JPS6354003A - Pseudo sinusoidal wave generating circuit - Google Patents

Pseudo sinusoidal wave generating circuit

Info

Publication number
JPS6354003A
JPS6354003A JP19705086A JP19705086A JPS6354003A JP S6354003 A JPS6354003 A JP S6354003A JP 19705086 A JP19705086 A JP 19705086A JP 19705086 A JP19705086 A JP 19705086A JP S6354003 A JPS6354003 A JP S6354003A
Authority
JP
Japan
Prior art keywords
voltage
pseudo
wave
circuit
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19705086A
Other languages
Japanese (ja)
Inventor
Yoichi Fujitani
藤谷 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP19705086A priority Critical patent/JPS6354003A/en
Publication of JPS6354003A publication Critical patent/JPS6354003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a pseudo sinusoidal wave with a simple circuit by constituting the titled pseudo sinusoidal wave generating circuit by the combination of a voltage division circuit, a multiplexer, an operational amplifier and an integration capacitor. CONSTITUTION:In generating a pseudo sinusoidal wave 12, a pseudo COS wave 13 comprising step voltages is outputted from the multiplexer 12. The pseudo COS wave 13 is a voltage consisting of 8-step and obtained by turning on switches S1-S8 sequentially at a prescribed speed. When a 1st switch S1 is turned on during periods t0-t1, a voltage at s DC power terminal 1 is divided by resistors R1-R9, a 1st stage voltage V1 is obtained at an output line 2a and becomes an input to the operational amplifier 4. A voltage VR higher than the voltage V1 is impressed to a noninverting input terminal 4b. A charging current of the integration capacitor 7 flows through a circuit comprising an output terminal 4c of the operational amplifier 4, the integration capacitor 7, an input resistor 5, the switch S1 and the resistor R1 and the charging voltage of the capacitor 7 rises gradually. Thus, a pseudo sinusoidal wave with excellent approximity is obtained by integrating the step wave pseudo COS wave 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、インバータのPWM制御信号を形成する時に
必要な擬似正弦波を得るために好適な擬似正弦波発生回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pseudo sine wave generation circuit suitable for obtaining a pseudo sine wave necessary when forming a PWM control signal for an inverter.

〔従来の技術〕[Conventional technology]

インバータをPWM制御するための信号を正弦波と三角
波との比較に基づいて形成する方式は良く知られている
。従来は、この種の正弦波を得るために、?J数の分圧
抵抗回路を使用して正弦波状に階段波を発生させるか、
又はメモIJ K正弦波データを書き込み、これを読み
出してD/As換した。
A method of forming a signal for PWM control of an inverter based on a comparison between a sine wave and a triangular wave is well known. Conventionally, to obtain this kind of sine wave,? Generate a sinusoidal staircase wave using a voltage dividing resistor circuit of J number, or
Alternatively, memo IJK sine wave data was written, read out, and converted into D/As.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、前者の正弦波に階段波を発生でせる場合には
、複数の抵抗分圧回路及びフィルタ回路が必要になり1
回路構成が複雑になった。後者のメモリを使用する方式
は、メモリ、D/A変換器を使用するために回路が後雑
且つ高価になった。
By the way, in order to generate a staircase wave in the former sine wave, multiple resistor voltage divider circuits and filter circuits are required.
The circuit configuration has become complicated. In the latter method using memory, the circuit becomes complicated and expensive due to the use of memory and a D/A converter.

