JPS6354490B2 - - Google Patents

Info

Publication number
JPS6354490B2
JPS6354490B2 JP7865083A JP7865083A JPS6354490B2 JP S6354490 B2 JPS6354490 B2 JP S6354490B2 JP 7865083 A JP7865083 A JP 7865083A JP 7865083 A JP7865083 A JP 7865083A JP S6354490 B2 JPS6354490 B2 JP S6354490B2
Authority
JP
Japan
Prior art keywords
machining
electrode
liquid
workpiece
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7865083A
Other languages
Japanese (ja)
Other versions
JPS59205235A (en
Inventor
Masanori Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7865083A priority Critical patent/JPS59205235A/en
Publication of JPS59205235A publication Critical patent/JPS59205235A/en
Publication of JPS6354490B2 publication Critical patent/JPS6354490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 本発明は、放電加工の方法とその方法の実施に
用いる電極とに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of electric discharge machining and an electrode used to carry out the method.

放電加工は電極と被加工物とを白灯油等の加工
液中で微小間隙を隔てて対向させ、両者間に電圧
をかけて放電を発生させ、その放電エネルギによ
つて被加工物を電極表面に倣つた形に加工する方
法であるが、加工の進行に伴つて電極と被加工物
との間隙に微細なスラツジやカーボン粉末が生ず
る。これらは加工の安定性と加工速度に重大な影
響を与えるため、これらを如何にして除去するか
が重大な問題となる。
In electrical discharge machining, an electrode and a workpiece are placed facing each other with a small gap in a machining liquid such as white kerosene, and a voltage is applied between them to generate an electric discharge.The discharge energy causes the workpiece to be moved to the electrode surface. However, as the machining progresses, fine sludge and carbon powder are generated in the gap between the electrode and the workpiece. Since these have a serious effect on processing stability and processing speed, how to remove them is a serious problem.

従来、このスラツジ等を除去する一方法とし
て、電極を中空体として内部に加工液溜を設ける
とともに被加工物と対向する底壁部に加工液噴出
口を設け、外部から加工液溜に供給される加工液
を噴出口から電極と被加工物との間隙に噴き出さ
せて発生したスラツジ等を運び去らせる方法が採
用されていた。この方法によればスラツジ等を良
好に排除することができるのであるが、反面、加
工液の流速が大きすぎれば被加工物の面粗度が悪
くなるため、加工液の流速を一定範囲に制御する
ことが必要である。しかし、電極と被加工物との
間隙は加工条件によつて変化するため、加工条件
が変わる毎に加工液の供給圧力を調節する必要が
あり、加工液の流速を一定範囲に制御することが
大変であつた。
Conventionally, as a method for removing this sludge, etc., the electrode is made into a hollow body, a processing liquid reservoir is provided inside, and a processing liquid spout is provided on the bottom wall facing the workpiece, and the processing liquid is supplied from the outside to the processing liquid reservoir. A method has been adopted in which machining liquid is jetted from a spout into the gap between the electrode and the workpiece to carry away the generated sludge. With this method, sludge, etc. can be removed well, but on the other hand, if the flow rate of the machining fluid is too high, the surface roughness of the workpiece will deteriorate, so the flow rate of the machining fluid is controlled within a certain range. It is necessary to. However, since the gap between the electrode and the workpiece changes depending on the machining conditions, it is necessary to adjust the supply pressure of the machining fluid every time the machining conditions change, and it is difficult to control the flow rate of the machining fluid within a certain range. It was very difficult.

