register 16 are given to the second comparator I8, and the contents are compared and the difference is calculated. Every time a predetermined value Δy is exceeded, a drive signal ΔY is given to the NC control unit 8 to drive the drive a certain distance in the Y-axis direction. and second comparator 18
The NC control unit 8, which is supplied with the drive signal ΔY, drives the tool rest 5 by a predetermined amount ΔY in response to the drive signal ΔY. Therefore, by setting this predetermined value ΔY to an appropriate value, the control voltage for the minute displacement cable 6 can be maintained within an appropriate range, and iii? ! Care is taken not to impair M properties or apply excessive voltage.

なお第7図は上記NC制御部8の要部を示すブロック図
で、Y軸およびY軸の各位置信号は各補間演算部8ax
 、 Shyを介して各コマンドカウンタgbx 、 
Shyに与えられこの出力が各D/A変換器8ex 、
 8cyでアナログ信号に変換され各サーがアンプ9,
11に入力さ九る。そして第2の比較器I8から与えら
れる駆動信号ΔYは上記Y軸側のコマンドカウンタ8b
yへ入力され補間演算部gayの出力に加算されること
になる。
FIG. 7 is a block diagram showing the main parts of the NC control unit 8, and the Y-axis and Y-axis position signals are transmitted to each interpolation calculation unit 8ax.
, each command counter gbx via Shy,
This output is sent to each D/A converter 8ex,
Each signal is converted to an analog signal by 8cy and sent to amplifier 9,
11. The drive signal ΔY given from the second comparator I8 is applied to the command counter 8b on the Y-axis side.
y and is added to the output of the interpolation calculation unit gay.

このような構成であれば切削加工の開始に先だって、N
C制御部8は切削工具1を加工物3の加工原点Xo 、
 Yoへ駆動し、全てのカウンタおよびレジスタをリセ
ットする。そして切削加工を開始すると、予め紙データ
等からインジットしたデータに応じてX軸す−♂アンf
9を介してX軸駆動機構7により切削工具1を加工物3
の外周から中心へ向かって設定速度で駆動する。
With such a configuration, before the start of cutting, N
The C control unit 8 moves the cutting tool 1 to the machining origin Xo of the workpiece 3,
Drive to Yo and reset all counters and registers. Then, when the cutting process starts, the X-axis is
The cutting tool 1 is moved to the workpiece 3 by the X-axis drive mechanism 7 via the
Drive from the outer periphery toward the center at a set speed.

そして上記切削工具1を保持する刃物台4のX軸方向の
位置に応じてX軸側長機12から、たとえば0.01μ
毎にノ臂ルスが出力される。そしてこのノぐルスをX軸
位置カウンタ14でカウントして加工原点XolC対す
る切削工具1の実測値Xを得る。この実測値Xはf((
転)演算回路15へ与えて演算しその値に対応するY軸
方向の理論値Yをデータレジスタ16から出力する。な
おこの場合、実測値XはX軸位置カウンタ14からデシ
タル値として与えられるので駆動系の精度。
Then, depending on the position in the X-axis direction of the tool rest 4 that holds the cutting tool 1, a 0.01μ
The elbow is output every time. Then, this noggle is counted by the X-axis position counter 14 to obtain the actual measured value X of the cutting tool 1 with respect to the machining origin XolC. This measured value X is f((
(2) The theoretical value Y in the Y-axis direction corresponding to the calculated value is outputted from the data register 16. Note that in this case, the actual measurement value X is given as a digital value from the X-axis position counter 14, so it is the accuracy of the drive system.

応答性等に応じて一定の移動量Δχ毎、たとえは5μ毎
にf((転)演算回路I5へ与える実測値Xの値を更新
して演算を行なうようにしている。
The calculation is performed by updating the actual measurement value X given to the f(transform) calculation circuit I5 every fixed movement amount Δχ, for example every 5μ, depending on the responsiveness and the like.

一方切削工具lOY軸方向の位置に応じてY軸側長機1
3から出力される・ぐルスをY軸位置カウンタ19でカ
ウントし、この実測値yを第1の比較器17および上記
X軸位置カウンタ14の出力データの更新に同期して上
記実演1月面yをホールドするホールド回路2oべ与え
る。
On the other hand, depending on the position of the cutting tool lOY-axis direction, the Y-axis side length machine 1
3 is counted by the Y-axis position counter 19, and this measured value y is counted by the first comparator 17 and the above-mentioned demonstration January surface in synchronization with the update of the output data of the X-axis position counter 14. A hold circuit 2o is provided to hold y.

