JPH0841626A - Forming device for metallic partial film and its formation - Google Patents

Forming device for metallic partial film and its formation

Info

Publication number
JPH0841626A
JPH0841626A JP6196051A JP19605194A JPH0841626A JP H0841626 A JPH0841626 A JP H0841626A JP 6196051 A JP6196051 A JP 6196051A JP 19605194 A JP19605194 A JP 19605194A JP H0841626 A JPH0841626 A JP H0841626A
Authority
JP
Japan
Prior art keywords
film
chamber
metal
ultrafine
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6196051A
Other languages
Japanese (ja)
Other versions
JP3595823B2 (en
Inventor
Hidetsugu Fuchida
英嗣 渕田
Kazuhiro Setoguchi
和宏 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP19605194A priority Critical patent/JP3595823B2/en
Publication of JPH0841626A publication Critical patent/JPH0841626A/en
Application granted granted Critical
Publication of JP3595823B2 publication Critical patent/JP3595823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a device for forming a metallic partial film requiring no masking and etching and to provide a method for forming a metallic partial film excellent in moisture resistance using metal easy to be oxidized by using the same device. CONSTITUTION:A device constituted of an ultrafine particle forming chamber 1 provided with a carbon crucible 6 subjected to high-frequency induction heating with a shutter mechanism 9, a film forming chamber 2 in which a conveying tube 3 conveying ultrafine particles, a nozzle 4 and a glass substrate 8 capable of scanning in the (x)-axis direction and (y)-axis direction are arranged, a vacuum pump 15 sucking through the film forming chamber 2, a vacuum pump 16 sucking through the ultrafine particle forming chamber 1 via a suction tube 5 and a gaseous He recycle mechanism 17 provided in the midway of piping returning the exhaust gas from the vacuum pumps 15 and 16 to the bottom part of the ultrafine particle forming chamber 1 is used. The glass substrate 8 is scanned while the Cu ultrafine particles are jetted from the nozzle 4 by the gaseous He having 99.99% purity, and the conveying of the Cu ultrafine particles is made intermittent by the shutter mechanism 9 to form a Cu partial film on the glass substrate 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属部分膜の形成装置お
よびその形成方法に関するものであり、更に詳しくは、
酸化され易い金属の部分膜を、マスキングやエッチング
を行なうことなく、基板状へ直接に形成させる装置およ
びその形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for forming a metal partial film and a method for forming the metal partial film.
The present invention relates to an apparatus for directly forming a partial film of a metal which is easily oxidized on a substrate without performing masking or etching, and a method for forming the same.

【0002】[0002]

【従来の技術及びその問題点】基板上に金属膜を形成さ
せる方法として、厚膜ペースト法、スパッタ法、真空蒸
着法、メッキ法等がある。これらの方法において、必要
な個所にのみ金属膜を形成させるには、すなわち、金属
部分膜を形成させるには、基板上の不必要な個所を遮蔽
(スクリーン)して、換言すればマスキングを行なって
膜形成を行なうか、又は基板上の全面に膜を形成させた
後に、必要な個所にレジスト膜を形成させ、レジスト膜
を形成させなかった不必要な個所の膜をエッチングして
除去することが行なわれている。このように金属部分膜
の形成にはマスキング、又はエッチングなどの工程を必
要とし、かつ、マスキングを行なう場合にはマスキング
材料が、またエッチングを行なう場合にはレジスト膜が
使い捨てである。
2. Description of the Related Art As a method for forming a metal film on a substrate, there are a thick film paste method, a sputtering method, a vacuum deposition method, a plating method and the like. In these methods, in order to form a metal film only in a necessary portion, that is, in order to form a metal partial film, an unnecessary portion on the substrate is shielded (screen), in other words, masking is performed. To form a film, or after forming a film on the entire surface of the substrate, form a resist film at a necessary place and remove the film at an unnecessary place where the resist film was not formed by etching. Is being carried out. Thus, the formation of the metal partial film requires a process such as masking or etching, and the masking material is used for masking, and the resist film is used for etching.

【0003】また、厚膜ペースト法、メッキ法は1回の
適用で厚さ1μm以上の厚膜を得やすいが、スパッタ法
や真空蒸着法は膜厚形成速度、すなわち成膜レートが小
さく、厚膜を得るには非常に時間を要して適切でない。
そのほか、メッキ法は水溶性の薬品を使用するので、最
後には水洗し乾燥する工程が必要であり、設備が大がか
りとなる。
Further, the thick film paste method and the plating method can easily obtain a thick film having a thickness of 1 μm or more by one application, but the sputtering method and the vacuum evaporation method have a small film forming rate, that is, a film forming rate is small. Obtaining a membrane is very time consuming and unsuitable.
In addition, since the plating method uses a water-soluble chemical, it requires a step of washing with water and drying at the end, which requires a large scale of equipment.

【0004】また、厚膜を形成させる場合、酸化されな
い金や白金は高価であるため、一般的な銅、ニッケルな
どを使うことが多いが、これら酸化され易い金属を厚膜
ペースト法やメッキ法で形成させると酸化が生起して比
抵抗が増大し、膜形成後に還元処理を必要とする場合が
ある。更には、これらの膜は経時的にも酸化が進行して
比抵抗が増大するので、これらの金属厚膜を使用した電
気部品は信頼性に劣り、長期の寿命を期待し難い。
Further, when forming a thick film, unoxidized gold and platinum are expensive, and therefore common copper, nickel, etc. are often used, but these easily oxidizable metals are thick film paste method or plating method. When it is formed by (3), oxidation occurs to increase the specific resistance, and a reduction treatment may be required after the film formation. Furthermore, since oxidation of these films also progresses with time and the specific resistance increases, electrical components using these thick metal films have poor reliability and it is difficult to expect a long life.

【0005】その他の厚膜を形成させる方法として、本
願出願人による特許第1531607号、特開平5−2
95525号、特開平5−295550号、特開平6−
93430号、特開平6−101026号、特開平6−
128728の各公報、および特願平5−34184号
において開示されているガスデポジション装置を使用す
る方法がある。何れも蒸発させた金属蒸気からの超微粒
子を搬送ガスと共に基板上へ噴射させて厚膜を形成させ
得るが、これらの装置においては搬送ガスの循環は行な
われておらず、また酸化され易い金属を使用する金属膜
の形成については言及されていない。
As another method for forming a thick film, Japanese Patent No. 1531607 by the applicant of the present application, Japanese Patent Application Laid-Open No. 5-2
95525, JP-A-5-295550, JP-A-6-
93430, JP-A-6-101026, JP-A-6-
There is a method of using the gas deposition apparatus disclosed in each of 128728 and Japanese Patent Application No. 5-34184. In either case, ultra-fine particles from evaporated metal vapor can be jetted onto a substrate together with a carrier gas to form a thick film, but in these apparatuses, the carrier gas is not circulated and a metal that is easily oxidized is used. There is no mention of forming a metal film using a.