さらに上記の方法に加えて電極を上下動させて
被加工物との間隙を周期的に広げ、スラツジ等の
排出を促進することも従来から行われていたが、
この場合には電極と被加工物との間隙が変化する
ため加工液の供給圧調整が一層困難であり、ま
た、電極の上下動に伴つて加工液溜内に発生する
負圧および正圧を一定範囲内に抑制するための穴
を電極に設け、負圧、正圧の発生状況に応じてこ
の穴の開口面積を調整することも必要であつた。
Furthermore, in addition to the above method, it has been conventionally practiced to move the electrode up and down to periodically widen the gap between the workpiece and the workpiece to promote the discharge of sludge, etc.
In this case, the gap between the electrode and the workpiece changes, making it more difficult to adjust the supply pressure of the machining fluid, and it is also difficult to adjust the negative and positive pressures generated in the machining fluid reservoir as the electrode moves up and down. It was also necessary to provide a hole in the electrode to suppress the pressure within a certain range, and to adjust the opening area of this hole depending on the generation of negative pressure and positive pressure.

本発明は上記のような従来技術の問題を解消
し、電極と被加工物との微小な間隙に安定な加工
液の流れを生じさせて高い加工速度で被加工物を
加工し、しかも良好な面粗度が得られる放電加工
方法とその方法の実施に好適に使用し得る電極と
を提供することを目的として為されたものであ
る。
The present invention solves the problems of the prior art as described above, creates a stable flow of machining fluid in the minute gap between the electrode and the workpiece, processes the workpiece at high machining speed, and achieves good results. The object of this invention is to provide an electric discharge machining method that can obtain surface roughness, and an electrode that can be suitably used to carry out the method.

そして、本発明に係る放電加工方法の特徴とす
るところは、電極と被加工物との微小間隙の一方
の側における加工液の液面を他方の側における液
面より予め定められた量だけ高く保ち、その液面
差に基づく液圧によつて上記微小間隙に安定した
加工液の流れを生じさせつつ放電加工を行うこと
にある。
The electric discharge machining method according to the present invention is characterized in that the liquid level of the machining fluid on one side of the microgap between the electrode and the workpiece is set higher than the liquid level on the other side by a predetermined amount. The objective is to perform electrical discharge machining while maintaining a stable flow of machining fluid in the minute gap using hydraulic pressure based on the difference in the fluid level.

このように電極と被加工物との微小間隙の両側
において安定した液面差を生じさせることは、従
来のように加工液溜への供給液圧を一定に保つよ
りはるかに容易である。そのため電極と被加工物
との間隙における加工液の流れが安定し、スラツ
ジ等が良好に除去されるとともに加工液の流速が
過大であることによる被加工物表面の面粗度の悪
化が防止されるのである。
Creating a stable liquid level difference on both sides of the minute gap between the electrode and the workpiece in this way is much easier than maintaining the liquid pressure supplied to the processing liquid reservoir constant as in the conventional method. Therefore, the flow of the machining fluid in the gap between the electrode and the workpiece is stabilized, sludge, etc. is removed well, and deterioration of the surface roughness of the workpiece surface due to excessive flow velocity of the machining fluid is prevented. It is.

また、電極に関する発明の特徴とするところ
は、中空で、内部に加工液溜を有するとともに、
加工液槽中において微小間隙を隔てて被加工物と
対向させられてその被加工物との間に放電を発生
させるべき底壁に、外部から供給される加工液を
上記微小間隙へ噴出させる噴出口を有する放電加
工用電極において、その電極の加工液槽の液面下
に没入させられる部分より予め定められた距離だ
け高い位置に、余剰加工液をあふれ出させて加工
液溜の液面を加工液槽の液面より高い一定の高さ
に保つあふれ出し口を設けたことにある。
In addition, the invention regarding the electrode is characterized by being hollow and having a processing liquid reservoir inside.
The bottom wall of the machining fluid tank is placed opposite the workpiece across a microgap to generate an electric discharge between the workpiece and the bottom wall, and the jetting fluid is spouted from the outside into the microgap. In an electrical discharge machining electrode that has an outlet, excess machining fluid overflows to a predetermined distance higher than the part of the electrode that is immersed under the fluid surface of the machining fluid tank, thereby lowering the fluid level of the machining fluid reservoir. The reason lies in the provision of an overflow port that maintains a constant height above the liquid level in the processing liquid tank.

