JPS5931550A - Radical and excited particle measuring equipment during plasma etching - Google Patents

Radical and excited particle measuring equipment during plasma etching

Info

Publication number
JPS5931550A
JPS5931550A JP57141087A JP14108782A JPS5931550A JP S5931550 A JPS5931550 A JP S5931550A JP 57141087 A JP57141087 A JP 57141087A JP 14108782 A JP14108782 A JP 14108782A JP S5931550 A JPS5931550 A JP S5931550A
Authority
JP
Japan
Prior art keywords
radical
plasma etching
plasma
orifice
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57141087A
Other languages
Japanese (ja)
Other versions
JPS6257069B2 (en
Inventor
Toshio Hayashi
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP57141087A priority Critical patent/JPS5931550A/en
Publication of JPS5931550A publication Critical patent/JPS5931550A/en
Publication of JPS6257069B2 publication Critical patent/JPS6257069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To make the mass spectrometry of a radical and excited particle possible during plasma discharge by providing a light source unit that ionizes by meant of vacuum ultraviolet rays with low energy only radical and excited particle types, that is, the neutral activated partcle types that flow in from a plasma etching room. CONSTITUTION:A magnet 6 is provided at the measurement room 2 side of an orifice 5 for differential exhaust and generates a magnetic field so that a charged particle passing through the orifice 5 from a plasam etching room 1 in which plasma discharge occurs, cannot enter a mass spectrometer 3. The strength of the magnetic field is set to be approximately 150-600gauss. A discharge tube 7 generates vacuum ultraviolet beams (8.4-11.8eV) with low energy that ionize only radical and excited particle types, that is, neutral activated particle types which are made to flow in from the plasma etching room 1.

Description

【発明の詳細な説明】 この発明は、プラズマエツチング中のラジカルおよび励
起分子測定装置に閾するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a device for measuring radicals and excited molecules during plasma etching.

例えUよ最近の半導体集fi1回路の製造においてrl
、(、その技術が進歩するにつれて111に集程亙化、
小型化するだけで外く、信頼性や性能の面でも大幅な向
」二が期待できる」二うになってきている。なかでもi
i+゛・(細加工技街への期待し1.大きく、また多く
の努力も払われている。微細加工技術には1・n々ある
が、現在特に注目宴れているものとしてrfプラズマエ
ツチングを含むドライエツブング技術がある。
For example, in the manufacturing of recent semiconductor assembly fi1 circuits, rl
,(,As the technology advances, the concentration increases to 111,
Not only can they be made smaller, but significant improvements can be expected in terms of reliability and performance. Especially i
i+゛・(Expectations for Fine Processing Techniques 1. It is big and a lot of effort is being made.There are 1 and n types of microfabrication technology, but RF plasma etching is currently attracting particular attention. There are dry etching technologies including

プラズマエツチングはガス放電に」:ってできる活性分
子(ラジカル、励起分子)と?)す加工it?、との化
学反応を積極的に第1]用するものである。この方式の
’i’r i’!’にはイオンによるスパッタエツチン
グ(イオンミリング)などの物理加工法に較べ加工材に
よる選択性があることで如)る。しかしながら、選択性
がt)るとηつでも限られた材料に対してであり、すべ
ての材料を十分選択的に加工できるわけでりなく、これ
を可能にするためにはプラズマ状(佳)を十分に知るこ
とが必砂となる。
What are the active molecules (radicals, excited molecules) that are formed in plasma etching due to gas discharge? ) Processing it? , which actively uses a chemical reaction with . 'i'r i' of this method! This is because there is selectivity depending on the processing material compared to physical processing methods such as sputter etching (ion milling) using ions. However, if the selectivity is t), even η is limited to a limited number of materials, and not all materials can be processed sufficiently selectively. It is essential to know enough about this.