そして上記ホールド回路2oから出力される実測値yと
データレジスタ16から与えられる理論値Yとを第2の
比較器18へ与えて比較しその差分が所定値Δγを越え
る毎にNC制御部8へ与えこの出力によシY猶す−?ア
ンプ11を介してX軸駆動機構10を駆動し切削工具1
のY軸方向の位置をΔYだけステツブ的に駆動する。
The actual measured value y outputted from the hold circuit 2o and the theoretical value Y given from the data register 16 are then given to the second comparator 18 for comparison, and each time the difference exceeds a predetermined value Δγ, the value is sent to the NC control section 8. Give this output -? The cutting tool 1 is driven by the X-axis drive mechanism 10 via the amplifier 11.
The position in the Y-axis direction is driven step by step by ΔY.

また同時に第1の比較器17により実測値yと理論値Y
との差分を得、この値に応じて微小変位素子駆動回路2
1を介して電圧に変換し、微小変位素子6に与える電圧
を制御して工具保持部4の位置を制御する。
At the same time, the first comparator 17 outputs the measured value y and the theoretical value Y.
and the minute displacement element drive circuit 2 according to this value.
The position of the tool holder 4 is controlled by controlling the voltage applied to the minute displacement element 6.

ここで第1図において、第2の比較器18、およびホー
ルド回路20を設けずデータレジスタ16の出力を第1
の比較器17およびNC制御部8を介してY軸す−?ア
ンプ11へ与えるものについて考える。この場合にはた
とえば第8図に示すように切削工具1を加工原点(Xo
、 Yo)からX軸方向へ駆動すると所定値ΔI毎にf
(xJ演算回路15から理論値f(xo) 、 f (
xl) 、 f(x2) −が与えられる。なおこの理
論値f(x)は所望の加工曲面の目標である理想曲線F
((転)から与えられるものである。そして上記理論値
f((転)に応じてY軸すゲアンプ11を介してX軸駆
動機構10を駆動しその実測値yは次第に理論値f(x
Jに接近する。
Here, in FIG. 1, the second comparator 18 and the hold circuit 20 are not provided, and the output of the data register 16 is
The Y-axis is connected via the comparator 17 and the NC control section 8. Consider what is to be applied to the amplifier 11. In this case, for example, as shown in FIG. 8, the cutting tool 1 is moved to the machining origin (Xo
, Yo) in the X-axis direction, f
(From the xJ calculation circuit 15, the theoretical values f(xo), f(
xl) and f(x2) − are given. Note that this theoretical value f(x) is the ideal curve F that is the target of the desired machining surface.
The X-axis drive mechanism 10 is driven via the Y-axis gear amplifier 11 according to the theoretical value f((x), and the actual value y gradually becomes the theoretical value f(x).
Approach J.

そしてこの過程において実測値yと理論値f((転)と
の差分を第1の比較器17で得てこの値Yσを微小変位
素子駆動回路21を介して微小変位索子6へ与えて駆動
するようにしている。しかしながらこのようなものでは
図示X軸の位置11のように実測値yと理論値f((転
)との差分が著るしく大きくなると微小変位素子6を制
御する信号Yσも著るしく大きくなり、その適正な制御
範囲を逸脱して直線性が損なわれ、あるいは制御不可能
に陥ることもある。
In this process, the first comparator 17 obtains the difference between the measured value y and the theoretical value f ((transformation)), and this value Yσ is applied to the minute displacement element 6 via the minute displacement element drive circuit 21 to drive it. However, in such a device, when the difference between the measured value y and the theoretical value f ((rotation) becomes significantly large, as shown at position 11 on the X-axis in the figure, the signal Yσ for controlling the minute displacement element 6 may become significantly large, deviating from its proper control range, resulting in loss of linearity or even loss of control.

これに対して上記実施例では第9図に示すように実測値
yと理論値f(XJとの差分が所定値Δyを越えたこと
を第2の比較器18で検出すると所定距離を駆動すべき
駆動信号ΔYをNC制御部8へ与えるようにしている。
On the other hand, in the embodiment described above, as shown in FIG. The exponent drive signal ΔY is supplied to the NC control section 8.