そこで1本発明の目的は、簡単な回路構成で擬似正弦波
を発生させることにある。
Therefore, one object of the present invention is to generate a pseudo sine wave with a simple circuit configuration.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決し、上記目的を達成するための本発明
は、直流電源電圧を分割して出力する次めの複数の分圧
出力ラインを有し、後記のマルチプレクサの出力段に擬
似COS波を得ることができるように前記複数の分圧出
力ラインの電圧値が設定されている分圧抵抗回路と、擬
似COS波を出力するように前記複数の分圧出力ライン
の電圧を順次に選択して出力するマルチプレクサと、前
記分圧抵抗回路における中心電圧と同じ電圧を供給する
ための基sII圧供給ラインと、一方の入力端子が入力
抵抗を介して前記マルチプレクサに接続され、他方の入
力端子が前記基准重圧供給ラインに接続され次演算増幅
器と、前記演算増幅器の一方の入力端子と出力端子との
間に接続され次項分用コンデンサとから成る擬似正弦波
発生回路に係わるものである。なお1本発明での出力ラ
イン及び基準電圧供給ラインは、それぞれの伝送線は勿
論のこと、それぞれの出力端子等も意味するものとする
In order to solve the above problems and achieve the above objects, the present invention has a plurality of divided voltage output lines that divide and output the DC power supply voltage, and generates a pseudo COS waveform in the output stage of the multiplexer described later. A voltage dividing resistor circuit in which the voltage values of the plurality of divided voltage output lines are set so as to be able to obtain a base sII voltage supply line for supplying the same voltage as the center voltage in the voltage dividing resistor circuit; one input terminal is connected to the multiplexer via the input resistor, and the other input terminal is connected to the multiplexer through the input resistor; The present invention relates to a pseudo sine wave generation circuit comprising a next operational amplifier connected to the standard heavy pressure supply line, and a next term capacitor connected between one input terminal and output terminal of the operational amplifier. Note that the output line and reference voltage supply line in the present invention mean not only the respective transmission lines but also the respective output terminals and the like.

〔作 用〕[For production]

本発明に係わるマルチプレクサからは擬似COS波が発
生し、これが演算増幅器の一方の入力端子に入力する。
A pseudo COS wave is generated from the multiplexer according to the present invention, and this wave is input to one input terminal of the operational amplifier.

他方の入力端子には抵抗分圧回路の中心電圧が基準電圧
として入力するので、擬似ωs@が基準電圧を横切る前
と後とで、積分用コンデンVに流れる電流の方向が異な
る。この乏め、正弦波半波のO″〜906〜906区間
、積分用コンデンサにm】の方向の電流が流れ、演算増
幅器の出力電圧が基準電圧から徐々に高くなす、90’
でピークになる。90°〜180’区間では積分用コン
デンサに第】の方向と逆のm2の方向の電流が流れるた
め、演算増幅器の出力電圧が徐々に下る。
Since the center voltage of the resistive voltage divider circuit is input as the reference voltage to the other input terminal, the direction of the current flowing through the integrating capacitor V differs before and after the pseudo ωs@ crosses the reference voltage. During this half-sine wave O''~906~906 interval, a current flows in the direction of m through the integrating capacitor, and the output voltage of the operational amplifier gradually increases from the reference voltage, 90'.
peaks at In the 90° to 180' interval, a current flows through the integrating capacitor in the m2 direction, which is opposite to the ]th direction, so that the output voltage of the operational amplifier gradually decreases.

これにより、正弦波半波に近1.−1137形を容易に
得ることができる。マルチプレクサによる分圧出力選択
動作を周期的に繰返すと、擬似正弦波半波が繰返して得
られる。
As a result, the sine wave is close to 1. -1137 type can be easily obtained. By periodically repeating the divided voltage output selection operation by the multiplexer, a pseudo sine wave half wave is repeatedly obtained.