従来、プラズマ状≠(の変化を知る方法としては発光分
ブC法、赤外吸11Sj i、探針法、質貝分析法等が
プラズマ中のガスを測定するために用いられ−Cきた。
Conventionally, as methods for determining changes in the plasma state, the luminescence spectroscopy method, infrared absorption method, probe method, shellfish analysis method, etc. have been used to measure gas in plasma.

ここで言うところのi」;<分析法というのはプラズマ
中のイオンを直接見る方法で、ラジカルを見ているもの
でtよなく、また発光分光法は、気相中における励起状
態からよりエネルギーレベルの低い状態への遷移過程に
おける発光を観測するものであることから、発光しない
でエネルギー失活する分子を観測することができない。
The analytical method is a method of directly observing ions in plasma, not radicals, and emission spectroscopy is a method of observing ions in the plasma directly, not t, and optical emission spectroscopy is a method of observing ions in the plasma directly, not t. Because this method observes light emission during the transition process to a lower level state, it is not possible to observe molecules whose energy is deactivated without emitting light.

例えばCF4ガスを11いた場合を考えると、放電プラ
ズマ中で生成されるCF、  CF2.  CF3ラジ
カルのうち発光分光法で有効に観測できるのけCF、C
F2ラジカルで、CF3ラジカルは有効にt?!測でき
ない。また赤外吸収法ink現在のところプラズマ中の
ラジカル測定法として有効な方法となりえていない。
For example, if we consider the case where CF4 gas is used, CF generated in the discharge plasma, CF2. Of the CF3 radicals, only CF and C can be effectively observed by emission spectroscopy.
F2 radical and CF3 radical are effectively t? ! It cannot be measured. Furthermore, infrared absorption method ink is currently not an effective method for measuring radicals in plasma.

ところで、プラズマ中の状態、特にイオン’Nおよびラ
ジカル種を知ることは、実用上、従来経験的(で考察さ
れてきた問題の定)4化ができる点で太き々利点をもち
、エツチング速朋やエツチング形状の間h・−(に反映
させることができ、そしてまた汚≧(ヒ源の除去、新し
いエツチング用ガスの探索お上び、〕::択+1.の向
上等の問題、aを!’+’f ガス゛−すると共に・プ
ラズマエツチングの反j、r、(:・i’i’lの釣・
ト明にも大きな役割を(・またずイ)σ)とJllJ待
てきる。寸デこプラズマエラソング(・□(IFに門し
でハ幾つかの4J、〕Jj・j [、′rの測定(、・
:1が才、るのみで!・・jとんどj’r1. )Ll
されてない。これ′!r−解明するためCて(+、l中
(゛r5ジノノルの測定が不可欠とされてし)Z)。
By the way, knowing the state in the plasma, especially the ion 'N and radical species, has a great practical advantage in that it can be used to empirically (determine the problems considered in) 4, and to improve the etching speed. This can be reflected in the etching shape, and also problems such as removal of heat sources, search for new etching gases, and improvement of selection +1. !'+'f Gas ゛- and plasma etching reaction j, r, (:・i'i'l fishing・
I'm looking forward to Tomei playing a big role (・matazui)σ) and JllJ. Dimensions Plasma Era song
:1 is the best, just run! ...jtondoj'r1. ) Ll
It hasn't been done. this'! In order to elucidate r-C (+, l (゛ r5 dinonor measurement is considered essential) Z).

イ11′−って、こσ)発明σ)目的(・二[、プラズ
マ族、)1中のラジカルよ、−よひ励起分子を′I!T
殺分7υrで八る4IJ仕1′を提供することにあ2.
I11'- is this σ) Invention σ) Purpose (・2 [, Plasma family,) 1. Radicals in 1. -Yohi excited molecules 'I! T
2. To provide 4 IJ service 1' in 7υr.
.

