JPH0419301B2 - - Google Patents

Info

Publication number
JPH0419301B2
JPH0419301B2 JP60294415A JP29441585A JPH0419301B2 JP H0419301 B2 JPH0419301 B2 JP H0419301B2 JP 60294415 A JP60294415 A JP 60294415A JP 29441585 A JP29441585 A JP 29441585A JP H0419301 B2 JPH0419301 B2 JP H0419301B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
thin film
vacuum
film forming
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294415A
Other languages
Japanese (ja)
Other versions
JPS62151562A (en
Inventor
Yoshihiro Hoshiko
Yasunari Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29441585A priority Critical patent/JPS62151562A/en
Publication of JPS62151562A publication Critical patent/JPS62151562A/en
Publication of JPH0419301B2 publication Critical patent/JPH0419301B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、薄膜形成装置に係り、特に半導体
装置を製造する製造工程において、半導体ウエハ
表面に薄膜を形成する作業に使用するスパツタリ
ング装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film forming apparatus, and particularly to a sputtering apparatus used for forming a thin film on the surface of a semiconductor wafer in a manufacturing process for manufacturing semiconductor devices. It is.

〔従来の技術〕[Conventional technology]

第2図は、この種従来の薄膜形成装置であるス
パツタリング装置の一例を示す断面図であり、図
において1は真空槽、2は被薄膜形成体としての
半導体ウエハ、3aは油回転ポンプ、4aはクラ
イオポンプ、5は真空槽1内の真空圧を計測する
為の真空圧センサー、6は半導体ウエハ2上に形
成される薄膜形成材料であるターゲツト、7はス
パツタリング電源である。
FIG. 2 is a sectional view showing an example of a sputtering apparatus, which is a conventional thin film forming apparatus of this type, and in the figure, 1 is a vacuum chamber, 2 is a semiconductor wafer as a thin film forming object, 3a is an oil rotary pump, and 4a is a sputtering apparatus. 5 is a cryopump, 5 is a vacuum pressure sensor for measuring the vacuum pressure in the vacuum chamber 1, 6 is a target which is a thin film forming material to be formed on the semiconductor wafer 2, and 7 is a sputtering power source.

次に動作について説明する。 Next, the operation will be explained.

真空槽1を大気圧に開放した後、薄膜形成面を
上にして半導体ウエハ2を真空槽1内の定位置に
置いた後、油回転ポンプ3a、およびクライオポ
ンプ4aを用いて、真空槽1を高真空まで真空排
気する。次いで、高純度のアルゴンガスを真空槽
1に導入し、真空圧センサー5および真空圧コン
トローラ7を使用して、真空槽1内を一定の真空
圧にする。次いで、スパツタリング電源7の出力
をターゲツト6に印加することにより、スパツタ
リング作用を起こし、ターゲツト6の材料を半導
体ウエハ2上に推積させる。
After opening the vacuum chamber 1 to atmospheric pressure, and placing the semiconductor wafer 2 in a fixed position in the vacuum chamber 1 with the thin film forming side facing up, the vacuum chamber 1 is opened using the oil rotary pump 3a and the cryopump 4a. Evacuate to high vacuum. Next, high-purity argon gas is introduced into the vacuum chamber 1, and the vacuum pressure sensor 5 and the vacuum pressure controller 7 are used to maintain a constant vacuum pressure inside the vacuum chamber 1. Next, by applying the output of the sputtering power source 7 to the target 6, a sputtering effect is caused, and the material of the target 6 is deposited on the semiconductor wafer 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の薄膜形成装置は以上のように、スパツタ
リング中の真空圧のみを検知している為、真空槽
1のリーク等により真空槽1内が高純度アルゴン
ガス以外のガスで汚染されても検知できず、品質
の悪い薄膜を半導体ウエハ2表面に形成する場合
があるなどの問題点があつた。
As described above, conventional thin film forming equipment detects only the vacuum pressure during sputtering, so it cannot detect if the inside of the vacuum chamber 1 is contaminated with gas other than high-purity argon gas due to a leak in the vacuum chamber 1. First, there are problems in that a thin film of poor quality may be formed on the surface of the semiconductor wafer 2.

この発明は上記のような問題点を解消するため
になされたもので、高品質の薄膜が形成できる薄
膜形成装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a thin film forming apparatus that can form a high quality thin film.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る薄膜形成装置は、真空槽内のガ
スの成分を分析するガス成分分析装置を備えたも
のである。
A thin film forming apparatus according to the present invention is equipped with a gas component analyzer that analyzes the components of a gas within a vacuum chamber.