このような電極を用いれば、噴出口から噴出さ
れる加工液の量より多い量の加工液を加工液溜へ
供給して、あふれ出し口から常時ある程度の加工
液があふれ出している状態にしておけば、噴出口
における加工液の液圧は精度よく一定に保たれ、
スラツジ等の排出が良好に行われるとともに安定
な放電が発生して良好な仕上げ面が得られるので
ある。ちなみに本発明に係る電極を使用すれば、
ほぼ従来の電極による場合の2倍程度の加工速度
が得られることが実験によつて確認されている。
If such an electrode is used, a larger amount of machining fluid can be supplied to the machining fluid reservoir than the amount of machining fluid spouted from the spout, and a certain amount of machining fluid can always overflow from the overflow port. By doing so, the hydraulic pressure of the machining fluid at the spout can be kept constant with high precision.
Sludge and the like are discharged well, stable electrical discharge occurs, and a good finished surface is obtained. By the way, if the electrode according to the present invention is used,
It has been confirmed through experiments that a machining speed approximately twice as high as that using conventional electrodes can be obtained.

以下、本発明の実施例を図面に基づいて詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において2は放電加工機のラムであり、
図示しない放電加工機本体に設けられた昇降機構
によつて上下に移動させられる。このラム2の下
方には加工液槽4が設けられており、この加工液
槽4には図示しないポンプによつて給液管路6を
経て白灯油等の加工液が供給される。加工液槽4
の底部にはドレン管路8が接続されて槽内の加工
液を全部排出し得るようになつているが、さらに
加工液槽4の上部には排液口10が設けられて、
ドレン管路8が閉じられた状態では加工液はこの
排液口10から流出し、槽内における加工液面の
高さがこの排液口10の高さに保たれるようにな
つている。なお、図においては排液口10は高さ
不変に設けられているように示されているが、実
際にはこの排液口10の高さは任意に変えること
ができ、それによつて加工液面を所望の高さに設
定し得るようにされている。
In Fig. 1, 2 is the ram of the electric discharge machine.
It is moved up and down by a lifting mechanism (not shown) provided in the electrical discharge machine main body. A machining liquid tank 4 is provided below the ram 2, and a machining liquid such as white kerosene is supplied to the machining liquid tank 4 through a liquid supply pipe 6 by a pump (not shown). Processing liquid tank 4
A drain pipe 8 is connected to the bottom of the tank so that all of the machining fluid in the tank can be drained, and a drain port 10 is further provided at the top of the machining fluid tank 4.
When the drain pipe 8 is closed, the machining fluid flows out from the drain port 10, and the level of the machining fluid in the tank is maintained at the level of the drain port 10. In addition, in the figure, the drain port 10 is shown as being provided with a constant height, but in reality, the height of the drain port 10 can be changed arbitrarily, so that the machining fluid can be The surface can be set to a desired height.

