JPS6354075B2 - - Google Patents

Info

Publication number
JPS6354075B2
JPS6354075B2 JP21169483A JP21169483A JPS6354075B2 JP S6354075 B2 JPS6354075 B2 JP S6354075B2 JP 21169483 A JP21169483 A JP 21169483A JP 21169483 A JP21169483 A JP 21169483A JP S6354075 B2 JPS6354075 B2 JP S6354075B2
Authority
JP
Japan
Prior art keywords
ultrafine
alloy
metal
film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21169483A
Other languages
Japanese (ja)
Other versions
JPS60106975A (en
Inventor
Chikara Hayashi
Seiichiro Gashu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP21169483A priority Critical patent/JPS60106975A/en
Publication of JPS60106975A publication Critical patent/JPS60106975A/en
Publication of JPS6354075B2 publication Critical patent/JPS6354075B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、金属又は合金の超微粒子をノズルよ
りスプレー式でガラス板等のベース面に加熱ガス
による金属又は合金の超微粒子膜を形成する方法
に関する。 出願人は先に上記の膜形成法を、特願昭57−
196085号(特開昭59−87077号)により開示した。
その発明は、微小孔ノズルより金属又は合金の超
微粒子を含むキヤリヤガスをベース面に吹き付け
その金属又は合金の超微粒子をベース面に付着さ
せ、その適当な形状厚さの連続又は不連続の膜を
形成する方法であるが、その実施例としては一般
に不活性ガスの雰囲気下で行なうことが好まし
く、大気中で行なう場合はスプレー中金属又は合
金の超微粒子の表面が酸化し所定の比抵抗値の膜
が得られない場合がある。又その実施例としてそ
の膜のベース面に対する結着性や緻密性の向上、
比抵抗の減少を望む場合は、そのスプレーによる
膜形成後に、該膜面に赤外線等により加熱処理を
行なうことを開示した。しかし、この場合、工程
が2段階となり作業が面倒で且つ非能率であり、
又金属又は合金の超微粒子ごとに所定の加熱が得
られない欠点がある。 本発明はこれを改良し、迅速且つ均一良好な加
熱処理された加熱ガスによる金属又は合金の超微
粒子の膜を形成する方法を提供したもので、微小
孔ノズルより金属又は合金の超微粒子を含むキヤ
リヤガスをベース面に吹き付けその超微粒子をベ
ース面に付着させ、その適当な形状、厚さの連続
又は不連続の膜を形成する金属又は合金の超微粒
子の膜形成法において、該超微粒子を含むキヤリ
ヤガスをベース面に吹き付けるに当り、該キヤリ
ヤガスを予め加熱しておき金属又は合金の超微粒
子を加熱状態でベース面に吹き付けることを特徴
とする。 次に本発明の実施の1例を添付図面につき説明
する。 図面は、本発明を実施する装置を示す。 金属又は合金、例えばNi、Co、FeーNi、Feー
Co等の単独又は、2種以上の混合から成る粒径
0.1〜0.01μmの超微粒子aの適量を容器1内に入
れると共に該容器1内にAr、Heなどの不活性ガ
ス、H2などの還元性ガス、N2などの非酸化性ガ
ス等の適当な1種又は2種以上を混合したガスを
ボンベ2よりその導管3をその容器1の下面にキ
ヤリヤガスbとして吹き込み、超微粒子aを容器
1内でガスbで浮遊状態に維持する。超微粒子a
はそのキヤリヤガスbと共に、該容器1の上部か
ら導出した搬送管4へ圧送される。5は、その搬
送管4内に介在させた開閉弁を示し、該開閉弁5
を開けることにより、超微粒子a担持のガスbを
その先端に接続したスプレー用ノズル6より噴出
させるようにするが、本発明によればその噴出前
にその超微粒子aを予め加熱して噴出せしめるも
ので、その手段は例えば次のような手段で、予め
加熱するようにした。スプレー用ノズル6のノズ
ル口(口径約0.01〜1mmの範囲例えば0.1mm)の
手前の金属製細管部6aに2本の通電用リード線
7,7をクランプした。かくして電源より適宜の
電圧、電流により該細管部6aに通電加熱する。
然るときは、該細管部6a内を通るキヤリヤガス
bが加熱昇温し、この昇温ガスで、これに混在す
る超微粒子aは、その熱容量は極めて小さいの
で、瞬時にそのガスと略等しい温度まで加熱昇温
される。かくして、所定温度に加熱された超微粒
子aは、キヤリヤガスbにより噴出せしめて、そ
の先方のガラス基板等の適宜の材料から成るベー
ス8面に吹き付け、所定の厚さ形状の超微粒子の
みから成る緻密な膜Bをベース面8上に生成せし
める。而してこの場合、超微粒子は夫々加熱され
ているので、ベース面8への接着性が良く、又粒
子全ての相互の緻密結着性のよい膜として得られ
る。而してこの吹き付けに際し、加熱昇温した超
微粒子はキヤリヤガスで被包され、大気から遮断
された状態で、ベース8面に付着堆積するので大
気により酸化されることなく良好な金属超微粒子
膜として生成し得られ、大気中で実施することが
容易となり、特に、大気を遮断した容器内を不活
性ガス等の雰囲気とし、その容器内で吹き付けを
行なう手間、設備が省略できる。しかし乍ら、大
気中で本法を実施することに限定するものではな
いことは勿論である。 尚、一般に前記のリード線7に電圧調節器9を
介在させ、そのスプレーガスの加熱温度を適宜調
節するようにすることが好ましい。10は、ベー
ス8を上面に固定載置する台を示し、台10は、
その一端に接続の移動装置11により前後方向に
移動自在とし、ベース8上に線状の超微粒膜が得
られるようにした。ノズル6とベース8との間隔
は0.5〜1.5mm程度とする。噴出時のガス圧は1.2〜
1.5Kg/cm2の範囲が好ましい。ベース8としては、
ガラスの他、セラミツク基板、合成樹脂テープ、
フイルム等従来の磁気記録体導電膜等の電気器機
等用途に応じて各種のものが使用できる。次に具
体的な実施例につき説明する。 実施例 1 低抵抗Ni超微粒子膜の形成 平均粒径200ÅのNi超微粒子(かさ密度0.2g/
cm3)30gを内容積1のガラス容器に入れ、同容
器底部に外部のH2ガスボンベ等のH2ガス源から
流量1/minのH2ガスを吹込み、Ni超微粒子
を浮遊させてH2ガスとNi超微粒子との混合状態
をつくる。同容器上部に接続した内径2mm、長さ
1mの搬送管の中間に介在の開閉弁を開き、Ni
超微粒子の混在したH2ガスを搬送管の先端のノ
ズルに送り込む。ノズル細管部の内径は0.2mm、
長さ100mmとし、該細管部に50mmの間隔を存して
2本の通電用リード線をクランプして、これに介
在の電圧調節器により加熱電力を調節するように
設備されている。而して、ノズル細管部内を通る
ときH2ガスを170℃に従て超微粒子を170℃に加
熱するべく、H2ガス流量1/minにおいて加
熱電力4.8W(1.6V×3A)とする。かくしてこの
加熱により、超微粒子は170℃に加熱されてその
キヤリヤガスH2と共にその前方のスライドグラ
ス(幅25mm、長さ76mm、厚さ1.0mm)面に吹き付
ける。この時のノズルとグラスベース面との間隔
は0.6mmとし、スライドグラスは30mm/minの速
度で移動せしめ乍ら吹き付けを行なつた。その結
果そのベース面上に幅0.19mm厚さ2.5μmの線状の
Ni超微粒子膜を得た。その膜の比抵抗は8.8×
10-4Ω−cmであつた。 尚、比較のため前記の加熱手段を止めて同様の
未加熱の前記と同じ線状のNi超微粒子膜を作成
したが、その膜は同じ測定法では全く導通を示さ
なかつた(比抵抗としては>104Ω−cmであつ
た。)このように本法による膜は、未加熱では得
られない導通性が得られた。その接着性は、未加
熱のスプレー膜形成後直ちに赤外線加熱のスポツ
トを該膜面に当てて約200℃に加熱した場合と
ほゞ同等であつた。 実施例 2 実施例1と同じ方法でNi超微粒子膜を形成す
るに当り、ノズル細管の加熱電力を種々調節し、
スプレーガス温度、従て超微粒子温度を色々に変
えてその加熱温度と形成膜の比抵抗との関係を調
べた。その結果の数例を下記表に示す。
The present invention relates to a method for forming an ultrafine metal or alloy particle film on a base surface of a glass plate or the like by spraying ultrafine metal or alloy particles from a nozzle using heated gas. The applicant previously applied for the above-mentioned film formation method in a patent application filed in 1982.
It was disclosed in No. 196085 (Japanese Unexamined Patent Publication No. 59-87077).