〔実施例〕〔Example〕

次に、不発明の実施例に係わる擬似正弦波発生回路を第
1図及び第2図に基づいて説明する。グランドと直流電
源端子(1)との間に第1〜第9の抵抗R1〜R1の直
列回路から成る分圧抵抗回路tI接続されている。各抵
抗R,〜R9の値は、擬似COS波を得るために1.7
.5.13,18.20,18,13.7.5.1(k
Ω)とされている。但し、第5の抵抗R5は基準電圧を
得るため1c10にΩのR5,と】OkΩのRgbとに
分割されている。第1〜第9の抵抗R0〜R9の各分圧
、4には第1〜第8の出力ラインL、−L、が接続され
ている。
Next, a pseudo sine wave generating circuit according to an embodiment of the present invention will be explained based on FIGS. 1 and 2. A voltage dividing resistor circuit tI consisting of a series circuit of first to ninth resistors R1 to R1 is connected between the ground and the DC power supply terminal (1). The value of each resistor R, ~R9 is 1.7 to obtain a pseudo COS wave.
.. 5.13, 18.20, 18, 13.7.5.1 (k
Ω). However, in order to obtain a reference voltage, the fifth resistor R5 is divided into 1c10, R5 of Ω, and Rgb of ]OkΩ. The first to eighth output lines L, -L are connected to each voltage division 4 of the first to ninth resistors R0 to R9.

マルチプレクサ(2)は第】〜第8の出力ラインL1〜
L8に直列に接続され7’(第1〜第8のスイッチ81
〜S8と、これを順次にオン制御するための制御回路(
3)を含む。
The multiplexer (2) is connected to the eighth output line L1.
7' (first to eighth switches 81
~S8 and a control circuit for sequentially turning on the S8 (
3).

第1〜第8のスイッチ81〜斗の共通接続ラインから成
るマルチプレクサ出力ライン(2a)は、演算増幅器(
4)の反転入力端子(4a)に入力抵抗r51を介して
接続でれている。演算増幅器(4)の非反転入力端子(
4h)は、基準定圧供給ライン(6)によって分圧抵抗
回路(2)の中心電圧虚部ち抵抗R3aと1(、bとの
間に接続てれている。演算増幅器(410反転入力端子
(4a)と出力端子(4C)との間には積分用コンデン
サ(71が接続でれていると共に、R還抵抗+81 (
91が接続されている。QGは周波数特性調整用コンデ
ンサであり、抵抗(8)と抵抗(9)との接続点とグラ
ンドとの間に接続でれている。
A multiplexer output line (2a) consisting of a common connection line of the first to eighth switches 81 to 81 is connected to an operational amplifier (
4) is connected to the inverting input terminal (4a) via an input resistor r51. Non-inverting input terminal of operational amplifier (4) (
4h) is connected between the center voltage imaginary part of the voltage dividing resistor circuit (2), ie, the resistors R3a and 1(, b), by the reference constant voltage supply line (6).The operational amplifier (410 inverting input terminal ( An integrating capacitor (71) is connected between 4a) and the output terminal (4C), and an R return resistor +81 (
91 is connected. QG is a capacitor for adjusting frequency characteristics, and is connected between the connection point between the resistors (8) and (9) and the ground.

αυはレベル制御回路であり、演算増幅器(4)の出力
端子(4c)K接続されている。このレベル制御回路α
υは、正弦波半波の零点調整及び振幅調整機能を有する
αυ is a level control circuit, which is connected to the output terminal (4c) of the operational amplifier (4). This level control circuit α
υ has a half-sine wave zero point adjustment and amplitude adjustment function.

第1図の回路によって第2図の擬似正弦波α2を発生さ
せる時には、階段波電圧から成る擬似COS波α3をマ
ルチプレクサ(2)から出力させる。擬似COS波a3
は、第1の定圧vIから第8の電圧v8までの8段の電
圧であり、スイッチS+″−8sを一定速度で順次にオ
ンにすることによって得られる。即ち、to〜t1でス
イッチS1をオン、t1〜t2でスイッチS2をオン、
t2〜t3でスイッチS3をオン、t3〜t4でスイッ
チS4ヲオンs  i4〜tsでスイッチS5をオン。
When the pseudo sine wave α2 shown in FIG. 2 is generated by the circuit shown in FIG. 1, a pseudo COS wave α3 consisting of a staircase voltage is outputted from the multiplexer (2). Pseudo COS wave a3
are voltages in eight stages from the first constant voltage vI to the eighth voltage v8, and are obtained by sequentially turning on the switches S+''-8s at a constant speed. That is, from to to t1, the switch S1 is turned on. On, turn on switch S2 from t1 to t2,
Switch S3 is turned on from t2 to t3, switch S4 is turned on from t3 to t4, and switch S5 is turned on from i4 to ts.