加工液槽4の内部には定盤12が設けられてお
り、この定盤12に被加工物としての金型14が
固定されている。一方、前記ラム2の下面には電
極16が固定されている。この電極16は上板1
8、側壁20および底壁22を備え、内部に加工
液溜24を備えた中空体であり、上板18におい
てラム2に取り外し可能に固定されている。底壁
22は第2図に示すように金型14の被加工面2
5に微小な間隙26を隔てて対向させられている
が、この底壁22に加工液の噴出口28が形成さ
れている。側壁20の中間高さ位置には給液口3
0が設けられ、これに給液管路32が接続されて
いる。さらに側壁20の上部にはあふれ出し口3
4が設けられている。このあふれ出し口34は給
液管路32を経て加工液溜24に供給された加工
液のうち、噴出口28から噴出させられるものを
除いた加工液が自然にあふれ出ること、すなわ
ち、あふれ出し口34の内外に圧力差が生じるこ
となく流出し得る大きさとされている。また、側
壁20の最下端、すなわち底壁22に連なる部分
にはスラツジ排出口36が設けられている。この
排出口36の下縁は底壁22の上面と一致させら
れており、底壁22に沈澱するスラツジやカーボ
ン粉末の排除の容易化が図られている。すなわち
加工液溜24に供給される加工液はある程度のス
ラツジやカーボン粉末が混入することを避け得
ず、スラツジ排出口36がない場合にはこれらス
ラツジやカーボン粉末が加工液溜24の底壁22
に沈澱して蓄積され、これが安定した放電の発生
を妨げ、加工速度を低下させることとなるのに対
して、スラツジ排出口36が設けられている場合
にはそのような不具合が生じないのである。
A surface plate 12 is provided inside the machining liquid tank 4, and a mold 14 as a workpiece is fixed to this surface plate 12. On the other hand, an electrode 16 is fixed to the lower surface of the ram 2. This electrode 16 is connected to the upper plate 1
8. It is a hollow body having a side wall 20 and a bottom wall 22 and a processing liquid reservoir 24 inside, and is removably fixed to the ram 2 at the upper plate 18. The bottom wall 22 is connected to the workpiece surface 2 of the mold 14 as shown in FIG.
5 with a small gap 26 in between, and a machining fluid jet port 28 is formed in the bottom wall 22. A liquid supply port 3 is provided at an intermediate height position of the side wall 20.
0 is provided, and a liquid supply pipe line 32 is connected to this. Furthermore, an overflow port 3 is provided at the top of the side wall 20.
4 are provided. This overflow port 34 is used for natural overflow of the machining fluid supplied to the machining fluid reservoir 24 via the fluid supply pipe 32, excluding that which is spouted from the spout 28. The size is such that it can flow out without creating a pressure difference between the inside and outside of the mouth 34. Further, a sludge discharge port 36 is provided at the lowermost end of the side wall 20, that is, at a portion continuous to the bottom wall 22. The lower edge of the discharge port 36 is aligned with the upper surface of the bottom wall 22, so that sludge and carbon powder deposited on the bottom wall 22 can be easily removed. That is, it is unavoidable that the machining fluid supplied to the machining fluid reservoir 24 is mixed with a certain amount of sludge and carbon powder, and if there is no sludge discharge port 36, these sludge and carbon powder will flow to the bottom wall 22 of the machining fluid reservoir 24.
The sludge settles and accumulates in the sludge, which prevents stable discharge from occurring and reduces the machining speed. However, when the sludge discharge port 36 is provided, such problems do not occur. .

以上のように構成された装置を用いて放電加工
を行う場合には、定盤12に金型14を固定する
一方、ラム2に電極16を固定し、給液管路6か
ら加工液を供給して加工液槽4内の加工液面を排
液口10の高さまで上昇させる。その後、給液管
路6からの給液を断つ一方、給液管路32による
電極16に対する加工液の供給を開始する。供給
された加工液は噴出口28から間隙26へ噴出さ
せられるが、管路32の給液量はこの噴出液量よ
り多くされているため、加工液溜24内の液面が
上昇し、ついにあふれ出し口34から余剰加工液
があふれ出すに至る。この際、あふれ出し口34
は電極16の、加工液槽4の液面下に没する部分
より予め定められた距離だけ高い位置に形成され
ているため、加工液溜24の液面は加工液槽4の
液面より一定量高く保たれることとなる。そのた
めに金型14と電極16との間隙26の前後にお
ける液圧差が正確に適正値に保たれ、間隙26に
は適正な流速の加工液の流れが生ずる。これによ
つて間隙26内に発生するスラツジやカーボン粉
末が良好に排除され、また、加工液流速の過大に
基づく被加工面25の面粗度低下も生じないので
ある。
When performing electric discharge machining using the apparatus configured as described above, the mold 14 is fixed to the surface plate 12, the electrode 16 is fixed to the ram 2, and machining fluid is supplied from the liquid supply pipe 6. The machining fluid level in the machining fluid tank 4 is raised to the level of the fluid drain port 10. Thereafter, while the liquid supply from the liquid supply pipe line 6 is cut off, the supply of machining liquid to the electrode 16 through the liquid supply line 32 is started. The supplied machining fluid is ejected from the spout 28 into the gap 26, but since the amount of fluid supplied to the pipe line 32 is greater than this amount of ejected fluid, the liquid level in the machining fluid reservoir 24 rises and finally Excess machining fluid overflows from the overflow port 34. At this time, overflow port 34
is formed at a predetermined distance higher than the part of the electrode 16 that is submerged below the liquid surface of the machining liquid tank 4, so that the liquid level of the machining liquid reservoir 24 is more constant than the liquid level of the machining liquid tank 4. The amount will be kept high. Therefore, the fluid pressure difference before and after the gap 26 between the mold 14 and the electrode 16 is accurately maintained at an appropriate value, and the machining fluid flows through the gap 26 at an appropriate flow rate. As a result, sludge and carbon powder generated in the gap 26 are effectively removed, and the surface roughness of the processed surface 25 does not deteriorate due to an excessive flow rate of the processing fluid.