〔作用〕[Effect]

この発明における薄膜形成装置は、ガス成分分
析装置により、薄膜形成中の真空槽内のガス成分
を検知するから、上記真空槽内にあるべきガス以
外のガスが存在した場合には、薄膜形成作業を中
止できるものである。
The thin film forming apparatus according to the present invention uses a gas component analyzer to detect gas components in the vacuum chamber during thin film formation. can be canceled.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明す
る。第1図において、8は、真空槽1内のガスの
成分を分析するガス成分分析装置で、このガス成
分分析装置は、真空槽1の排気口に取り付けられ
たクライオポンプ4bと、このクライオポンプ4
bと上記真空槽1との間の排気口に設けられ、上
記排気口径を調節することによつての真空槽1側
の真空圧とクライオポンプ4b側の真空圧との差
を作る差圧発生器9と、この差圧発生器9とクラ
イオポンプ4bとの間の排気口内に含まれるガス
をセンスする質量分析器センサー10と、この質
量分析器センサー10のセンスに基づいてガスの
成分を分析する質量分析器11と、上記クライオ
ポンプ4bに取り付けられた油回転ポンプ3bと
からなるものである。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 8 denotes a gas component analyzer for analyzing the gas components in the vacuum chamber 1. This gas component analyzer includes a cryopump 4b attached to the exhaust port of the vacuum chamber 1, and a cryopump 4
A differential pressure generating device is provided at the exhaust port between b and the vacuum chamber 1, and creates a difference between the vacuum pressure on the vacuum chamber 1 side and the vacuum pressure on the cryopump 4b side by adjusting the exhaust port diameter. a mass spectrometer sensor 10 that senses the gas contained in the exhaust port between the differential pressure generator 9 and the cryopump 4b, and analyzes the components of the gas based on the sense of the mass spectrometer sensor 10. The cryopump 4b includes a mass spectrometer 11, and an oil rotary pump 3b attached to the cryopump 4b.

次に作用、動作について説明する。 Next, the function and operation will be explained.

真空槽1を大気圧に開放した後、薄膜形成面を
上にして被薄膜形成体である半導体ウエハ2を真
空槽1内の定位置にセツトする。次いで、油回転
ポンプ3aを用いて真空槽1を10-1Torr程度の
真空圧に真空排気する。次いで、クライオポンプ
4aを用いて真空槽1を10-7Torr程度の真空圧
に真空排気する。次いで、純度99.999%程度の高
純度アワゴンガスを真空槽1に導入する。この
時、真空センサー5および真空圧コントローラ7
を使用して、高純度アルゴンガスの流入速度を制
御し、真空槽内を10-2Torr程度の真空圧に保持
する。次いで、スパツタリング電源の出力を薄膜
形成材料であるターゲツト6に印加して、ターゲ
ツト6表面近傍にプラズマを発生させ、ウエハ2
表面にターゲツト材料をデポさせる。このスパツ
タリング中のガス成分を、ガス成分分析装置8を
用いて常時検知する。通常の質量分析器11は
10-5Torr程度以下の真空圧で動作するので、真
空圧が10-2Torr程度であるスパツタリング中の
ガス成分を検知する事はできない。そこで、本発
明例では、真空槽1に取り付けた質量分析器セン
サー10を、クライオポンプ4bを用いて
10-5Torr以下の真空圧に保持させる。このとき、
真空槽1内の10-2Torr程度の真空圧と、質量分
析器センサー10部の10-5Torr以下の真空圧と
の差圧が生じるのを可能とするために、差圧発生
器9を取り付けている。この為、スパツタリング
中の真空槽1内のガスの一部は排気口を通して常
時クライオポンプ4bに流れ込み、この排気口途
中に取り付けた質量分析器センサー10で、スパ
ツタリング中の真空槽1内のガス成分を常時検知
することが可能となつた。
After the vacuum chamber 1 is opened to atmospheric pressure, the semiconductor wafer 2, which is the object on which the thin film is to be formed, is set at a fixed position in the vacuum chamber 1 with the thin film forming surface facing upward. Next, the vacuum chamber 1 is evacuated to a vacuum pressure of about 10 -1 Torr using the oil rotary pump 3a. Next, the vacuum chamber 1 is evacuated to a vacuum pressure of about 10 -7 Torr using the cryopump 4a. Next, high-purity wagon gas with a purity of about 99.999% is introduced into the vacuum chamber 1. At this time, the vacuum sensor 5 and the vacuum pressure controller 7
is used to control the inflow rate of high-purity argon gas and maintain the vacuum pressure in the vacuum chamber at approximately 10 -2 Torr. Next, the output of the sputtering power source is applied to the target 6, which is the thin film forming material, to generate plasma near the surface of the target 6, and the wafer 2
Deposit the target material onto the surface. Gas components during this sputtering are constantly detected using a gas component analyzer 8. The normal mass spectrometer 11 is
Since it operates at a vacuum pressure of about 10 -5 Torr or less, it cannot detect gas components during sputtering where the vacuum pressure is about 10 -2 Torr. Therefore, in the example of the present invention, the mass spectrometer sensor 10 attached to the vacuum chamber 1 is connected using a cryopump 4b.
Maintain vacuum pressure below 10 -5 Torr. At this time,
In order to generate a pressure difference between the vacuum pressure of about 10 -2 Torr in the vacuum chamber 1 and the vacuum pressure of less than 10 -5 Torr in the mass spectrometer sensor 10, a differential pressure generator 9 is installed. It is installed. For this reason, a part of the gas in the vacuum chamber 1 during sputtering constantly flows into the cryopump 4b through the exhaust port, and the mass spectrometer sensor 10 installed in the middle of this exhaust port detects the gas components in the vacuum chamber 1 during sputtering. It has become possible to constantly detect