The invention involves spraying a carrier gas containing ultrafine metal or alloy particles onto the base surface through a micro-hole nozzle, causing the metal or alloy ultrafine particles to adhere to the base surface, and forming a continuous or discontinuous film of an appropriate shape and thickness. Generally, it is preferable to carry out the process under an inert gas atmosphere.If carried out in the atmosphere, the surface of the ultrafine particles of metal or alloy will be oxidized during spraying, and the specific resistance value will not be reached. A film may not be obtained. In addition, as an example, improving the adhesiveness and denseness of the film to the base surface,
It has been disclosed that when a reduction in specific resistance is desired, after the film is formed by spraying, the surface of the film is subjected to heat treatment using infrared rays or the like. However, in this case, the process is in two stages, making the work cumbersome and inefficient.
Another drawback is that it is not possible to obtain a predetermined amount of heating for each ultrafine particle of metal or alloy. The present invention improves this and provides a method for quickly and uniformly forming a film of ultrafine metal or alloy particles using heated gas that has been subjected to heat treatment. A method for forming a film of ultrafine particles of metal or alloy, in which a carrier gas is blown onto the base surface to cause the ultrafine particles to adhere to the base surface, forming a continuous or discontinuous film of an appropriate shape and thickness, including the ultrafine particles. When the carrier gas is sprayed onto the base surface, the carrier gas is heated in advance and the ultrafine particles of metal or alloy are sprayed onto the base surface in a heated state. Next, one example of implementation of the present invention will be described with reference to the accompanying drawings. The drawing shows an apparatus implementing the invention. Metals or alloys such as Ni, Co, Fe-Ni, Fe-
Particle size consisting of Co, etc. alone or a mixture of two or more types
A suitable amount of ultrafine particles a of 0.1 to 0.01 μm is placed in a container 1, and an appropriate amount of inert gas such as Ar or He, reducing gas such as H2 , non-oxidizing gas such as N2 , etc. is added to the container 1. One or more gases mixed together are blown from a cylinder 2 through a conduit 3 into the lower surface of the container 1 as a carrier gas b, and the ultrafine particles a are kept suspended in the container 1 by the gas b. ultrafine particles a
is, together with the carrier gas b, sent under pressure to a conveying pipe 4 led out from the upper part of the container 1. Reference numeral 5 indicates an on-off valve interposed in the conveying pipe 4, and the on-off valve 5
By opening it, gas b carrying ultrafine particles a is ejected from the spray nozzle 6 connected to its tip, but according to the present invention, the ultrafine particles a are heated in advance before being ejected. For example, the following method was used to heat the material in advance. Two current-carrying lead wires 7, 7 were clamped to the metal thin tube portion 6a in front of the nozzle opening (diameter range of about 0.01 to 1 mm, for example 0.1 mm) of the spray nozzle 6. In this way, the thin tube portion 6a is heated by applying an appropriate voltage and current from the power source.
At this time, the carrier gas b passing through the thin tube portion 6a is heated and heated, and the ultrafine particles a mixed in this heated gas instantly reach a temperature approximately equal to that of the gas because their heat capacity is extremely small. The temperature is raised to . In this way, the ultrafine particles a heated to a predetermined temperature are ejected by a carrier gas b, and are sprayed onto the base 8 made of an appropriate material such as a glass substrate, forming a dense particle consisting only of ultrafine particles with a predetermined thickness. A film B is formed on the base surface 8. In this case, since the ultrafine particles are individually heated, they have good adhesion to the base surface 8, and a film is obtained in which all the particles have good mutual