【0006】[0006]

【発明が解決しようとする問題点】本発明は上述の問題
に鑑みてなされ、マスキングやエッチングの如き工程を
要さずに、基板上へ直接に金属部分膜を形成させる装置
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides an apparatus for directly forming a metal partial film on a substrate without requiring a step such as masking or etching. To aim.

【0007】また、酸化され易い金属材料を使用して経
時的に比抵抗が増大しない耐湿性に優れた金属部分膜の
形成方法を提供することを目的とする。
It is another object of the present invention to provide a method for forming a metal partial film which is excellent in moisture resistance and whose specific resistance does not increase with time by using a metal material which is easily oxidized.

【0008】[0008]

【問題点を解決するための手段】以上の目的は、金属を
蒸発させる蒸発源が設けられた超微粒子生成室と、下端
が前記超微粒子生成室にあって前記蒸発源の直上方に配
設され、生成された超微粒子を搬送する搬送管と、該搬
送管の上端およびその先端のノズルが挿入され、部分膜
を形成させるべき基板が前記ノズルに近接して配置され
た膜形成室と、前記超微粒子生成室から前記搬送管と前
記ノズルを経て前記膜形成室へ前記超微粒子と共に噴射
される搬送ガスを前記膜形成室から前記超微粒子生成室
へ戻して循環させるための真空ポンプ系および搬送ガス
リサイクル機構とからなり、前記超微粒子生成室内に前
記超微粒子の搬送を断続させるシャッタ機構と、前記膜
形成室内に前記基板をその面内の少なくともX軸方向と
Y軸方向とに走査させる走査機構とが設けられているこ
とを特徴とする金属部分膜の形成装置、によって達成さ
れる。
[Means for Solving the Problems] The above object is to provide an ultrafine particle generation chamber provided with an evaporation source for evaporating a metal, and to arrange the lower end of the ultrafine particle generation chamber directly above the evaporation source. A transport tube for transporting the generated ultra fine particles, a nozzle at the upper end of the transport tube and a nozzle at its tip, and a film forming chamber in which the substrate on which a partial film is to be formed is arranged close to the nozzle, A vacuum pump system for circulating a carrier gas injected together with the ultrafine particles from the ultrafine particle generation chamber to the film formation chamber through the transfer pipe and the nozzle, from the film formation chamber back to the ultrafine particle generation chamber, and A carrier gas recycling mechanism, and a shutter mechanism for intermittently conveying the ultrafine particles in the ultrafine particle generation chamber; and scanning the substrate in the film forming chamber in at least the X-axis direction and the Y-axis direction in the plane thereof. Forming device for a metallic part film, which the scanning mechanism is provided which is achieved by.

【0009】また以上の目的は、金属を蒸発させる蒸発
源が設けられた超微粒子生成室と、下端が前記超微粒子
生成室にあって前記蒸発源の直上方に配設され、生成さ
れた超微粒子を搬送する搬送管と、該搬送管の上端およ
びその先端のノズルが挿入され、部分膜を形成させるべ
き基板が前記ノズルに近接して配置された膜形成室と、
前記超微粒子生成室から前記搬送管と前記ノズルを経て
前記膜形成室へ前記超微粒子と共に噴射される搬送ガス
を前記膜形成室から前記超微粒子生成室へ戻して循環さ
せるための真空ポンプ系および搬送ガスリサイクル機構
とからなり、前記超微粒子生成室内に前記超微粒子の搬
送を断続させるシャッタ機構と、前記膜形成室内に前記
基板をその面内の少なくともX軸方向とY軸方向とに走
査させる走査機構とが設けられている金属部分膜形成装
置において、前記搬送ガスとして純度99.99%また
はそれ以上の不活性ガスを使用し、前記蒸発源から酸化
され易い金属を蒸発させて超微粒子を生成させると共
に、前記シャッタ機構によって前記超微粒子の搬送を断
続させ、かつ前記基板を前記走査機構によって走査させ
つつ、前記ノズルから前記基板上へ前記超微粒子を適用
することを特徴とする金属部分膜の形成方法、によって
達成される。
Further, the above object is to provide an ultrafine particle generating chamber provided with an evaporation source for evaporating a metal, and an ultrafine particle generating chamber having a lower end located in the ultrafine particle generating chamber and directly above the evaporation source. A transport pipe for transporting the fine particles, a film forming chamber in which the nozzles at the upper end and the tip of the transport pipe are inserted, and the substrate on which the partial film is to be formed is arranged in proximity to the nozzle,
A vacuum pump system for circulating a carrier gas injected together with the ultrafine particles from the ultrafine particle generation chamber to the film formation chamber through the transfer pipe and the nozzle, from the film formation chamber back to the ultrafine particle generation chamber, and A carrier gas recycling mechanism, a shutter mechanism for intermittently conveying the ultra-fine particles in the ultra-fine particle generation chamber, and a scan of the substrate in the film forming chamber in at least the X-axis direction and the Y-axis direction within the plane. In a metal partial film forming apparatus provided with a scanning mechanism, an inert gas having a purity of 99.99% or higher is used as the carrier gas, and the easily oxidizable metal is evaporated from the evaporation source to form ultrafine particles. While generating the particles, the shutter mechanism intermittently conveys the ultrafine particles, and while the substrate is scanned by the scanning mechanism, Method for forming the metal part film, characterized by applying the ultrafine particles to the substrate, is accomplished by.

【0010】[0010]

【作用】超微粒子生成室内において蒸発源から蒸発され
る金属は超微粒子となり、搬送ガスによって搬送管内を
搬送され、膜形成室内においてノズルから基板上へ噴射
されるが、超微粒子形成室に設けたシャッタ機構によっ
て超微粒子の搬送が断続され、かつ膜形成室内において
基板が少なくともX軸方向とY軸方向とに走査されるの
で、マスキングやエッチングを行なうことなく、基板上
に金属部分膜が形成される。
The metal evaporated from the evaporation source in the ultrafine particle generation chamber becomes ultrafine particles, which is carried in the carrier pipe by the carrier gas and jetted from the nozzle to the substrate in the film forming chamber. The shutter mechanism intermittently conveys the ultrafine particles and scans the substrate in at least the X-axis direction and the Y-axis direction in the film forming chamber, so that a metal partial film is formed on the substrate without masking or etching. It

【0011】また、上記の金属部分膜の形成において、
搬送ガスに純度99.99%またはそれ以上の不活性ガ
スを使用して酸化され易い金属を蒸発源から蒸発させ超
微粒子とすることにより、経時的に比抵抗の増大しない
耐湿性に優れた金属部分膜が形成される。
Further, in the formation of the above metal partial film,
By using an inert gas having a purity of 99.99% or higher as a carrier gas to evaporate a metal that is easily oxidized from an evaporation source to form ultrafine particles, a metal having excellent moisture resistance that does not increase specific resistance with time. A partial film is formed.