その為、スパツタリング中に、高純度アルゴン
以外のガス成分が真空槽1内に流入した場合に
は、すぐに質量分析器11に取り付けられた警報
器から警報を発し、スツタリング作業を中止す
る。この為、不純なガスが混入あるいは、不純な
ガスと反応した低品質の薄膜がウエハ上にデボさ
れる事はなくなつた。
Therefore, if a gas component other than high-purity argon flows into the vacuum chamber 1 during sputtering, an alarm attached to the mass spectrometer 11 immediately issues an alarm and the sputtering operation is stopped. Therefore, a low-quality thin film mixed with impure gas or reacted with impure gas is no longer deposited on the wafer.

なお、上記実施例では、高真空ポンプとしてク
ライオポンプ4a,4bを使用したが、ターボモ
レキユラーポンプや、油拡散ポンプ等の他の高真
空ポンプを使用してもよい。
In the above embodiment, cryopumps 4a and 4b were used as high vacuum pumps, but other high vacuum pumps such as turbo molecular pumps and oil diffusion pumps may be used.

また上記実施例では、真空槽1が1箇のスパツ
タリング装置について説明したが、複数の真空槽
を有したスパツタリング装置であつてもよい。
Further, in the above embodiments, the sputtering apparatus having one vacuum chamber 1 has been described, but the sputtering apparatus may have a plurality of vacuum chambers.

更に、上記実施例ではスパツタリング装置につ
いて説明したが、真空槽内で膜形成を行う装置で
あれば何でも良く、例えば真空蒸着装置等にこの
発明を適用しても同様の効果が得られるものであ
る。
Further, in the above embodiments, a sputtering device was described, but any device that forms a film in a vacuum chamber may be used. For example, the same effect can be obtained even if the present invention is applied to a vacuum evaporation device. .