tightness. During this spraying, the heated ultrafine particles are encapsulated in the carrier gas and deposited on the base 8 surface while being shielded from the atmosphere, so they are not oxidized by the atmosphere and form a good ultrafine metal particle film. The method can be easily carried out in the atmosphere, and in particular, it is possible to omit the labor and equipment required to create an atmosphere of an inert gas or the like in a container shut off from the atmosphere and perform spraying in the container. However, it goes without saying that this method is not limited to being carried out in the atmosphere. In addition, it is generally preferable to interpose a voltage regulator 9 on the lead wire 7 to appropriately adjust the heating temperature of the spray gas. Reference numeral 10 indicates a stand on which the base 8 is fixedly mounted, and the stand 10 is
It was made to be movable in the front and back direction by a moving device 11 connected to one end thereof, so that a linear ultrafine particle film could be obtained on the base 8. The distance between the nozzle 6 and the base 8 is approximately 0.5 to 1.5 mm. Gas pressure at the time of ejection is 1.2 ~
A range of 1.5 Kg/cm 2 is preferred. As base 8,
In addition to glass, ceramic substrates, synthetic resin tapes,
Various types of materials can be used depending on the purpose, such as conventional magnetic recording materials such as films, conductive films, and electrical equipment. Next, specific examples will be described. Example 1 Formation of low-resistance Ni ultrafine particle film Ni ultrafine particles with an average particle size of 200 Å (bulk density 0.2 g/
cm 3 ) is placed in a glass container with an internal volume of 1, and H 2 gas is blown into the bottom of the container from an external H 2 gas source such as an H 2 gas cylinder at a flow rate of 1/min to suspend the Ni ultrafine particles. Create a mixed state of 2 gases and ultrafine Ni particles. Open the on-off valve located in the middle of the conveyor pipe with an inner diameter of 2 mm and a length of 1 m connected to the top of the container, and
H2 gas mixed with ultrafine particles is sent into the nozzle at the tip of the conveyor tube. The inner diameter of the nozzle tube is 0.2mm.
The tube has a length of 100 mm, and two current-carrying lead wires are clamped at a distance of 50 mm from the thin tube section, and the heating power is adjusted using an intervening voltage regulator. Therefore, in order to heat the ultrafine particles to 170°C by heating the H 2 gas to 170°C when passing through the nozzle thin tube part, the heating power is set to 4.8 W (1.6 V x 3 A) at a H 2 gas flow rate of 1/min. As a result of this heating, the ultrafine particles are heated to 170°C and are blown along with the carrier gas H 2 onto the surface of the slide glass (width 25 mm, length 76 mm, thickness 1.0 mm) in front of the ultrafine particles. At this time, the distance between the nozzle and the glass base surface was 0.6 mm, and the slide glass was moved at a speed of 30 mm/min while spraying. As a result, a linear pattern with a width of 0.19 mm and a thickness of 2.5 μm was formed on the base surface.
A Ni ultrafine particle film was obtained. The specific resistance of the film is 8.8×
It was 10 -4 Ω-cm. For comparison, the heating means described above was stopped and a similar unheated linear Ni ultrafine particle film was prepared, but the film showed no conductivity at all by the same measurement method (the specific resistance was >10 4 Ω-cm.) Thus, the film produced by this method had conductivity that could not be obtained without heating. The adhesion was almost the same as when an infrared heating spot was applied to the surface of the unheated spray film immediately after it was formed and the film was heated to about 200°C. Example 2 In forming a Ni ultrafine particle film using the same method as in Example 1, the heating power of the nozzle tube was variously adjusted,
The relationship between the heating temperature and the specific resistance of the formed film was investigated by varying the spray gas temperature and therefore the ultrafine particle temperature. Some examples of the results are shown in the table below.