しかも、加工液溜24の液面高さおよび加工液
槽4の液面高さはいずれも余剰の加工液をそれぞ
れあふれ出し口34および排液口10からあふれ
出させることによつて一定に保たれるものである
ため、給液管路32による給液量を噴出口28か
ら噴出する加工液の最大流量より大きく設定して
さえおけば、加工条件の変化によつて間隙26が
変動しても加工液溜24と加工液槽4の液面差は
正確に一定に保たれ、給液管路32の流量調整を
行う必要がないのである。さらに間隙26からの
スラツジ等の排除を良好にするために電極16に
周期的な上下動が与えられる場合でも、加工液溜
24の液面は容易に一定に保ち得、しかも、従来
の電極に上下動を与えた場合に発生していたよう
な負圧および正圧の発生がないため、これらを一
定範囲内に抑制するための開口の面積を調整する
必要もないのである。
Moreover, the liquid level height of the machining liquid reservoir 24 and the liquid level of the machining liquid tank 4 are both kept constant by overflowing the excess machining liquid from the overflow port 34 and the liquid drain port 10, respectively. Therefore, as long as the amount of liquid supplied by the liquid supply pipe 32 is set to be larger than the maximum flow rate of the machining liquid spouted from the spout 28, the gap 26 will not fluctuate due to changes in machining conditions. Also, the difference in liquid level between the machining liquid reservoir 24 and the machining liquid tank 4 is kept accurately constant, and there is no need to adjust the flow rate of the liquid supply pipe 32. Furthermore, even when the electrode 16 is subjected to periodic vertical movements in order to improve the removal of sludge and the like from the gap 26, the liquid level in the machining liquid reservoir 24 can be easily kept constant; Since there is no generation of negative pressure and positive pressure that would occur when vertical movement is applied, there is no need to adjust the area of the opening to suppress these pressures within a certain range.

第3図に本発明の別の実施例を示す。この実施
例においては電極16の上板18にあふれ出し口
34が形成されている。その他の部分については
上記実施例と同様であるため詳細な説明は省略す
るが、本実施例によれば電極16の長さを増大さ
せることなく加工液溜24と加工液槽4との液面
差を大きくすることができる。
FIG. 3 shows another embodiment of the invention. In this embodiment, an overflow opening 34 is formed in the upper plate 18 of the electrode 16. Since the other parts are the same as those in the above embodiment, a detailed explanation will be omitted. However, according to this embodiment, the liquid level between the machining liquid reservoir 24 and the machining liquid tank 4 can be increased without increasing the length of the electrode 16. The difference can be increased.