したがってY軸す−♂アング11には理論値・f(x)
と上記駆動信号ΔYを加えた信号が与えられみかけ上の
理論値f((転)と実測値yとの差分が大きくなったこ
とになる。したがってNC制御部8はこのみかけの差分
を目標としてX軸駆動機構10を駆動するので実測値y
は急速に理論値f(−に接近する。したがって微小変位
素子6に対する駆動信号Yσは所定の適正な範囲±σm
axに制御することができ良好な直線性と正確な制御を
行なうことができる。
Therefore, the Y-axis S-♂ Ang 11 has the theoretical value f(x)
A signal obtained by adding the above drive signal ΔY to Since the X-axis drive mechanism 10 is driven, the actual measured value y
quickly approaches the theoretical value f(-. Therefore, the drive signal Yσ for the minute displacement element 6 falls within a predetermined appropriate range ±σm
ax can be controlled, and good linearity and accurate control can be achieved.

したがって切削工具の切込み方向の位置に関して機械的
な駆動機構によって生じる誤差を電気的な圧電効果を利
用した微小変位素子によって補正し、かつこの微小変位
素子に与える電圧が適正範囲を越えると、上記駆動機構
により補正量を減少させるように切削工具を駆動するよ
うにしているので微小変位素子は常に適正範囲で動作す
ることになる。
Therefore, the error caused by the mechanical drive mechanism regarding the position of the cutting tool in the direction of cut is corrected by a micro-displacement element that utilizes an electric piezoelectric effect, and when the voltage applied to this micro-displacement element exceeds the appropriate range, the above-mentioned drive Since the cutting tool is driven by the mechanism to reduce the amount of correction, the minute displacement element always operates within an appropriate range.

なお本発明は上記実施例に限定されるものではなく、た
とえばX軸側長機12の出カッ9ルスから得られた実測
値Xを各別のf(xJ演算回路で演算して第1.第2の
比較器17.18へそれぞれ与えるようにしてもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiment. For example, the actual measurement value X obtained from the output pulse of the X-axis side machine 12 is calculated by a separate f ( Alternatively, the signals may be supplied to the second comparators 17 and 18, respectively.

またf((転)演算回路としては与えられた実測値Xか
ら所望の切削曲面のY軸方向の理論値Yを高速演算する
ものに限定されず、たとえば予め演算した理論値Yを記
憶し次メモリを設け、この記憶内容を順次に読み出すよ
うにしてもよい。
Furthermore, the f((rotation)) calculation circuit is not limited to one that rapidly calculates the theoretical value Y in the Y-axis direction of a desired cutting surface from the given actual measurement value A memory may be provided and the stored contents may be read out sequentially.

さらに微小変位素子6はその駆動信号に対する応答性が
極めて良好な之めに過敏な場合は第1図に破線で示すよ
うに第1の比較器17の出力と微小変位素子駆動回路2
1との間に積分回路22を介挿するようにしてもよい。
Furthermore, the minute displacement element 6 has extremely good responsiveness to the drive signal, so if it is sensitive, the output of the first comparator 17 and the minute displacement element drive circuit 2 are connected as shown by the broken line in FIG.
1, an integrating circuit 22 may be inserted between the two.

第10図はこのような積分回路2Iの一例を示す図で、
たとえば第1の比較器17から与えられる複数ピットの
デジタル信号をデジタル−アナログ変換器DAでアナロ
グ信号に変換して抵抗R1および第1のスイッチSWl
を介して演算増幅器OP1へ入力する。この演算増幅器
OP1は入出力間に積分コンデンサCおよび放電抵抗R
,と第2のスイッチSW、の直列回路を並列に接続して
いる9そして第1のスイッチfftは抵抗R1を選択し
、第2のスイッチShは開放して上記アナログ信号を積
分し、積分終了後第1のスイッチSW1は接地電位側を
選択し第2のスイッチSW、を閉成して積分コンデンサ
Cの充電電荷を放電する。
FIG. 10 is a diagram showing an example of such an integrating circuit 2I,
For example, a digital signal of a plurality of pits provided from the first comparator 17 is converted into an analog signal by the digital-to-analog converter DA, and the resistor R1 and the first switch SWl are converted into analog signals.
is input to operational amplifier OP1 via. This operational amplifier OP1 has an integrating capacitor C and a discharge resistor R between input and output.
, and a second switch SW are connected in parallel 9, and the first switch fft selects the resistor R1, and the second switch Sh is opened to integrate the above analog signal, and the integration is completed. The second switch SW1 selects the ground potential side, closes the second switch SW, and discharges the charge in the integrating capacitor C.