【0012】[0012]

【実施例】以下、本発明の実施例による金属部分膜の形
成装置およびその形成方法について、図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus and method for forming a metal partial film according to an embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は実施例による金属部分膜の形成装置
の全体を示す概略図である。同装置は概しては、超微粒
子生成室1と、膜形成室2と、これらを結ぶ搬送管3
と、膜形成室2および超微粒子生成室1内のHe(ヘリ
ウム)ガスを超微粒子生成室1の底部へ戻し供給するた
めの真空ポンプ15、16とHeガス・リサイクル機構
17とからなっている。
FIG. 1 is a schematic view showing the entire metal partial film forming apparatus according to the embodiment. The apparatus generally includes an ultrafine particle generation chamber 1, a film formation chamber 2, and a transfer pipe 3 connecting them.
And vacuum pumps 15 and 16 for returning and supplying He (helium) gas in the film formation chamber 2 and the ultrafine particle generation chamber 1 to the bottom of the ultrafine particle generation chamber 1 and a He gas recycling mechanism 17. .

【0014】超微粒子生成室1内には、蒸発源としてカ
ーボン・ルツボ6(内径5mmφ、外径15mmφ、高
さ10mm)が配設され、蒸発材料22としてCu
(銅)が収容されている。カーボン・ルツボ6の周囲に
は誘導加熱のためのコイル7Cが巻装され、その両端は
超微粒子生成室1の外側に設けた高周波電源(150k
Hz)7に接続されている。なお、ここで高周波誘導加
熱方式を採用しているのは次の理由による。すなわち、
抵抗加熱方式ではルツボをジュール熱で加熱し、内部の
蒸発材料はルツボからの伝熱によって加熱される。溶け
た金属が対流することはあっても粘度は高く、加熱が不
均一で突沸することがあるほか、生成される超微粒子の
粒径分布が大きい。これに対し、高周波誘導加熱方法は
ルツボと蒸発材料とに渦電流を発生させて加熱するの
で、加熱が均一で、生成される超微粒子の粒径分布も均
一なためである。
A carbon crucible 6 (inner diameter 5 mmφ, outer diameter 15 mmφ, height 10 mm) is provided as an evaporation source in the ultrafine particle generation chamber 1, and Cu is used as an evaporation material 22.
(Copper) is contained. A coil 7C for induction heating is wound around the carbon crucible 6, and both ends of the coil 7C are provided with a high frequency power source (150 k) provided outside the ultrafine particle generation chamber 1.
Hz) 7. The high frequency induction heating method is adopted for the following reason. That is,
In the resistance heating method, the crucible is heated by Joule heat, and the evaporation material inside is heated by heat transfer from the crucible. Although the molten metal may convect, the viscosity is high, heating may be non-uniform and bumping may occur, and the particle size distribution of the generated ultrafine particles is large. On the other hand, in the high-frequency induction heating method, eddy current is generated in the crucible and the evaporation material to heat the crucible and the evaporation material, so that the heating is uniform and the particle size distribution of the generated ultrafine particles is uniform.

【0015】カーボン・ルツボ6の直上方には垂直状と
した搬送管3(内径1/4インチ)の下端が配置され、
その下端の上方には搬送管3と軸心を共有する大径の吸
込管5が設けられている。そして、吸込管5と搬送管3
との間の環状空間はバルブ13を介して真空ポンプ16
の吸気側に接続されている。この吸込管5はカーボン・
ルツボ6の直上部以外の超微粒子生成室1内に滞留する
超微粒子を吸い込ませるべく設けられている。また、カ
ーボン・ルツボ6の底部を支持してシャッタ機構9が設
けられている。シャッタ機構9は図2を参照し、図2の
Aに示すように、カーボン・ルツボ6が搬送管3の直下
となる位置と、この位置から矢印aで示す方向に30m
m程度移動させて、図2のBに示すように、カーボン・
ルツボ6が吸込管5による環状空間の直下となる位置と
の2位置間をプログラムされた図示しないコントローラ
によって移動させて開閉が行なわれる。すなわち、カー
ボン・ルツボ6からの金属蒸気が雰囲気のキャリヤとし
てのHeガスに冷却され、超微粒子となっての立ち昇り
20が図2のAの開時には搬送管3へ吸込まれ、図2の
Bの閉時には吸込管5へ吸込まれる様子を示している。
更には、超微粒子生成室1には真空計1Gが設けられて
いる。
Immediately above the carbon crucible 6 is arranged the lower end of the vertical conveying pipe 3 (inner diameter 1/4 inch).
Above the lower end, a large-diameter suction pipe 5 that shares the axis with the transport pipe 3 is provided. Then, the suction pipe 5 and the transfer pipe 3
The annular space between and is connected to the vacuum pump 16 via the valve 13.
It is connected to the intake side of. This suction pipe 5 is made of carbon
It is provided so as to suck in the ultrafine particles staying in the ultrafine particle generation chamber 1 other than just above the crucible 6. Further, a shutter mechanism 9 is provided to support the bottom of the carbon crucible 6. As shown in FIG. 2A, the shutter mechanism 9 is located at a position where the carbon crucible 6 is directly below the transfer tube 3 and 30 m from this position in the direction indicated by the arrow a.
After moving about m, as shown in FIG.
The crucible 6 is moved between a position immediately below the annular space formed by the suction pipe 5 and a position by a programmed controller (not shown) to open and close the crucible 6. That is, the metal vapor from the carbon crucible 6 is cooled to He gas as a carrier of the atmosphere, and the rising particles 20 as ultrafine particles are sucked into the carrier pipe 3 when A of FIG. The state of being sucked into the suction pipe 5 when closed is shown.
Further, the ultrafine particle generation chamber 1 is provided with a vacuum gauge 1G.