上記2実施例においては電極16の被加工物と
対向する底壁22に噴出口28が形成されていた
が、これらは必ずしも不可欠なことではない。た
とえば第4図およぴ第5図に示すような装置によ
つても本発明の方法を実施し得る。図において4
0は加工液槽、42は定盤、44は被加工物であ
る金型、46は電極である。金型44および電極
46は容器状物48によつて囲まれている。この
容器状物48の互いに対向する2側壁50は金型
44および電極46の側壁に極めて近接して設け
られているのに対し、他の2側壁52および54
は金型44および電極46から十分離れた位置に
設けられている。また、側壁50および52はす
べて同じ高さとされているが、側壁54はそれら
より一定量低くされている。加工液は電極46に
形成された給液通路56から、金型44および電
極46と側壁50および52とによつて囲まれた
加工液溜58に供給され、金型44と電極46と
の間隙60を流れて反対側の加工液溜62へ流出
するのであるが、給液通路56から供給される加
工液の流量は間隙60を流れる加工液の流量より
多くされているため、加工液溜58側においては
容器状物48の上端に形成されたあふれ出し口6
4から余剰の加工液があふれ出すこととなる。一
方、間隙60を流れて加工液溜62に貯えられた
加工液は側壁54の上端を越えて加工液槽40へ
流出する。側壁54は前述のように他の側壁50
および52より低くされているため加工液溜62
の液面は加工液溜58の液面より一定量低く保た
れ、この液面差によつて間隙60を流れる加工液
の流速が正確に規定されることとなり、前述の2
実施例と同様な作用、効果が得られるのである。
In the above two embodiments, the ejection ports 28 are formed in the bottom wall 22 of the electrode 16 facing the workpiece, but these are not necessarily essential. For example, the method of the invention can also be carried out with an apparatus such as that shown in FIGS. 4 and 5. In the figure 4
0 is a processing liquid tank, 42 is a surface plate, 44 is a mold which is a workpiece, and 46 is an electrode. The mold 44 and the electrode 46 are surrounded by a container 48 . The two opposing side walls 50 of this container-like object 48 are provided very close to the side walls of the mold 44 and the electrode 46, while the other two side walls 52 and 54
is provided at a position sufficiently distant from the mold 44 and the electrode 46. Also, while sidewalls 50 and 52 are all the same height, sidewall 54 is lowered by a certain amount. The machining fluid is supplied from a fluid supply passage 56 formed in the electrode 46 to a machining fluid reservoir 58 surrounded by the mold 44, the electrode 46, and side walls 50 and 52, and the gap between the mold 44 and the electrode 46 is 60 and flows out to the machining fluid reservoir 62 on the opposite side. However, since the flow rate of the machining fluid supplied from the fluid supply passage 56 is greater than the flow rate of the machining fluid flowing through the gap 60, the machining fluid flows into the machining fluid reservoir 58 on the opposite side. On the side, an overflow port 6 formed at the upper end of the container-like object 48
Excess machining fluid will overflow from 4. On the other hand, the machining fluid flowing through the gap 60 and stored in the machining fluid reservoir 62 flows out over the upper end of the side wall 54 into the machining fluid tank 40 . The side wall 54 is connected to the other side wall 50 as described above.
and processing liquid reservoir 62 because it is lower than 52.
The liquid level is kept a certain amount lower than the liquid level in the machining liquid reservoir 58, and this liquid level difference accurately regulates the flow rate of the machining liquid flowing through the gap 60.
The same actions and effects as in the embodiment can be obtained.

さらに付言すれば、上記各実施例においては加
工液溜24,58等の液面高さが不変とされてい
たが、あふれ出し口34の高さを調節可能とする
ことによつて液面の高さを調節することが可能で
ある。さらに第1図乃至第3図に示したような電
極に直接あふれ出し口を形成することなく、電極
16とは別体に設けた貯溜容器にあふれ出し口を
設けるとともにこの容器を十分な流路面積を有す
る可撓ホースによつて電極に接続し、この貯溜容
器の高さを調節することによつて電極内空間の液
圧を一定に保つことも可能である。また、第4図
および第5図に示した実施例において給液通路5
6は必ずしも電極46に設ける必要はなく、別途
設けた給液管路から加工液溜58のあふれ出し口
64へ直接加工液を供給することも可能である。
Furthermore, in each of the above embodiments, the liquid level height of the machining liquid reservoirs 24, 58, etc. is fixed, but by making the height of the overflow port 34 adjustable, the liquid level can be adjusted. It is possible to adjust the height. Furthermore, instead of forming an overflow port directly on the electrode as shown in FIGS. 1 to 3, an overflow port is provided in a storage container provided separately from the electrode 16, and this container is connected to a sufficient flow path. It is also possible to maintain a constant liquid pressure in the space within the electrode by connecting it to the electrode with a flexible hose having a large area and adjusting the height of this reservoir. Furthermore, in the embodiment shown in FIGS. 4 and 5, the liquid supply passage 5
6 does not necessarily need to be provided on the electrode 46, and it is also possible to directly supply the machining fluid to the overflow port 64 of the machining fluid reservoir 58 from a separately provided fluid supply pipe.