また第11図は微小変位素子駆動回路22の一例を示す
回路図で、微小変位素子6に対する数百−ルトの印加電
圧を制御するために3個のトランジスタTrl 、 T
ry 、 Trl のコレクタ、エミッタを縦続接続に
したものである。すなわち入力端子Tに与えられた信号
Yσをバッファ増幅器op、 ヲ介してトランジスタT
rlのベースへ与よる。一方トランジスタTr1 、 
Trs、 Trl  のエミッタ、コレクタを縦続接続
し、かつトランジスタTryのコレクタ、ペース間、ト
ランジスタ”l * Tryのペース間およびトランジ
スタTr1のペースとトランジスタTrlのエミッタ間
にそれぞれ抵抗R1+ Rm + Rjを介挿している
FIG. 11 is a circuit diagram showing an example of the minute displacement element drive circuit 22, in which three transistors Trl and T are used to control the applied voltage of several hundred volts to the minute displacement element 6.
The collector and emitter of ry and Trl are connected in cascade. That is, the signal Yσ applied to the input terminal T is passed through the buffer amplifier OP to the transistor T.
Depends on the base of rl. On the other hand, the transistor Tr1,
The emitters and collectors of Trs and Trl are connected in cascade, and resistors R1 + Rm + Rj are inserted between the collector and the pace of the transistor Try, between the pace of the transistor "l*Try, and between the pace of the transistor Tr1 and the emitter of the transistor Trl, respectively. ing.

そしてトランジスタTrlのエミッタとトランジスタT
ryのコレクタとの間に数百♂ルトの電源Pと微小変位
素子6の直列回路を接続している。
and the emitter of transistor Trl and transistor T
A power supply P of several hundred volts and a series circuit of a minute displacement element 6 are connected between the collector of the ry.

このようにすれば各トランジスタ、Trl 、 Tr)
 。
In this way, each transistor, Trl, Tr)
.

Tryのエミッタ、コレクタ間に印加される電圧は略電
源電圧のV3にな、9)ランジスタTr1゜Trl、 
Trs のコレクター耐圧に対する要求を緩和すること
ができる。
The voltage applied between the emitter and collector of Try is approximately V3, which is the power supply voltage.9) Transistor Tr1゜Trl,
The requirement for collector breakdown voltage of Trs can be relaxed.

さらに上記実施例ではf(d演算回路15は加工原点Y
oに対する理論値Yを出力するようにしているが、この
ようなものに限定されず前回のX軸方向の位置Xn−1
に対応する理論値yn、と当該時点のX軸方向の位置X
nに対応する理論値Ynとの差分Yn−Yn−1を出力
するようにしてもよいつ以上詳述したように本発明によ
れば機械的な駆動機構によって生じる切削工具の切込み
方向の位置誤差を電気的に変位量を制御される微小変位
素子によって補正し、かつこの微小変位素子へ与える電
圧が適正範囲を越えると上記駆動機構によって補正量を
減少させるように切削工具を駆動するようにしたもので
ある。
Furthermore, in the above embodiment, the f(d calculation circuit 15
The theoretical value Y for o is output, but it is not limited to this, and the previous position Xn-1 in the X-axis direction
The theoretical value yn corresponding to , and the position X in the X-axis direction at the relevant time
The difference Yn-Yn-1 from the theoretical value Yn corresponding to n may be outputted.As described in detail above, according to the present invention, the position error in the cutting direction of the cutting tool caused by the mechanical drive mechanism is corrected by a micro-displacement element whose displacement is electrically controlled, and when the voltage applied to the micro-displacement element exceeds an appropriate range, the cutting tool is driven by the drive mechanism to reduce the correction amount. It is something.