【0016】膜形成室2内には搬送管3の上端部と、そ
れに取り付けたノズル4が挿入されており、ノズル4の
先端に近接して(0.1〜2.0mmの範囲内で可変)
ガラス基板8が配置されている。ガラス基板8は走査可
能な基板ホールダ10に取り付けられており、図示しな
いデジタル・プログラマブル・コントローラによって水
平なガラス基板8の面内におけるX軸方向とこれに直角
なY軸方向に0.01〜2mm/secの速度で走査可
能とされている。なお、搬送管3は容積を有しているの
で、超微粒子は吸い込まれてからノズル4の出口に達す
るまでに0.1秒単位の時間を要する。従って、ガラス
基板8の走査は、ある地点で停止してシャッタ機構9を
閉とし次の地点へ移るに際しても、超微粒子が搬送管3
から出つくす迄の時間を経過してから次の地点へ移るよ
うにプログラムされている。すなわち、形成される金属
部分膜が尾を引かないようにしている。次の地点に達し
てシャッタ機構9を開とする場合も、超微粒子がノズル
4の先端から噴射されてくるまでの時間が経過してから
移動が開始される。また基板ホールダ10内には、ガラ
ス基板8を加熱するためのヒータ・ユニットが内蔵され
ており、ガラス基板8に取り付けた熱電対11からの温
度信号によってガラス基板8を所定の温度に保持するよ
うになっている。膜形成室2はバルブ14を介して真空
ポンプ15の吸気側と接続されており、膜形成室2には
真空計2Gが設けられている。
Inside the film forming chamber 2, an upper end of the transfer tube 3 and a nozzle 4 attached to the transfer tube 3 are inserted so as to be close to the tip of the nozzle 4 (variable within a range of 0.1 to 2.0 mm). )
A glass substrate 8 is arranged. The glass substrate 8 is attached to a scannable substrate holder 10, and is 0.01 to 2 mm in the X-axis direction in the horizontal plane of the glass substrate 8 and the Y-axis direction perpendicular thereto by a digital programmable controller (not shown). It is possible to scan at a speed of / sec. Since the carrier tube 3 has a volume, it takes 0.1 seconds to reach the outlet of the nozzle 4 after the ultrafine particles are sucked in. Therefore, even when the scanning of the glass substrate 8 is stopped at a certain point and the shutter mechanism 9 is closed to move to the next point, the ultrafine particles are conveyed by the carrier tube 3.
It is programmed to move to the next point after a certain amount of time elapses from the arrival to the end. That is, the formed metal partial film does not have a tail. Even when the next point is reached and the shutter mechanism 9 is opened, the movement is started after a lapse of time until the ultrafine particles are ejected from the tip of the nozzle 4. A heater unit for heating the glass substrate 8 is built in the substrate holder 10 so that the glass substrate 8 can be kept at a predetermined temperature by a temperature signal from a thermocouple 11 attached to the glass substrate 8. It has become. The film forming chamber 2 is connected to the suction side of a vacuum pump 15 via a valve 14, and the film forming chamber 2 is provided with a vacuum gauge 2G.

【0017】真空ポンプ15と真空ポンプ16の排気側
の配管は1本にまとめられ、バルブ19を介してHeガ
ス・リサイクル機構17と接続され、更には、バルブ1
2を介して、超微粒子生成室1の底部と接続されて、キ
ャリヤとしてのHeガスを送り込むようになっている。
また、バルブ12には、バルブ21を介して純度99.
99%のHeガスボンベ18が接続されている。なお、
真空ポンプ15、16とバルブ19との中間には、バル
ブ19に近接して、バルブ20を備えた枝管20が設け
られている。
The exhaust side pipes of the vacuum pump 15 and the vacuum pump 16 are integrated into one, which is connected to the He gas recycling mechanism 17 through the valve 19, and further, the valve 1
It is connected to the bottom of the ultrafine particle generation chamber 1 via 2 and He gas is fed as a carrier.
Further, the valve 12 has a purity of 99.
A 99% He gas cylinder 18 is connected. In addition,
A branch pipe 20 provided with a valve 20 is provided in the middle of the vacuum pumps 15 and 16 and the valve 19 and adjacent to the valve 19.

【0018】本実施例の金属部分膜の形成装置は以上の
ように構成されるが、次にその作用、すなわち、金属部
分膜の形成方法について説明する。
The apparatus for forming a metal partial film of this embodiment is constructed as described above. Next, its function, that is, the method for forming a metal partial film will be described.

【0019】(実施例1)図1を参照し、バルブ12、
13、14、20を開、バルブ19、21を閉として、
超微粒子生成室1、膜形成室2を含む全系を真空ポンプ
15、16によって圧力10-4Paまで排気する。次い
で、真空ポンプ15、16の運転は継続したままバルブ
20を閉、バルブ19、21を開として、Heガスボン
ベ18から純度99.99%の所定量のHeガスを導入
し、バルブ21を閉とする。これによってキャリヤとし
てのHeガスの矢印で示す方向の循環が開始されるが、
バルブ13の開度を調節して、超微粒子生成室1内は圧
力2kg/cm2 、膜形成室2内は圧力約1torrの
真空として、両室間に約2kg/cm2の差圧を生起さ
せる。
(Embodiment 1) Referring to FIG. 1, a valve 12,
Open 13, 14, 20 and close valves 19, 21
The entire system including the ultrafine particle generation chamber 1 and the film formation chamber 2 is exhausted to a pressure of 10 −4 Pa by vacuum pumps 15 and 16. Next, while continuing the operation of the vacuum pumps 15 and 16, the valve 20 is closed, the valves 19 and 21 are opened, a predetermined amount of He gas having a purity of 99.99% is introduced from the He gas cylinder 18, and the valve 21 is closed. To do. This starts the circulation of He gas as a carrier in the direction indicated by the arrow,
By adjusting the opening of the valve 13, a pressure of 2 kg / cm 2 is generated in the ultrafine particle generation chamber 1 and a pressure of about 1 torr is generated in the film forming chamber 2 to generate a differential pressure of about 2 kg / cm 2 between the chambers. Let

【0020】この状態において、Heガスは超微粒子生
成室1から搬送管3へ約10SLM(1分間当りの標準
状態リットル数)、吸込管5へは約30SLMに配分さ
れて流れる。吸込管5への流量を大にしているのは、搬
送管3へ吸い込まれずに超微粒子生成室1内に滞留する
超微粒子が存在すると、これらは滞留中に凝集体とな
り、何時かは搬送管3を経由し搬送されて形成中の膜に
悪影響を与えるので、その凝集体の生成を予防するため
である。
In this state, the He gas is distributed from the ultrafine particle generation chamber 1 to the carrier pipe 3 at about 10 SLM (standard state liters per minute) and to the suction pipe 5 at about 30 SLM. The reason why the flow rate to the suction pipe 5 is large is that when the ultrafine particles that are not sucked into the transport pipe 3 and stay in the ultrafine particle generation chamber 1 are present, they become agglomerates during the stay, and sometimes the transport pipe 3 This is to prevent the formation of aggregates, since it adversely affects the film that is being formed by being conveyed through the film 3.