この目的でとの発明によれ(J、プラズマエツチング2
,4から’FN’ +R分析泪の設けられた測定η1へ
う[↓じる1n+)’、″tに、差が1排気を行なうオ
リフィスとこのオリフィスの近傍でオリフィスから測定
室へ流入するイオン卦よひ電子を取り除くように作用す
る/妊1°)を発生−する装F・1と、プラズマエツチ
ング?:1から流入ずろ中性活性分子種であるラジカル
およびJiiQ句分子丘のみをエネルギーの低い真空紫
外°)′(ゴりでイオン化させる光源装置とを設け、イ
オン化された中性活性分子種を上記’、eE J(1分
析計で測定するようにしたことをZi、+I徽とするプ
ラズマエツチング中のラジカルおよび1リリ起分子測定
装信がyl供される。
For this purpose, according to the invention (J, Plasma Etching 2)
,4 to 'FN' The device F.1 which acts to remove electrons/generates 1 degree) and the plasma etching? A light source device that ionizes with low vacuum ultraviolet rays is installed, and the ionized neutral active molecular species are measured using the above-mentioned analyzer. A device for measuring radicals and molecules generated during plasma etching is provided.

またとのつC:明によれば、磁場を発生する装置]゛j
を取外し7司能なマグネットとして(1゛イ成すること
かでき、これにより、マグネットを取りはすし、j’E
空慴外光?”i!の光υIIも装置を消すことによって
プラズマ中で生rj!;、されるイオンの質−1i)分
析を同一分析計で行なうことができる。
Matatonotsu C: According to Akira, a device that generates a magnetic field]゛j
It is possible to remove the magnet and make it a functional magnet (1).
Skylight outside? By turning off the device, the light υII of ``i!'' is also generated in the plasma.

以下この発明を添附図面を参照してさらに説明−ノーる
The present invention will be further described below with reference to the accompanying drawings.

t1!1図にに1この発明の装置の一実施イ!11を概
略的に示し、1けプラズマエツチング室、2け質も;勺
、1;f計3を収容した測定室、4はプラズマエツチン
グ室1と測定室2との間に′のびる;Jll路で、この
通路に(d図示したように差1ijl排気用のオリフィ
ス5が配置t′1”されている。このオリフィス5 i
f例えば直径約177+++Iグから成りイ4する。ま
たこのオリフィス5の測定室2 (1!IIにはマグネ
ット6が設けられ、プラズマ族1(1,の起っているプ
ラズマエツチング室1からオリフィス5を通過した荷電
粒子が質量分析計乙に入り込まないようにするためi・
(c場をうら生し、この磁場の強さは、マグネット6と
質(、)分析計3との距p::+によって一17’Jな
るが、t’J150−6n0ガウスにフ゛パ定ネれ?l
iる。すなわ1′)、荷電れl子が磁場を:11.(過
すZl、i−きにその11九;i′j 11曲げられ、
その時の軌51′!半径(r)11次式でJjえらiす
る。
Figure 1 shows an implementation of the device of this invention! 11 is schematically shown, 1 a plasma etching chamber, 2 plasma etching chambers, 1 a measuring chamber accommodating a total of 3, and 4 extending between the plasma etching chamber 1 and the measuring chamber 2; In this passage, an orifice 5 for evacuation with a difference of 1ijl is arranged (t'1'' as shown in the figure d).This orifice 5 i
For example, it has a diameter of approximately 177+++Ig. In addition, a magnet 6 is installed in the measurement chamber 2 (1! In order to prevent
(The strength of this magnetic field is -17'J due to the distance p::+ between the magnet 6 and the quality analyzer 3, but the field is fixed to t'J150-6n0 Gauss.) Nere?l
iru. That is, 1'), a charged electron causes a magnetic field: 11. (Zl, i-when its 119; i'j 11 bent,
Track 51' at that time! The radius (r) is expressed by the 11th order equation.