したがって極めて高精度に二次曲面を切削加工すること
ができしかも微小変位素子を常に適正範囲で動作させる
ことができる精密切削加ニジステムを提供することがで
きる。
Therefore, it is possible to provide a precision cutting system that can cut a quadratic curved surface with extremely high precision and can always operate the minute displacement element within an appropriate range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図、
第3図および第4図は上記実施例の刃物台を示す平面図
、側面図および第2図IV−■線矢視図、第5図は上記
実施例の微小変位素子の一例を示す側面図、第6図は上
記微小変位素子の印加電圧と伸長量との関係を示す図、
第7図はNり」制御部の要部を示すブロック図、第8図
は従来の装置の動作を説明する図、第9図は本考案の装
置の動作を説明する図、第10図は本考案の他の実施例
の積分回路を示す図、第11図は本考案の微小変位素子
駆動回路の一例を示す図である。 1・・・切削工具、2・・・回転軸、3・・・加工物、
d・・・工具保持部、5・・・刃物台、6・・・微小変
位素子、2・・X軸駆動機構、8・・・NC制御部、1
0・・Y軸駆動機構、12・・・X軸側長機、13・・
・Y軸側長機、15・・・f(XI演算回路、I7・・
・第1の比較器、18・・・第2の比較器。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG.
3 and 4 are a plan view, a side view, and a view taken along the line IV-■ in FIG. 2, and FIG. 5 is a side view showing an example of the minute displacement element of the above embodiment. , FIG. 6 is a diagram showing the relationship between the applied voltage and the amount of extension of the minute displacement element,
FIG. 7 is a block diagram showing the main parts of the control section, FIG. 8 is a diagram explaining the operation of the conventional device, FIG. 9 is a diagram explaining the operation of the device of the present invention, and FIG. FIG. 11 is a diagram showing an integration circuit according to another embodiment of the present invention, and FIG. 11 is a diagram showing an example of a minute displacement element drive circuit according to the present invention. 1... Cutting tool, 2... Rotating shaft, 3... Workpiece,
d...Tool holding part, 5...Turret, 6...Minute displacement element, 2...X-axis drive mechanism, 8...NC control unit, 1
0...Y-axis drive mechanism, 12...X-axis side length machine, 13...
・Y-axis side length machine, 15...f (XI calculation circuit, I7...
- First comparator, 18... second comparator.

Claims (1)

【特許請求の範囲】[Claims] 回転軸に保持され回転駆動される工作物と、この工作物
を切削加工する切削工具を保持する工具保持部と、この
工具保持部を保持する刃物台と、この刃物台を上記切削
工具の切込み方向へ駆動するX軸駆動機構と、上記刃物
台を上記切削工具の切込み方向に対して直角な方向へ駆
動するX軸駆動機構と、切削すべき曲面に応じて予めイ
ングツトされたデータにより上記X軸駆動機構およびX
軸駆動機構を制御するNC制御部と、上記工具保持部と
刃物台との間に介在し上記刃物台を上記工具保持部に対
して切込み方向へ駆動する微小変位素子と、上記刃物台
のX軸およびY軸方向の位置を非接触に検出するX軸側
長話およびY軸側長話と、X軸側長話から与えられる実
測値に応じて所望の切削曲面のY軸方向の理論値を出力
するf(xJ演算回路と、このf(xJ演算回路から与
えられる理論値とY軸側長話から与えられる実測値との
差分に応じて上記微小変位素子を切込み方向へ変位させ
る微小変位素子駆動回路と、上記差分が所定値を越える
毎に上記NC制御部を介してX軸駆動機構を駆動して上
記微小変位素子における変位量を所定範囲に維持させる
第2の比較器とを具備する精密切削加ニジステム。
A workpiece that is held on a rotating shaft and rotationally driven, a tool holder that holds a cutting tool for cutting this workpiece, a tool rest that holds this tool holder, and a tool rest that holds the tool rest for cutting the cutting tool. an X-axis drive mechanism that drives the tool post in a direction perpendicular to the cutting direction of the cutting tool; Axial drive mechanism and
an NC control section that controls the shaft drive mechanism; a minute displacement element that is interposed between the tool holding section and the tool post and drives the tool post in the cutting direction with respect to the tool holding section; The X-axis side long line and Y-axis side long side line detect the position in the axial and Y-axis directions without contact, and the theoretical value of the Y-axis direction of the desired cutting surface according to the actual measured value given from the X-axis side long line. f(xJ arithmetic circuit), and this f(xJ arithmetic circuit) produces a minute displacement that displaces the minute displacement element in the cutting direction according to the difference between the theoretical value given from the xJ arithmetic circuit and the actual value given from the Y-axis side long story. It includes an element drive circuit and a second comparator that drives the X-axis drive mechanism via the NC control unit to maintain the displacement amount in the minute displacement element within a predetermined range every time the difference exceeds a predetermined value. Precision cutting system.
JP18960281A 1981-11-26 1981-11-26 Precision cutting system Granted JPS5890442A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18960281A JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system
US06/701,811 US4602540A (en) 1981-11-26 1985-02-19 Precision machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960281A JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system