【0021】上記の状態が整った後、カーボン・ルツボ
6を予め収容されている蒸発材料22、すなわちCuと
共に高周波誘導加熱し、Cuを約1500°Cとして溶
融させ蒸発させる。Cuの蒸気はキャリヤとしてのHe
ガスと衝突し、冷却凝縮されて超微粒子となる。生成し
たCuの超微粒子の大部分は搬送管3内へHeガスと共
に吸い込まれ、ノズル4からガラス基板8上へ噴射され
る。ガラス基板8は予めヒータ・ユニットによって25
0°Cに加熱されており、その面上に超微粒子によるC
u膜が形成される。
After the above condition is established, the carbon crucible 6 is subjected to high frequency induction heating together with the evaporation material 22 contained in advance, that is, Cu to melt and evaporate Cu at about 1500 ° C. Cu vapor is He as a carrier
It collides with gas and is cooled and condensed into ultrafine particles. Most of the generated ultrafine particles of Cu are sucked into the carrier tube 3 together with He gas, and are sprayed from the nozzle 4 onto the glass substrate 8. The glass substrate 8 is preliminarily set to 25 by the heater unit.
It is heated to 0 ° C and C
A u film is formed.

【0022】この時のCuの成膜レート、すなわち膜厚
形成速度は約10μm/secであり、成膜巾はノズル
4とガラス基板8との間の距離によって異なるが、80
0〜1200μmである。そして、ガラス基板8はその
面内のX軸方向とY軸方向へ走査され得るので、シャッ
タ機構9の作動によるCu超微粒子の搬送の断続と組み
合わせることにより、ガラス基板8上の任意の箇所から
任意の箇所に至る任意のパターンの部分膜を形成させる
ことができる。この方法によって巾0.8mm、長さ2
0mm、厚さ10μmのCu部分膜(A)を形成させ
た。
At this time, the Cu film forming rate, that is, the film forming rate is about 10 μm / sec, and the film forming width varies depending on the distance between the nozzle 4 and the glass substrate 8.
It is 0 to 1200 μm. Since the glass substrate 8 can be scanned in the in-plane X-axis direction and Y-axis direction, by combining it with the intermittent transfer of the Cu ultrafine particles by the operation of the shutter mechanism 9, the glass substrate 8 can be scanned from an arbitrary position on the glass substrate 8. It is possible to form a partial film having an arbitrary pattern reaching an arbitrary position. With this method, width 0.8 mm, length 2
A Cu partial film (A) having a thickness of 0 mm and a thickness of 10 μm was formed.

【0023】上記で得たCu部分膜(A)について耐湿
テストを行ない、比抵抗の変化を観測した結果を図3に
示した。耐湿テストは温度50°C、相対湿度95%R
Hの条件で行ない、比抵抗は四端子法で測定した。Cu
部分膜(A)の形成直後の比抵抗はCuバルク(純Cu
塊)の約1.7倍であり、その後1000時間以上(4
0日間以上)経過しても比抵抗に変化は認められなかっ
た。
A moisture resistance test was conducted on the Cu partial film (A) obtained above, and the change in resistivity was observed. The results are shown in FIG. Humidity resistance test is temperature 50 ° C, relative humidity 95% R
Conducted under the condition of H, the specific resistance was measured by the four-terminal method. Cu
The specific resistance immediately after formation of the partial film (A) is Cu bulk (pure Cu).
Mass is about 1.7 times, and more than 1000 hours (4
No change was observed in the specific resistance even after a lapse of 0 days or more).

【0024】(実施例2)カーボン・ルツボ6に収容す
る蒸発材料22をNi(ニッケル)とした以外は実施例
1と同様にキャリヤに純度99.99%のHeガスを使
用し、ガラス基板8上に巾0.8mm、長さ20mm、
厚さ10μmのNi部分膜を形成させた。
Example 2 A He gas having a purity of 99.99% was used as a carrier in the same manner as in Example 1 except that the evaporation material 22 contained in the carbon crucible 6 was Ni (nickel), and the glass substrate 8 was used. 0.8mm wide, 20mm long,
A Ni partial film having a thickness of 10 μm was formed.

【0025】このNi部分膜についても実施例1と同
様、温度50°C、相対湿度95%RHの条件での耐湿
テストを行ない、図4に示す結果を得た。すなわち、N
i部分膜の形成直後の比抵抗はNiバルクの約2.6倍
であり、その後1000時間以上(40日間以上)経過
しても比抵抗に変化は認められなかった。
As with Example 1, this Ni partial film was also subjected to a humidity resistance test under the conditions of a temperature of 50 ° C. and a relative humidity of 95% RH, and the results shown in FIG. 4 were obtained. That is, N
The specific resistance immediately after the formation of the i-part film was about 2.6 times that of Ni bulk, and no change was observed in the specific resistance even after 1000 hours or more (40 days or more).

【0026】(比較例)カーボン・ルツボ6に蒸発材料
22としてCuを収容し、キャリヤとして純度99.9
%のHeガスを使用し、実施例1と同様にして、ガラス
基板8上に初期比抵抗の異なる4種のCu部分膜(B)
を形成させた。これらのCu部分膜(B)について、一
般的な外気に相当する温度20°C、相対湿度60%R
Hの条件で行なった耐湿テストの結果を図5に示した。
4種のCu部分膜(B)の形成直後の比抵抗はCuバル
クの30〜90倍を示し、テスト期間40日でCuバル
クの60〜230倍に増大したが、その後も更に増大を
続けた。
(Comparative Example) Cu was accommodated in the carbon crucible 6 as the evaporation material 22, and the purity was 99.9 as the carrier.
% He gas was used, and four kinds of Cu partial films (B) having different initial specific resistances were formed on the glass substrate 8 in the same manner as in Example 1.
Was formed. Regarding these Cu partial films (B), the temperature is 20 ° C. and the relative humidity is 60% R, which corresponds to general outside air.
The result of the humidity resistance test conducted under the condition of H is shown in FIG.
The specific resistance immediately after the formation of the four kinds of Cu partial films (B) was 30 to 90 times that of Cu bulk, and increased to 60 to 230 times that of Cu bulk in 40 days of the test period, but continued to increase thereafter. .

【0027】以上、実施例1と比較例とから明らかなよ
うに、キャリヤとしてのHeガスの純度が99.99%
の場合(実施例1のCu部分膜(A))と、Heガスの
純度が99.9%の場合(比較例のCu部分膜(B))
とで、耐湿性は極度に異なるが、このような事実は従来
知られておらず、全く予期し難い現象であった。また、
この事実は純度99.99%以上純度100%までのH
eガスも有効であることを推測させる。これを確認する
べく、純度99.9999%のHeガスを使用し、それ
以外は実施例1と全く同様にして、耐湿性に優れたCu
部分膜(C)を得た。
As is apparent from Example 1 and Comparative Example, the purity of He gas as a carrier is 99.99%.
In the case of (Cu partial film (A) of Example 1) and He gas having a purity of 99.9% (Cu partial film (B) of Comparative Example)
The moisture resistance is extremely different, but such a fact has not been known so far, and it is a phenomenon that is completely unpredictable. Also,
This fact indicates that the purity of H is higher than 99.99% and higher than 100%.
Estimate that e-gas is also effective. In order to confirm this, He gas having a purity of 99.9999% was used, and otherwise the same as in Example 1, except that Cu excellent in moisture resistance was used.
A partial film (C) was obtained.