その他、本発明の趣旨を逸脱することなく、当
業者の知識に基づいて種々の変更、改良を施した
態様で本発明を実施し得ることは勿論である。
In addition, it goes without saying that the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置を模型的に示す
正面断面図であり、第2図はその要部を拡大して
示す正面断面図である。第3図は本発明の別の実
施例における第2図に相当する図である。第4図
は本発明の更に別の実施例における要部の正面断
面図であり、第5図は同じく平面図である。 4,40:加工液槽、14,44:金型(被加
工物)、16,46:電極、20:側壁、22:
底壁、24,58,62:加工液溜、26,6
0:間隙、28:噴出口、30:給液口、34,
64:あふれ出し口、36:スラツジ排出口、4
8:容器状物、50,52,54:側壁、56:
給液通路。
FIG. 1 is a front sectional view schematically showing an apparatus according to an embodiment of the present invention, and FIG. 2 is a front sectional view showing an enlarged main part thereof. FIG. 3 is a diagram corresponding to FIG. 2 in another embodiment of the present invention. FIG. 4 is a front sectional view of a main part in yet another embodiment of the present invention, and FIG. 5 is a plan view of the same. 4, 40: Machining liquid tank, 14, 44: Mold (workpiece), 16, 46: Electrode, 20: Side wall, 22:
Bottom wall, 24, 58, 62: Processing liquid reservoir, 26, 6
0: Gap, 28: Spout port, 30: Liquid supply port, 34,
64: Overflow port, 36: Sludge discharge port, 4
8: Container-like object, 50, 52, 54: Side wall, 56:
Liquid supply passage.

Claims (1)