【表】 これから明らかなように、スプレーガス温度の
調節で、形成する超微粒子膜の電気抵抗の値を
種々制御できる。 前記の実施例2のキヤリヤガスとしてH2ガス
に代え、Arガスを使用し、同様に実施したが、
その形成膜の比抵抗はArガス温度をH2ガス温度
より80℃高くすると同じ値のものが得られた。
N2ガスを使用しこれを300℃とした場合は、102
Ω−cmオーダーの高抵抗膜が得られた。 尚、Niに代えFe、Co、Cu、Fe−Ni、Fe−Co
等について夫々実施例1と同様に実施し、Ni超
微粒子膜と同様の10-4Ω−cmオーダーの低抵抗膜
が得られた。尚、本発明の加熱手段として搬送管
4を加熱してもよく、又ノズル6の近傍に加熱器
を設け、輻射加熱する方法、ノズル6に加熱した
導体と接続しこれを熱伝導により加熱する方法ノ
ズル6周囲に誘導コイルをセツトし、高周波誘導
加熱する方法等でもよい。 このように本発明によるときは、ノズルより金
属又は合金の超微粒子をキヤリヤガスを媒体とし
て噴出させベース面に吹き付け所定の金属又は合
金の超微粒子膜を形成せしめるに当り、予め金属
又は合金の超微粒子を加熱状態で吹き付けるよう
にしたので、未加熱の金属又は合金の超微粒子を
吹き付け後、この膜を加熱する方法に比し、良好
な膜を迅速に作成することができ、又金属又は合
金の超微粒子はキヤリヤガスによる保護下で大気
と遮断された状態で加熱されるので、特にその吹
付けをアルゴンガス等の保護雰囲気を別個に作成
して行なうことを必要とせず、その設備費も節約
できる等の効果を有する。
[Table] As is clear from this, the electrical resistance value of the formed ultrafine particle film can be controlled in various ways by adjusting the spray gas temperature. The same procedure was carried out using Ar gas instead of H 2 gas as the carrier gas in Example 2, but
The specific resistance of the formed film was the same when the Ar gas temperature was 80°C higher than the H 2 gas temperature.
If N2 gas is used and this is set to 300℃, 10 2
A high resistance film on the order of Ω-cm was obtained. In addition, instead of Ni, Fe, Co, Cu, Fe−Ni, Fe−Co
The same procedure as in Example 1 was carried out for each of these, and a low resistance film on the order of 10 -4 Ω-cm, similar to the Ni ultrafine particle film, was obtained. In addition, the conveying pipe 4 may be heated as a heating means of the present invention, or a heater may be provided near the nozzle 6 and radiant heating may be performed, or the nozzle 6 may be connected to a heated conductor and heated by thermal conduction. A method may also be used in which an induction coil is set around the nozzle 6 and high frequency induction heating is performed. As described above, according to the present invention, when the ultrafine particles of metal or alloy are ejected from the nozzle using the carrier gas and sprayed onto the base surface to form a film of ultrafine particles of a predetermined metal or alloy, the ultrafine particles of metal or alloy are By spraying the metal or alloy in a heated state, it is possible to quickly create a good film compared to the method of spraying unheated ultrafine metal or alloy particles and then heating the film. Since the ultrafine particles are heated while being protected by a carrier gas and isolated from the atmosphere, there is no need to create a separate protective atmosphere such as argon gas for spraying, which can save equipment costs. It has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施する装置の1例の線図を示
す。 1…容器、6…ノズル、7…電熱線、a…超微
粒子、b…キヤリヤガス、8…ベース、B…膜。
The drawing shows a diagram of an example of an apparatus implementing the invention. DESCRIPTION OF SYMBOLS 1... Container, 6... Nozzle, 7... Heating wire, a... Ultrafine particles, b... Carrier gas, 8... Base, B... Film.