【0028】(実施例3)Sn(錫)、及び鉄ニッケル
合金と鉄コバルト合金のそれぞれを蒸発材料22として
カーボン・ルツボ6に収容し、キャリヤとして純度9
9.99%のHeガスを使用して実施例1と同様にそれ
ぞれの部分膜を形成させた。
(Embodiment 3) Sn (tin) and iron-nickel alloy and iron-cobalt alloy are respectively contained as evaporation materials 22 in the carbon crucible 6 and have a purity of 9 as a carrier.
Each partial film was formed in the same manner as in Example 1 using 9.99% He gas.

【0029】これらの錫部分膜、鉄ニッケル合金部分
膜、鉄コバルト合金部分膜はいずれも50°C、95%
RHでの1000時間以上の耐湿テストで比抵抗が変化
せず、優れた耐湿性を持つことを示した。
The tin partial film, the iron-nickel alloy partial film, and the iron-cobalt alloy partial film are all at 50 ° C. and 95%.
In the humidity resistance test for 1000 hours or longer at RH, the specific resistance did not change, showing that it has excellent humidity resistance.

【0030】以上本発明の実施例について説明したが、
勿論、本発明はこれらに限られることなく、本発明の技
術的思想に基づいて種々の変形が可能である。
The embodiment of the present invention has been described above.
Of course, the present invention is not limited to these, and various modifications can be made based on the technical idea of the present invention.

【0031】例えば、各実施例において、キャリヤとし
て純度99.99%のHeガスを使用したが、同じく純
度99.99%またはそれ以上のAr(アルゴン)ガ
ス、またはNe(ネオン)ガスを使用してもよい。
For example, in each embodiment, He gas having a purity of 99.99% was used, but Ar (argon) gas or Ne (neon) gas having a purity of 99.99% or more was also used. May be.

【0032】また、各実施例においてシングルのノズル
4を採用したが、複数本のマルチノズルを使用してもよ
い。
Although a single nozzle 4 is adopted in each embodiment, a plurality of multi nozzles may be used.

【0033】また、各実施例においてはシャッタ機構9
としてカーボン・ルツボ6を移動させる方式を採用した
が、搬送管3をフレキシブルなものとして、その下端部
を曲げてカーボン・ルツボ6の直上から変位させること
により閉、元へ戻すことにより開とするような方式とし
てもよい。
Further, in each embodiment, the shutter mechanism 9
A method of moving the carbon crucible 6 was adopted as the above, but the transport tube 3 is made flexible, and the lower end portion is bent to displace it from directly above the carbon crucible 6 to close it, and to open it by returning it to the original position. Such a method may be used.

【0034】また、各実施例においてはカーボン・ルツ
ボ6を採用したが、これ以外の誘導加熱され得る材料、
例えば窒化ボロンのルツボとしてもよい。
Although the carbon crucible 6 is adopted in each of the embodiments, other materials that can be heated by induction heating,
For example, a crucible of boron nitride may be used.

【0035】また、各実施例においてはガラス基板8を
採用したが、これ以外の一般に使用される基板、例えば
シリコンやセラミックスの基板であってもよい。
Although the glass substrate 8 is used in each of the embodiments, other commonly used substrates such as silicon and ceramic substrates may be used.

【0036】また、各実施例では搬送管3、ノズル4を
加熱していないが、これらを約300°Cの温度に加熱
すると、その内壁への超微粒子の沈着、凝集体の形成が
抑制されるので、より好ましい金属部分膜が得られる。
In each of the embodiments, the carrier pipe 3 and the nozzle 4 are not heated. However, when these are heated to a temperature of about 300 ° C., the deposition of ultrafine particles on the inner wall and the formation of aggregates are suppressed. Therefore, a more preferable metal partial film can be obtained.

【0037】また、各実施例においてはカーボン・ルツ
ボ6を1個としたが、ルツボを2個として異なる2種の
金属を蒸発させ、生成する2種の超微粒子を混合した部
分膜を形成させることも可能である。
In each of the embodiments, one carbon crucible 6 is used, but two crucibles are used to evaporate two different kinds of metals and form a partial film in which two kinds of ultrafine particles to be produced are mixed. It is also possible.

【0038】[0038]

【発明の効果】以上述べたように、本発明の金属部分膜
の形成装置およびその形成方法によれば、マスキングや
エッチングなどの処理を必要とせずに、基板上の任意の
箇所へ任意のパターンの金属部分膜を形成させることが
できるので、金属部分膜の形成コストを大巾に削減させ
得る。また、キャリヤとして純度99.99%またはそ
れ以上の不活性ガスを使用するので、酸化され易い金属
の部分膜であっても高湿度下において比抵抗が変化せず
極めて優れた耐湿性を示す。従って、例えばこの方法で
得たCu部分膜からなる厚膜回路を使用した電気部品は
信頼性が極めて高い。また、本発明の金属部分膜の形成
装置及びその形成方法によれば、基板上において導電性
の金属部分膜を形成させ得るだけでなく、電気回路の補
修、任意の箇所での電極の形成、リード線のボンディン
グ、ないしは各種のシーリングが可能である。更には、
この金属部分膜の形成方法は化学薬品を使用するエッチ
ングを必要としないので環境を汚染させない。
As described above, according to the apparatus and method for forming a metal partial film of the present invention, an arbitrary pattern can be formed on an arbitrary portion of the substrate without the need for treatment such as masking or etching. Since the metal partial film can be formed, the cost for forming the metal partial film can be greatly reduced. Further, since an inert gas having a purity of 99.99% or higher is used as a carrier, even if it is a partial film of a metal that is easily oxidized, the specific resistance does not change under high humidity and extremely excellent moisture resistance is exhibited. Therefore, for example, an electric component using a thick film circuit made of a Cu partial film obtained by this method has extremely high reliability. Further, according to the metal partial film forming apparatus and the forming method thereof of the present invention, not only the conductive metal partial film can be formed on the substrate, but also the repair of the electric circuit, the formation of the electrode at any place, Bonding of lead wires or various types of sealing are possible. Furthermore,
This method of forming a metal partial film does not require etching using chemicals and therefore does not pollute the environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による金属部分膜形成装置の全
体を示す概略図である。
FIG. 1 is a schematic view showing an entire metal partial film forming apparatus according to an embodiment of the present invention.

【図2】同装置におけるシャッタ機構の作用を示す図で
あり、Aは開、Bは閉の状態である。
FIG. 2 is a diagram showing an operation of a shutter mechanism in the same apparatus, in which A is an open state and B is a closed state.

【図3】本発明の実施例1によって形成されたCu部分
膜(A)についての耐湿テストの結果を示す図である。
FIG. 3 is a diagram showing a result of a moisture resistance test on a Cu partial film (A) formed according to Example 1 of the present invention.