Publications (2)

Publication Number Publication Date
JPS5890442A true JPS5890442A (en) 1983-05-30
JPS6354509B2 JPS6354509B2 (en) 1988-10-28

Family

ID=16244053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960281A Granted JPS5890442A (en) 1981-11-26 1981-11-26 Precision cutting system

Country Status (1)

Country Link
JP (1) JPS5890442A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100344A (en) * 1984-10-18 1986-05-19 Inoue Japax Res Inc Machine tool attachment
JPS61214941A (en) * 1985-03-19 1986-09-24 Nachi Fujikoshi Corp Fine positioning mechanism for rectilinear movement apparatus
JPS6234746A (en) * 1985-08-06 1987-02-14 Canon Inc Micro distance driving device
JPS6285302U (en) * 1985-11-15 1987-05-30
JPS63201803A (en) * 1987-02-18 1988-08-19 Hitachi Seiki Co Ltd Data transmitter for machine tool
JPS647317U (en) * 1987-07-01 1989-01-17
JPH03163609A (en) * 1989-11-22 1991-07-15 Agency Of Ind Science & Technol Dual servo-controller of optical space transmission system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100344A (en) * 1984-10-18 1986-05-19 Inoue Japax Res Inc Machine tool attachment
JPS61214941A (en) * 1985-03-19 1986-09-24 Nachi Fujikoshi Corp Fine positioning mechanism for rectilinear movement apparatus
JPH0442132B2 (en) * 1985-03-19 1992-07-10 Fujikoshi Kk
JPS6234746A (en) * 1985-08-06 1987-02-14 Canon Inc Micro distance driving device
JPS6285302U (en) * 1985-11-15 1987-05-30
JPS63201803A (en) * 1987-02-18 1988-08-19 Hitachi Seiki Co Ltd Data transmitter for machine tool
JPS647317U (en) * 1987-07-01 1989-01-17
JPH03163609A (en) * 1989-11-22 1991-07-15 Agency Of Ind Science & Technol Dual servo-controller of optical space transmission system

Also Published As

Publication number Publication date
JPS6354509B2 (en) 1988-10-28

Similar Documents

Publication Publication Date Title
US4195250A (en) Automatic measuring and tool position compensating system for a numerically controlled machine tool
US4602540A (en) Precision machine system
JPS5890442A (en) Precision cutting system
EP0242869A2 (en) Numerical control equipment
GB2314452A (en) Electromechanical actuator
JPS61226261A (en) Numerically controlled grinding machine
US4811235A (en) Coordinate interpolation in numerical control apparatus
JPS6354508B2 (en)
JPH05269651A (en) Device for correcting displacement of cutter tip due to time elapse in nc machine tool
JPS6328541A (en) Setting of original point of work or the like on machine tool
JP3162936B2 (en) Edge position correction device for rotary tools
JP2778159B2 (en) Servo motor feed compensation method
JPS63306854A (en) Tool control system for machine tool device
GB1499812A (en) Machine tools
JP2607533B2 (en) Processing device and processing method
JPS624568A (en) Feed device
JPH0323302B2 (en)
JPH04123205A (en) Initial position detector for target to be controlled
JPS6147653B2 (en)
JPH0811354B2 (en) Straightness correction device for feed unit
JP3163792B2 (en) Numerical control grinding machine
JP2883671B2 (en) Numerical controller with sizing function
SU772818A1 (en) Copying control system
JPH05208345A (en) Outside machine measuring instrument of machine tool
JPS62293408A (en) Work end driving control device