Claims (1)

【特許請求の範囲】 1 微小孔ノズルより金属又は合金の超微粒子を
含むキヤリヤガスをベース面に吹き付けその超微
粒子をベース面に付着させ、その適当な形状、厚
さの連続又は不連続の膜を形成する金属又は合金
の超微粒子の膜形成法において、該超微粒子を含
むキヤリヤガスをベース面に吹き付けるに当り、
該キヤリヤガスを予め加熱しておき、金属又は合
金の超微粒子を加熱状態でベース面に吹き付ける
ことを特徴とする加熱ガスによる金属又は合金の
超微粒子膜形成法。 2 金属又は合金の超微粒子とキヤリヤガスとを
混合する混合容器と、該混合容器より導出する搬
送管と、該搬送管に接続するノズルと、該ノズル
より噴出せしめる金属又は合金の超微粒子含有の
キヤリヤガスを噴出前に加熱する加熱器とから成
る加熱ガスによる金属又は合金の超微粒子膜形成
装置。
[Claims] 1. A carrier gas containing ultrafine particles of metal or alloy is blown onto the base surface through a micro-hole nozzle to cause the ultrafine particles to adhere to the base surface, forming a continuous or discontinuous film of an appropriate shape and thickness. In the method of forming a film of ultrafine particles of metal or alloy to be formed, when spraying a carrier gas containing the ultrafine particles onto the base surface,
A method for forming an ultrafine particle film of a metal or alloy using a heated gas, characterized in that the carrier gas is heated in advance and ultrafine particles of the metal or alloy are sprayed onto a base surface in a heated state. 2. A mixing container for mixing ultrafine metal or alloy particles and carrier gas, a conveyance pipe leading out from the mixing vessel, a nozzle connected to the conveyance pipe, and a carrier gas containing ultrafine metal or alloy particles ejected from the nozzle. An apparatus for forming a film of ultrafine particles of metal or alloy using a heated gas, comprising a heater that heats the particles before ejecting them.
JP21169483A 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles with heated gas Granted JPS60106975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21169483A JPS60106975A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles with heated gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21169483A JPS60106975A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles with heated gas