【図4】本発明の実施例2によって形成されたNi部分
膜についての耐湿テストの結果を示す図である。
FIG. 4 is a diagram showing the results of a moisture resistance test on a Ni partial film formed according to Example 2 of the present invention.

【図5】本発明の比較例としての初期比抵抗の異なる4
種のCu部分膜(B)についての耐湿テストの結果を示
す図である。
FIG. 5 is a graph showing different initial specific resistances 4 as a comparative example of the present invention.
It is a figure which shows the result of the moisture resistance test about a Cu partial film (B) of a kind.

【符号の説明】[Explanation of symbols]

1 超微粒子生成室 2 膜形成室 3 搬送管 4 ノズル 5 吸込管 6 カーボン・ルツボ 7 高周波電源 7C コイル 8 ガラス基板 9 シャッタ機構 15 真空ポンプ 16 真空ポンプ 17 Heガス・リサイクル機構 22 蒸発材料(酸化され易い金属) 1 Ultrafine Particle Generation Chamber 2 Film Formation Chamber 3 Conveying Pipe 4 Nozzle 5 Suction Pipe 6 Carbon Crucible 7 High Frequency Power Supply 7C Coil 8 Glass Substrate 9 Shutter Mechanism 15 Vacuum Pump 16 Vacuum Pump 17 He Gas Recycling Mechanism 22 Evaporation Material (oxidized Easy metal)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属を蒸発させる蒸発源が設けられた超
微粒子生成室と、下端が前記超微粒子生成室にあって前
記蒸発源の直上方に配設され、生成された超微粒子を搬
送する搬送管と、該搬送管の上端およびその先端のノズ
ルが挿入され、部分膜を形成させるべき基板が前記ノズ
ルに近接して配置された膜形成室と、前記超微粒子生成
室から前記搬送管と前記ノズルを経て前記膜形成室へ前
記超微粒子と共に噴射される搬送ガスを前記膜形成室か
ら前記超微粒子生成室へ戻して循環させるための真空ポ
ンプ系および搬送ガスリサイクル機構とからなり、前記
超微粒子生成室内に前記超微粒子の搬送を断続させるシ
ャッタ機構と、前記膜形成室内に前記基板をその面内の
少なくともX軸方向とY軸方向とに走査させる走査機構
とが設けられていることを特徴とする金属部分膜の形成
装置。
1. An ultrafine particle generation chamber provided with an evaporation source for evaporating a metal, and a lower end of the ultrafine particle generation chamber which is arranged immediately above the evaporation source and conveys the generated ultrafine particles. A carrier pipe, a film forming chamber in which a nozzle at an upper end and a tip of the carrier pipe is inserted, and a substrate on which a partial film is to be formed is arranged in proximity to the nozzle, and the carrier pipe from the ultrafine particle generating chamber. A carrier gas recycle mechanism and a vacuum pump system for circulating the carrier gas injected together with the ultrafine particles through the nozzle into the film forming chamber from the film forming chamber to the ultrafine particle generating chamber, A shutter mechanism that intermittently conveys the ultrafine particles is provided in the particle generation chamber, and a scanning mechanism that scans the substrate in at least the X-axis direction and the Y-axis direction in the plane of the film formation chamber. An apparatus for forming a metal partial film, comprising:
【請求項2】 前記超微粒子生成室内に、前記搬送管の
下端より上方に該搬送管より大径の吸込管が配設され、
該吸込管と前記搬送管との間の環状空間が前記真空ポン
プ系に接続されている請求項1に記載の金属部分膜の形
成装置。
2. A suction pipe having a diameter larger than that of the transfer pipe is disposed above the lower end of the transfer pipe in the ultrafine particle generation chamber,
The metal partial film forming apparatus according to claim 1, wherein an annular space between the suction pipe and the transfer pipe is connected to the vacuum pump system.
【請求項3】 前記シャッタ機構が前記蒸発源とその直
上方の前記搬送管との相対位置をずらせ戻すことによっ
て前記超微粒子の搬送を断続させる請求項1または2に
記載の金属部分膜の形成装置。
3. The formation of the metal partial film according to claim 1, wherein the shutter mechanism intermittently conveys the ultrafine particles by shifting back the relative position between the evaporation source and the conveying pipe immediately above the evaporation source. apparatus.
【請求項4】 金属を蒸発させる蒸発源が設けられた超
微粒子生成室と、下端が前記超微粒子生成室にあって前
記蒸発源の直上方に配設され、生成された超微粒子を搬
送する搬送管と、該搬送管の上端およびその先端のノズ
ルが挿入され、部分膜を形成させるべき基板が前記ノズ
ルに近接して配置された膜形成室と、前記超微粒子生成
室から前記搬送管と前記ノズルを経て前記膜形成室へ前
記超微粒子と共に噴射される搬送ガスを前記膜形成室か
ら前記超微粒子生成室へ戻して循環させるための真空ポ
ンプ系および搬送ガスリサイクル機構とからなり、前記
超微粒子生成室内に前記超微粒子の搬送を断続させるシ
ャッタ機構と、前記膜形成室内に前記基板をその面内の
少なくともX軸方向とY軸方向とに走査させる走査機構
とが設けられている金属部分膜形成装置において、前記
搬送ガスとして純度99.99%またはそれ以上の不活
性ガスを使用し、前記蒸発源から酸化され易い金属を蒸
発させて超微粒子を生成させると共に、前記シャッタ機
構によって前記超微粒子の搬送を断続させ、かつ前記基
板を前記走査機構によって走査させつつ、前記ノズルか
ら前記基板上へ前記超微粒子を適用することを特徴とす
る金属部分膜の形成方法。
4. An ultrafine particle generation chamber provided with an evaporation source for evaporating a metal, and a lower end of the ultrafine particle generation chamber is provided directly above the evaporation source and conveys the generated ultrafine particles. A carrier pipe, a film forming chamber in which a nozzle at an upper end and a tip of the carrier pipe is inserted, and a substrate on which a partial film is to be formed is arranged in proximity to the nozzle, and the carrier pipe from the ultrafine particle generating chamber. A carrier gas recycle mechanism and a vacuum pump system for circulating the carrier gas injected together with the ultrafine particles through the nozzle into the film forming chamber from the film forming chamber to the ultrafine particle generating chamber, A shutter mechanism that intermittently conveys the ultrafine particles is provided in the particle generation chamber, and a scanning mechanism that scans the substrate in at least the X-axis direction and the Y-axis direction in the plane of the film formation chamber. In the metal partial film forming apparatus, an inert gas having a purity of 99.99% or higher is used as the carrier gas, the easily oxidizable metal is evaporated from the evaporation source to generate ultrafine particles, and the shutter mechanism is used. A method for forming a metal partial film, characterized in that the ultrafine particles are applied onto the substrate from the nozzle while intermittently carrying the ultrafine particles and scanning the substrate by the scanning mechanism.
【請求項5】 前記蒸発源が高周波誘導加熱され蒸発さ
れる金属を収容するるつぼである請求項4に記載の金属
部分膜の形成方法。
5. The method for forming a metal partial film according to claim 4, wherein the evaporation source is a crucible containing a metal to be evaporated by high frequency induction heating.
【請求項6】 前記不活性ガスがヘリウムである請求項
4または5に記載の金属部分膜の形成方法。
6. The method for forming a metal partial film according to claim 4, wherein the inert gas is helium.
【請求項7】 前記酸化され易い金属が銅、ニッケル、
錫、鉄ニッケル化合物、鉄コバルト化合物の中の1種ま
たは1種以上である請求項4から請求項6までの何れか
に記載の金属部分膜の形成方法。
7. The easily oxidizable metal is copper, nickel,
The method for forming a metal partial film according to any one of claims 4 to 6, which is one or more of tin, an iron-nickel compound, and an iron-cobalt compound.
JP19605194A 1994-07-28 1994-07-28 Apparatus and method for forming metal partial film Expired - Lifetime JP3595823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19605194A JP3595823B2 (en) 1994-07-28 1994-07-28 Apparatus and method for forming metal partial film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19605194A JP3595823B2 (en) 1994-07-28 1994-07-28 Apparatus and method for forming metal partial film