【特許請求の範囲】 1 電極と被加工物とを微小な間隙を隔てて対向
させるとともに該微小間隙の一方の側から他方の
側へ該微小間隙を経て加工液を流しつつそれら電
極と被加工物との間に放電を発生させて該被加工
物の表面を該電極の表面に対応した形に加工する
方法であつて、 前記微小間隙の一方の側における前記加工液の
液面を、他方の側における液面より予め定められ
た量だけ高く保ち、その液面差に基づく液圧によ
つて前記微小間隙に前記加工液の流れを生じさせ
ることを特徴とする放電加工方法。 2 中空で、内部に加工液溜を有した放電加工用
電極であつて、加工液槽中において微小間隙を隔
てて被加工物と対向させられて該被加工物との間
に放電を発生させるべき底壁を備え、かつ、該底
壁に、外部から供給される加工液を前記微小間隙
へ噴出させる噴出口を有するものにおいて、 当該電極の前記加工液槽の液面下に没入させら
れる部分より予め定められた距離だけ高い位置
に、余剰加工液をあふれ出させて前記加工液溜の
液面を一定の高さに保つあふれ出し口を設けたこ
とを特徴とする放電加工用電極。 3 前記外部からの加工液の供給口が、前記噴出
口とあふれ出し口との中間高さ位置に設けられて
いる特許請求の範囲第2項記載の放電加工用電
極。 4 前記底壁に連なつて前記加工液溜を囲む側壁
に、下縁が前記底壁の上面と一致したスラツジ排
出口が設けられている特許請求の範囲第2項また
は第3項記載の放電加工用電極。
[Claims] 1. An electrode and a workpiece are opposed to each other with a small gap between them, and a machining liquid is flowed from one side of the small gap to the other side through the small gap. A method of machining the surface of the workpiece into a shape corresponding to the surface of the electrode by generating an electrical discharge between the workpiece and the workpiece, the method comprising: changing the level of the machining fluid on one side of the microgap to the other side; An electric discharge machining method characterized in that the liquid level is maintained at a predetermined amount higher than the liquid level on the side thereof, and a flow of the machining liquid is caused in the minute gap by hydraulic pressure based on the liquid level difference. 2. A hollow electrical discharge machining electrode having a machining liquid reservoir inside, which is placed opposite a workpiece with a minute gap in the machining liquid bath to generate an electric discharge between the workpiece and the workpiece. A portion of the electrode that is immersed below the liquid level of the machining liquid tank, in which the bottom wall has a spout for spouting machining liquid supplied from the outside into the minute gap. An electrode for electric discharge machining, characterized in that an overflow port is provided at a position higher than the machining fluid by a predetermined distance to cause surplus machining fluid to overflow and maintain the liquid level of the machining fluid reservoir at a constant height. 3. The electrical discharge machining electrode according to claim 2, wherein the external machining fluid supply port is provided at an intermediate height between the jet port and the overflow port. 4. The discharge according to claim 2 or 3, wherein a side wall continuous with the bottom wall and surrounding the machining liquid reservoir is provided with a sludge discharge port whose lower edge coincides with the upper surface of the bottom wall. Electrode for processing.
JP7865083A 1983-05-04 1983-05-04 Electric discharge machining method and electrode available therein Granted JPS59205235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7865083A JPS59205235A (en) 1983-05-04 1983-05-04 Electric discharge machining method and electrode available therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7865083A JPS59205235A (en) 1983-05-04 1983-05-04 Electric discharge machining method and electrode available therein

Publications (2)

Publication Number Publication Date
JPS59205235A JPS59205235A (en) 1984-11-20
JPS6354490B2 true JPS6354490B2 (en) 1988-10-28

Family

ID=13667735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7865083A Granted JPS59205235A (en) 1983-05-04 1983-05-04 Electric discharge machining method and electrode available therein

Country Status (1)

Country Link
JP (1) JPS59205235A (en)

Also Published As

Publication number Publication date
JPS59205235A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
US3398873A (en) Sumps and nozzles for soldering machines
US3399125A (en) Electrochemical machining in a pressurized chamber substantially without the formation of gas bubbles
CN109311084A (en) Melt treatment device and melt treating method
CA2076554A1 (en) Method and apparatus for rinsing metal strip
JPS6354490B2 (en)
JP5892705B2 (en) Machine tool machining fluid tank
EP0271293A1 (en) Method of making electrolytic metal foil and apparatus used therefor
JP4473566B2 (en) Jet soldering equipment
US3612388A (en) Mass soldering machines
US3452916A (en) Tinning-oil level control for a solder-wave apparatus
JP3327981B2 (en) Cleaning liquid tank and cleaning device
CN105555453B (en) Jet flow nozzle and jet flow device
US8899822B2 (en) Working trough and method for maintaining uniform temperature of working fluid
CN219752464U (en) Device for adjusting liquid level and eliminating foam in electroplating process
CN106881510A (en) The processing liquid level height adjustment mechanism of wire electric discharge machine
CN2563165Y (en) Down flow type electroplating bath
JPH07211669A (en) Method and apparatus for plating
CN218985322U (en) Crystal bar cooling device and cutting machine
CN215404605U (en) Liquid level high stability type electric tin plating bath
CN209050112U (en) A kind of submersed nozzle
KR100946659B1 (en) Submerged entry nozzle for continuous casting
KR20220093703A (en) Liquid discharging apparatus and liquid discharging method
CN116765689A (en) Soldering flux tank capable of automatically recycling soldering flux
RU38655U1 (en) INTERMEDIATE BUCKET FOR CONTINUOUS METAL CASTING
JPH0780442A (en) Pure water making method