r=143.q71−産−v/r(C−=nJここで、
Mはfすnj′)、 V rj荷霜′、粒子のエネルギ
ー(θV’)、11は磁、(ハI7弓・11さくガウス
)である。軌シう半径が犬きりれe」1、゛す−なわち
磁W・の強さが小さけれ1・、シ、(”1’rIT、 
N’i’1子iJ質% ’=、)析計3に入り込むが、
質B+分析則6のイAン化室伺近まで飛来し、中性粒子
をイオン化す2.ことに外る。これを貨けるため鏝馬の
強さく」最低150ガウスを必少・とする。
r=143. q71-product-v/r (C-=nJ where,
M is fsnj'), Vrjload', particle energy (θV'), 11 is magnetism, (I7 gauss, 11 gauss). If the radius of the orbit is as small as 1, that is, the strength of the magnetic W is small,
N'i'1 child iJ quality % '=,) enters analysis meter 3, but
2. Fly close to the ionization chamber of quality B + analysis rule 6 and ionize the neutral particles. Especially out of place. To compensate for this, the strength of the horse must be at least 150 Gauss.

寸た礪7101において7vj方゛ζ11工信゛で、プ
ラズマエツチング中1から流入する中性活性分子fトで
あるラジカルおJひ1す1ノ紀分子種のみをイオン化す
るたメty) エネルギーの低イn、y、 、1j−1
p外光+f’1l(8,4〜11.8eV)を発生する
In a small tank 7101, a method of ionizing only the radical species, which are neutral active molecules flowing in from 1 during plasma etching, is carried out in 7 vj directions (ζ 11 engineering). Low inn, y, , 1j-1
Generates p external light +f'1l (8.4 to 11.8 eV).

#4’!、 2 ERIには反応性イオンエツチング装
五二Cにおいてラジカルの測定榮件としてCF、および
SF6のガスを用い、出カニ0.25W、偏2(500
w)・圧力20.05〜0.07 Torr 、  電
源周波数: 13.565MHzとし、電極表面材にS
 i02を用い、光源にライマンα線を用い、窓材をM
7F2とし、 オリフィス径を〜1mmt7Jとして、
550ガウスの磁場を与えてイオンを除き、水素放電管
よシ放射されるライマンα線)でイオン化し、そして質
量分析計で測定した反応性イオンエラチン、グ中のラジ
カルの’Pi’ J’hスはクトルを示し、グラフ’k
) ri cF’4のプラズマ条件で生成された活性中
性分子種を示し゛返グラフ(b)はSF6の場合を示し
、またグラフ(c)r、を水素数+H,; gを消し、
イオンが質量分析計に入り込んでいないことを確認する
ために行なった測定結果を示し、556ガウスの磁場に
よってイオンの除かれていることが認められる。
#4'! , 2 ERI uses CF and SF6 gases as radical measurement conditions in a reactive ion etching device 52C, with a power output of 0.25 W and a polarization of 2 (500
w)・Pressure is 20.05 to 0.07 Torr, power frequency: 13.565MHz, and S is applied to the electrode surface material.
i02, Lyman α rays are used as the light source, and the window material is M.
7F2, and the orifice diameter is ~1mmt7J,
The ions were removed by applying a magnetic field of 550 Gauss, ionized by Lyman alpha radiation emitted from a hydrogen discharge tube, and the reactive ion eratin was measured using a mass spectrometer. indicates the vector, and the graph 'k
) The graph (b) shows the active neutral molecular species generated under the plasma conditions of ricF'4, and the graph (c) shows the case of SF6, and the graph (c) shows the number of hydrogen + H;
This figure shows the results of measurements taken to confirm that ions do not enter the mass spectrometer, and it can be seen that ions are removed by a magnetic field of 556 Gauss.

ラジカルをイオン化するブC源としては下表に示すよう
な共鳴線を用いることができこれらの共I+(j。
As a carbon source for ionizing radicals, the resonance lines shown in the table below can be used.

線はエネルギー幅の狭い単一の波長をもち、そしてI 
Torr前後の圧力で得ることができる。
The line has a single wavelength with a narrow energy width, and I
It can be obtained at a pressure around Torr.