Publications (2)

Publication Number Publication Date
JPH0841626A true JPH0841626A (en) 1996-02-13
JP3595823B2 JP3595823B2 (en) 2004-12-02

Family

ID=16351384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19605194A Expired - Lifetime JP3595823B2 (en) 1994-07-28 1994-07-28 Apparatus and method for forming metal partial film

Country Status (1)

Country Link
JP (1) JP3595823B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243667A3 (en) * 2001-03-22 2002-10-02 Ebara Corporation Gas recirculation flow control method and apparatus for use in vacuum system for semiconductor manufacture
KR100913219B1 (en) * 2007-12-03 2009-08-24 주식회사 에이디피엔지니어링 Apparatus and method for attaching substrates
JP4560177B2 (en) * 2000-06-14 2010-10-13 キヤノン株式会社 Film forming apparatus and film forming method
WO2016133256A1 (en) * 2015-02-16 2016-08-25 주식회사 파인에바 Linear evaporation deposition apparatus
RU203742U1 (en) * 2020-05-18 2021-04-19 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Apparatus for obtaining micron and nanoscale single crystals of topological insulators by physical vapor deposition (PVD)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325507B2 (en) * 1984-03-09 1991-04-08 Kyoto Daigaku Socho
JPH0419301B2 (en) * 1985-12-26 1992-03-30 Mitsubishi Electric Corp
JPH05295525A (en) * 1992-04-16 1993-11-09 Vacuum Metallurgical Co Ltd Gas deposition device
JPH0657413A (en) * 1992-08-11 1994-03-01 Vacuum Metallurgical Co Ltd Gas circulation method in gas deposition method and gas circulation device for gas deposition device
JPH0693430A (en) * 1992-09-11 1994-04-05 Vacuum Metallurgical Co Ltd Gas deposition method for superfine particle and device therefor
JPH07166332A (en) * 1993-12-10 1995-06-27 Vacuum Metallurgical Co Ltd Gas deposition device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325507B2 (en) * 1984-03-09 1991-04-08 Kyoto Daigaku Socho
JPH0419301B2 (en) * 1985-12-26 1992-03-30 Mitsubishi Electric Corp
JPH05295525A (en) * 1992-04-16 1993-11-09 Vacuum Metallurgical Co Ltd Gas deposition device
JPH0657413A (en) * 1992-08-11 1994-03-01 Vacuum Metallurgical Co Ltd Gas circulation method in gas deposition method and gas circulation device for gas deposition device
JPH0693430A (en) * 1992-09-11 1994-04-05 Vacuum Metallurgical Co Ltd Gas deposition method for superfine particle and device therefor
JPH07166332A (en) * 1993-12-10 1995-06-27 Vacuum Metallurgical Co Ltd Gas deposition device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560177B2 (en) * 2000-06-14 2010-10-13 キヤノン株式会社 Film forming apparatus and film forming method
EP1243667A3 (en) * 2001-03-22 2002-10-02 Ebara Corporation Gas recirculation flow control method and apparatus for use in vacuum system for semiconductor manufacture
US6782907B2 (en) 2001-03-22 2004-08-31 Ebara Corporation Gas recirculation flow control method and apparatus for use in vacuum system
KR100913219B1 (en) * 2007-12-03 2009-08-24 주식회사 에이디피엔지니어링 Apparatus and method for attaching substrates
WO2016133256A1 (en) * 2015-02-16 2016-08-25 주식회사 파인에바 Linear evaporation deposition apparatus
RU203742U1 (en) * 2020-05-18 2021-04-19 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (национальный исследовательский университет)" Apparatus for obtaining micron and nanoscale single crystals of topological insulators by physical vapor deposition (PVD)

Also Published As

Publication number Publication date
JP3595823B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6300245B1 (en) Inductively coupled plasma powder vaporization for fabricating integrated circuits
US5837316A (en) Ultra fine particle gas deposition apparatus
JP3229504B2 (en) Method and apparatus for dry fluxing of metal surfaces prior to soldering or tinning
US3477872A (en) Method of depositing refractory metals
CN1317056A (en) CVD apparatus
TWI274622B (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment and remote ion generation
JPH0841626A (en) Forming device for metallic partial film and its formation
JPH0819859A (en) Gas injection device and method for producing atmosphere controlled in enclosed space
US5234157A (en) Soldering method and apparatus
US6328804B1 (en) Chemical vapor deposition of metals on a spherical shaped semiconductor substrate
US4081575A (en) Method of flux coating metal wick
JP3652398B2 (en) Pattern forming method for conductive metal thick film
JP2007063615A (en) Method for forming lithium or lithium alloy thin film
JPH0237264B2 (en) FUNIKIRO
US3373050A (en) Deflecting particles in vacuum coating process
US6015464A (en) Film growth system and method for spherical-shaped semiconductor integrated circuits
JP3563083B2 (en) Method and apparatus for gas deposition of ultrafine particles
KR940016601A (en) Manufacturing method and thin film forming apparatus of semiconductor device
JP2000017427A (en) Gas deposition method and its apparatus
US3881038A (en) Low temperature metallization of ferrite
US3447961A (en) Movable substrate method of vaporizing and depositing electrode material layers on the substrate
US6303517B1 (en) Fast deposition on spherical-shaped integrated circuits in non-contact CVD process
JPH06101026A (en) Gas deposition device
JPH09115958A (en) Ic chip and peripheral wiring method of ic chip
JPH11152582A (en) Gas deposition method and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term