また上記実施例では、ガス成分分析装置8とし
て、質量伏析器11を利用したものを示したがこ
れに限られるものではなく、他のガス成分分析手
段であつても良い。
Furthermore, in the above embodiments, the gas component analyzer 8 uses the mass estimator 11, but the present invention is not limited to this, and other gas component analyzers may be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、薄膜形成装
置に真空槽内のガスの成分を分析するガス成分分
析装置を設けて薄膜形成中のガス成分を常時検知
するようにしたので、高品質の薄膜がウエハ表面
上に、再現性よく形成できるという効果がある。
As described above, according to the present invention, the thin film forming apparatus is equipped with a gas component analyzer that analyzes the gas components in the vacuum chamber to constantly detect the gas components during thin film formation. This has the effect that a thin film can be formed on the wafer surface with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるスパツタリ
ング装置を示す断面図、第2図は従来のスパツタ
リング装置を示す断面図である。 図に於て、1は真空槽、2は被薄膜形成体、8
はガス成分分析装置である。なお、図中、同一符
号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a sputtering apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional sputtering apparatus. In the figure, 1 is a vacuum chamber, 2 is a thin film forming body, and 8 is a vacuum chamber.
is a gas component analyzer. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 薄膜形成材および被薄膜形成体が収容される
真空槽、この真空槽に設けられた差圧発生器と、
この差圧発生器に設けられたポンプと、上記差圧
発生器とポンプとの間に設けられた質量分析器セ
ンサと、この質量分析器センサに接続された質量
分析器とよりなるガス成分分析装置によつて、上
記真空槽内のガス成分を分析することを特徴とす
る薄膜形成装置。
1. A vacuum chamber in which the thin film forming material and the thin film forming object are housed, a differential pressure generator provided in this vacuum chamber,
Gas component analysis consisting of a pump provided in this differential pressure generator, a mass spectrometer sensor provided between the differential pressure generator and the pump, and a mass spectrometer connected to this mass spectrometer sensor. A thin film forming apparatus characterized in that the apparatus analyzes gas components within the vacuum chamber.
JP29441585A 1985-12-26 1985-12-26 Thin film forming device Granted JPS62151562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29441585A JPS62151562A (en) 1985-12-26 1985-12-26 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29441585A JPS62151562A (en) 1985-12-26 1985-12-26 Thin film forming device

Publications (2)

Publication Number Publication Date
JPS62151562A JPS62151562A (en) 1987-07-06
JPH0419301B2 true JPH0419301B2 (en) 1992-03-30

Family

ID=17807455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29441585A Granted JPS62151562A (en) 1985-12-26 1985-12-26 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS62151562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841626A (en) * 1994-07-28 1996-02-13 Vacuum Metallurgical Co Ltd Forming device for metallic partial film and its formation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100257903B1 (en) * 1997-12-30 2000-08-01 윤종용 Plasma etching apparatus capable of in-situ monitoring, its in-situ monitoring method and in-situ cleaning method for removing residues in plasma etching chamber
JP4387573B2 (en) 1999-10-26 2009-12-16 東京エレクトロン株式会社 Process exhaust gas monitoring apparatus and method, semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus management system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246920A (en) * 1975-10-08 1977-04-14 Suwa Seikosha Kk Paper feeder
JPS5931550A (en) * 1982-08-16 1984-02-20 Ulvac Corp Radical and excited particle measuring equipment during plasma etching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246920A (en) * 1975-10-08 1977-04-14 Suwa Seikosha Kk Paper feeder
JPS5931550A (en) * 1982-08-16 1984-02-20 Ulvac Corp Radical and excited particle measuring equipment during plasma etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841626A (en) * 1994-07-28 1996-02-13 Vacuum Metallurgical Co Ltd Forming device for metallic partial film and its formation

Also Published As

Publication number Publication date
JPS62151562A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
JP3186262B2 (en) Method for manufacturing semiconductor device
US5093571A (en) Method and device for analyzing gas in process chamber
JPH01268859A (en) Formation of transparent conductive film and device therefor
US6964187B2 (en) Vacuum sensor
JPH0419301B2 (en)
EP0877246A2 (en) In situ monitoring of contaminants in semiconductor processing chambers
JPS61130485A (en) Vacuum monitor device
US5172183A (en) Glow discharge atomic emission spectroscopy and apparatus thereof
JP3153323B2 (en) Apparatus and method for restoring normal pressure in an airtight chamber
JPS61196538A (en) Vacuum processing and apparatus thereof
Chambers et al. Endpoint uniformity sensing and analysis in silicon dioxide plasma etching using in situ mass spectrometry
JPS5647569A (en) Plasma etching method
JPH0567665A (en) Leakage detection method
JPS6334931A (en) Apparatus for manufacturing semiconductor
US5283435A (en) Apparatus for determining the concentration of a gas in a vacuum chamber
JPH065555A (en) Plasma device
Gogol et al. A new type of transducer for partial pressure control
JP2686996B2 (en) Vacuum processing equipment
JPH06342761A (en) Vacuum device and thin film forming method using it
JPS59170272A (en) Dry treating device
JPH0649940B2 (en) Vacuum processing device
JPH01117018A (en) Plasma processing method
JPH0250422A (en) Semiconductor manufacturing apparatus
JPH0277809A (en) Pressure controller
JPH0549756B2 (en)