生成されZ、ラジカルのfiTj鵠はプラズマエツチン
グにf(η用されるガスの種υ11により界々るので、
使用する放電管ケ」適宜〕ざ択する必要がある。またイ
オン化光源をトノぶことにより、ラジカルのイオン化エ
ネルギーのおおよその値或いは中性分子種のPiノlH
己エネルギーを411:定することができる。51Jえ
Vよ。
Since the generated Z and radical fiTj are dispersed by the species of gas υ11 used in plasma etching f(η,
It is necessary to select the discharge tube to be used as appropriate. In addition, by adjusting the ionization light source, the approximate value of the ionization energy of the radical or the value of the neutral molecular species PinoH
Self-energy can be determined by 411:. 51JV.

f42図のグラフ(a)Ic示すスはクトル(CF4ガ
スを使用したJjfJ合)において、基底状態の最低イ
オン化エネルギーがライマンαM’Aのエネルギーよシ
も高い中性分子種であるCO(14,01eV ) 、
  C02(15,7F3ev)が観測されている。そ
こでこれらの中性分子種についてイオン化光源のエネル
ギーとの差を求めてみると、それぞれCO: 3.81
 eV。
The graph (a) Ic in the f42 diagram shows CO (14, 01eV),
C02 (15,7F3ev) has been observed. Therefore, when we calculated the difference in energy between these neutral molecular species and the energy of the ionizing light source, we found that each CO: 3.81
eV.

CO2: 3.50 eVとなり、Co、  co2 
ともかなり高いIn、F 起状態で存在することがF?
1められる。このことにより、反応性イオンエツチング
においては、ラジカルおよび中性分子とも高い励起状態
で存在することが推察される。このことは、従来の測定
法においては全く観測されたことのない事実であ/)。
CO2: 3.50 eV, Co, co2
Is it F that exists in a very high In,F state?
I can get 1. This suggests that in reactive ion etching, both radicals and neutral molecules exist in a highly excited state. This is a fact that has never been observed using conventional measurement methods.

この手法を幅広く利用することによってプラズマ状t”
11についてより  FcQの知見が得られると期待で
きる。
By widely utilizing this method, plasma-like t”
It is expected that more knowledge about FcQ will be obtained regarding No. 11.

なおプラズマエツチング室1から測定室2へのイオンの
流入を防ぐ方法としてイオンリはラーをIllいる方法
もあるが、圧力の高い反応性イオンエツチングの場合に
は、あまり適坏ないことが実験的に見い出された。すな
わち、プラズマ中の電子が正に印加されているイオンリ
ばラーに向って飛んでゆき、イオンリはラーを通り抜け
、測定室側で多(・1の未反応な導入ガスおよび少量の
活性分子種をイオン化するからである。圧力の低い領域
でルーられる反応t1−イオンビーノ、エツチングの場
合(でしL il+)子によるこの昨月IC」ノ、・I
c視でき、ラジカルの測定にイオンリlラ一方式を用い
ることができるが、L1ミカの高い場イ)−に1平均自
由行程が短かいため無:i47.することができない。
Note that there is a method to prevent ions from flowing into the measurement chamber 2 from the plasma etching chamber 1, but it has been experimentally shown that this method is not very suitable for reactive ion etching under high pressure. Found out. In other words, electrons in the plasma fly towards the positively applied ion liberator, and the ion liberate passes through the ion liberator, releasing a large amount of unreacted introduced gas and a small amount of active molecular species in the measurement chamber. This is because it is ionized.The reaction t1-ionbino, which is ionized in a region of low pressure, is the case of etching.
It is possible to use an ion lira method to measure radicals, but since the mean free path is short at high L1 mica: i47. Can not do it.