Publications (2)

Publication Number Publication Date
JPS60106975A JPS60106975A (en) 1985-06-12
JPS6354075B2 true JPS6354075B2 (en) 1988-10-26

Family

ID=16610036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21169483A Granted JPS60106975A (en) 1983-11-12 1983-11-12 Method and apparatus for forming film of hyperfine particles with heated gas

Country Status (1)

Country Link
JP (1) JPS60106975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068942A (en) * 2009-09-25 2011-04-07 Taiyo Nippon Sanso Corp Method for forming film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050081252A (en) * 2004-02-13 2005-08-18 고경현 Porous metal coated member and manufacturing method thereof using cold spray
WO2009046432A1 (en) * 2007-10-05 2009-04-09 Diamond Innovations, Inc. Braze-metal coated articles and process for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068942A (en) * 2009-09-25 2011-04-07 Taiyo Nippon Sanso Corp Method for forming film

Also Published As

Publication number Publication date
JPS60106975A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
EP0179602B1 (en) Method for applying material to a substrate
US2038251A (en) Process for the thermic treatment of small particles
JP2944215B2 (en) How to create a strong bond between a copper layer and a ceramic
US20060251823A1 (en) Kinetic spray application of coatings onto covered materials
US3900639A (en) Method for coating surfaces of a workpiece by spraying on a coating substance
JPS6354075B2 (en)
US2378438A (en) Method of making selenium elements
FR2177134A5 (en) Composite electrode wires - for arc spraying
ES344740A2 (en) Ultrasonic bonding method
JPS62177183A (en) Method for forming metallic lining on inside surface of metallic pipe or the like
US3436244A (en) Fusion coating of metal articles
ZA925390B (en) Method of applying metal coatings on cubic boron nitride and articles made therefrom
KR20100052628A (en) Deposition apparatus of solid powder with thermal shock control units & temperature control method for eliminating thermal shock in solid powder spray deposition
JPH05271900A (en) Heating and pressurizing method of thermally sprayed film
JPH0841626A (en) Forming device for metallic partial film and its formation
JPH08209330A (en) Pattern formation of conductive metal thick film
US1909252A (en) Production of coatings
JPH02131157A (en) Insulative coating and its device
RU2064524C1 (en) Method of electrical arc metallization
JPS6466094A (en) In-pile brazing method containing no flux
JPS6241285B2 (en)
RU1773072C (en) Method for deposition of powder metal coatings
JPS58150424A (en) Treatment for coating surface of fine particle
JPS56150459A (en) Continuous manufacture of coated soft small-size tube
JPS6231069B2 (en)