以」二説明しできたように、イ、・]1えばカソードカ
ップリングヲ″ラス゛マエッチング装f’j°t 7.
Iンではイオンや[(1,子のエネルギーkl 101
10 eV以下であるので600ガウス以下の小〕(す
のマグネットを使用することができることから、この発
明による装置においではマグネットを用いてプラズマエ
ツチング室から差蛸排気用のオリフィスを介して流入す
るイオンによび電子を同時に51り除くと共に、プラズ
マエツチング室から流入する中性活性分子qijiをエ
ネルギ、光 −の低い衣りP紫外1’、’i−でイオン化できるよう
にti↓b(41、ブこことによって、非宮に高感度(
10A )にラジカルを測定することができ、直ちにプ
ラズマ条件を求めることができ、その結果エツチングの
9件を求めることができる。
As explained above, a.]1 For example, the cathode coupling and the lasma etching device f'j°t7.
In I, ions and [(1, energy of child kl 101
Since it is less than 10 eV, it is possible to use a magnet of less than 600 Gauss. Therefore, in the apparatus according to the present invention, a magnet is used to control the ions flowing from the plasma etching chamber through the orifice for differential evacuation. ti↓b(41, b) so that the neutral active molecules qiji flowing in from the plasma etching chamber can be ionized by ultraviolet light P1','i- with low energy and light. Due to this, high sensitivity (
Radicals can be measured at 10A), plasma conditions can be immediately determined, and as a result, nine etching conditions can be determined.

またこの発明においては、オリフィス上りふ)入するイ
オンど電子を同時に取シ除く働きをずろマグネットを取
り外し可能に設けた場合には、中性活性分子種の質景分
析と共に、プラズマ中で生成されるイオンの質重)分析
を同一の分析性[ヒ11で行なうことができるという実
用上の効果がもたらされる0
In addition, in this invention, if a sliding magnet is removably provided to simultaneously remove ions and electrons entering the orifice, it is possible to analyze the nature of neutral active molecular species and to remove the ions and electrons generated in the plasma. This has the practical effect of making it possible to perform ion mass and mass analysis with the same analytical performance.

【図面の簡単な説明】 S、il、 1図はこの発明による装器の一実施例を示
す概略シ1i1図、第2図はこの発明による装置を用い
てt則定した反応性イオンエツチング中のラジカルの’
(’j ’4″i・スペクトルを示すグラフである。 図中、  1:プラズマエッチング室、 2:測定室、
3:!を量分析計、 4:通路、 5ニオリフイス、 
6:マグネット、 7:放mW。
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 is a schematic diagram showing an embodiment of the apparatus according to the present invention, and Figure 2 is a schematic diagram showing an example of a reactive ion etching process using the apparatus according to the present invention. radical'
(This is a graph showing the 'j '4''i spectrum. In the figure, 1: plasma etching chamber, 2: measurement chamber,
3:! Quantity analyzer, 4: Passage, 5 Niorifice,
6: Magnet, 7: Emission mW.

Claims (1)

【特許請求の範囲】[Claims] プラズマエツチング室から質量分析計の設けられた測定
室へ通じる通路に、差動排気を行なうオリフィスと、こ
のオリフィスの近傍でオリフィスから測定室へ流入する
イオンおよび電子を取り除くように作用する磁」すを発
生する装C81,と、プラズマエツチング室から流入す
る中性活性分子種であるラジカルおよびJ7D起分子種
のみをエネルギーの低い真空紫外光線でイオン化させる
光源装置とを設け、イオン化された中性活性分子種を上
記質量分析計で測定するようにしたことを特徴とするプ
ラズマエツチング中のラジカルおよび励起分子測定装置
?イ。
In the passage leading from the plasma etching chamber to the measurement chamber where the mass spectrometer is installed, there is an orifice for differential pumping and a magnetic field near the orifice that acts to remove ions and electrons flowing from the orifice into the measurement chamber. C81, which generates a An apparatus for measuring radicals and excited molecules during plasma etching, characterized in that molecular species are measured using the above mass spectrometer? stomach.
JP57141087A 1982-08-16 1982-08-16 Radical and excited particle measuring equipment during plasma etching Granted JPS5931550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57141087A JPS5931550A (en) 1982-08-16 1982-08-16 Radical and excited particle measuring equipment during plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57141087A JPS5931550A (en) 1982-08-16 1982-08-16 Radical and excited particle measuring equipment during plasma etching

Publications (2)

Publication Number Publication Date
JPS5931550A true JPS5931550A (en) 1984-02-20
JPS6257069B2 JPS6257069B2 (en) 1987-11-28

Family

ID=15283896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57141087A Granted JPS5931550A (en) 1982-08-16 1982-08-16 Radical and excited particle measuring equipment during plasma etching

Country Status (1)

Country Link
JP (1) JPS5931550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162447A (en) * 1983-03-07 1984-09-13 Ulvac Corp Apparatus for measuring neutral product in low temperature plasma
JPS62151562A (en) * 1985-12-26 1987-07-06 Mitsubishi Electric Corp Thin film forming device
KR100519543B1 (en) * 1998-07-09 2005-12-08 삼성전자주식회사 Plasma Etching Device for Semiconductor Device Manufacturing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162447A (en) * 1983-03-07 1984-09-13 Ulvac Corp Apparatus for measuring neutral product in low temperature plasma
JPS62151562A (en) * 1985-12-26 1987-07-06 Mitsubishi Electric Corp Thin film forming device
JPH0419301B2 (en) * 1985-12-26 1992-03-30 Mitsubishi Electric Corp
KR100519543B1 (en) * 1998-07-09 2005-12-08 삼성전자주식회사 Plasma Etching Device for Semiconductor Device Manufacturing

Also Published As

Publication number Publication date
JPS6257069B2 (en) 1987-11-28

Similar Documents

Publication Publication Date Title
US6797947B2 (en) Internal introduction of lock masses in mass spectrometer systems
US7408153B2 (en) Apparatus for detecting chemical substances and method therefor
US5146088A (en) Method and apparatus for surface analysis
US8586915B2 (en) Gas sampling device and gas analyzer employing the same
JP2018032641A (en) Method for mass spectrometric examination of gas mixture, and mass spectrometer therefor
US8003936B2 (en) Chemical ionization reaction or proton transfer reaction mass spectrometry with a time-of-flight mass spectrometer
JPH0729885A (en) Semiconductor manufacturing equipment and manufacture of semiconductor by use of same
JP2010045023A (en) Energy variable type photoionization device and mass spectrometry
JP2008508511A (en) Ion mobility spectrometer with corona discharge ionization element
US6975393B2 (en) Method and apparatus for implementing an afterglow emission spectroscopy monitor
CN113826187A (en) Mass spectrometry method and mass spectrometry device
US9589775B2 (en) Plasma cleaning for mass spectrometers
WO2001096852A1 (en) Device for detecting chemical substance and method for measuring concentration of chemical substance
JPS5931550A (en) Radical and excited particle measuring equipment during plasma etching
Fracassi et al. Evaluation of trifluoroiodomethane as SiO 2 etchant for global warming reduction
Hebner et al. Metastable chlorine ion kinetics in inductively coupled plasmas
d'Agostino et al. Radiofrequency plasma decomposition of C n F 2 n+ 2-H 2 and CF 4-C 2 F 4 mixtures during Si etching or fluoropolymer deposition
Selvin et al. Lithium ion attachment mass spectrometry: Instrumentation and features
Lobo et al. Capabilities of radiofrequency pulsed glow discharge-time of flight mass spectrometry for molecular screening in polymeric materials: positive versus negative ion mode
WO2017033959A1 (en) Atmospheric pressure ionization method
Nagai et al. Effects of oxygen and nitrogen atoms on SiOCH film etching in ultrahigh-frequency plasma
Saitoh et al. Oxygen discharge cleaning method for aluminum storage ring vacuum chambers
JP6807488B1 (en) Gas component monitoring method and its equipment and processing equipment using it
Goeckner et al. Fourier-transform infrared measurements of CHF 3/O 2 discharges in an electron cyclotron resonance reactor
EP1325304A1 (en) Afterglow emission spectroscopy monitor