tII〜t6でスイッチS6をオン、t6〜t7でスイ
ッチS7をオン、t7〜t8でスイッチS8をオンにす
ることによって得る。なお、tacts勘間は正弦波の
180°に対応し、to〜tl、  tl〜t2・・・
・等の各スイッチのオン期間は22.5に対応する。
This is obtained by turning on the switch S6 from tII to t6, turning on the switch S7 from t6 to t7, and turning on the switch S8 from t7 to t8. Note that the tacts interval corresponds to 180° of the sine wave, to ~ tl, tl ~ t2...
The on period of each switch such as . . . corresponds to 22.5.

to′″−t1期間で第1のスイッチS1がオンになる
と、直流11涼端子(11の電圧が抵抗R1〜R0で分
圧これ、第1段の電圧vlが出力ライン(2a)K得ら
れ。
When the first switch S1 is turned on during the to'''-t1 period, the voltage at the DC 11 cool terminal (11 is divided by the resistors R1 to R0, and the first stage voltage vl is obtained from the output line (2a) K. .

これが演算増幅器(4)の入力となる。この時、演算増
幅器(4)の非反転入力端子(4h)には、vlよりも
高いVRが印加されている。演算増幅器(41はイマジ
ナル・ショートの原理に基づいて反転入力端子(4a)
の電位が非反転入力端子(4b)の電位に等しくなるよ
うに動作するので、演算増幅器(4)の出力端子(4C
)、積分コンデンサ(71,入力抵抗(5)、スイッチ
S、、抵抗R1から成る回路で積分コンデンサ(71の
充1it流が流れ、積分コンデンサ(7)の充11!!
圧が徐々に高くなる。11〜t2ではスイッチ8225
にオンになって第2段の電圧v2が演算増幅器(41の
入力電圧となる。従って5tl−’!期間では第2段の
電圧V2に対応する傾きを有して積分コンデンサ(7)
の電圧が高くなる。t1〜t4までの入力電圧は、基]
!i!電圧賜よりも低いので、積分コンデンサ(7)は
出力端子(4c)側が正極となるように充電され、徐々
に増大する正極の出力電圧が得られろ。t4〜1.期間
になって、スイッチS5がオンになり、第5段の電IE
 V5が入力電圧となると、この人力電圧が基準電圧v
Rよりも高くなるので、積分コンデンサ(7)に令息と
け逆に入力側から出力側に向って電流が流れ、積分コン
デンサ(4)が僅かに放電し、第2図の波形a2に示す
如く出力電圧が少し低下する。スイッチS6゜Sy、 
8sトNAvcオンvcすr)、11圧V6. V7.
 V81ZII!次に入力すると、積分コンデンサ(7
1の放電が徐々に進み、ts時漬でついにto時点の電
位に戻る。擬似ωs@α3は、正弦波の906即ち14
時漬を中心に対称である。擬似ωs a (121は階
段波であるが、これを積分することにより、近似性の良
い擬似正弦波が得られる。
This becomes the input to the operational amplifier (4). At this time, VR higher than vl is applied to the non-inverting input terminal (4h) of the operational amplifier (4). Operational amplifier (41 is an inverting input terminal (4a) based on the principle of imaginary short)
The output terminal (4C) of the operational amplifier (4) operates so that the potential of the operational amplifier (4) becomes equal to the potential of the non-inverting input terminal (4b).
), an integrating capacitor (71), an input resistor (5), a switch S, and a resistor R1. In the circuit consisting of an integrating capacitor (71), a charge 1it current of the integrating capacitor (71) flows, and a charge 11 of the integrating capacitor (7) flows!
The pressure gradually increases. Switch 8225 from 11 to t2
, the second stage voltage v2 becomes the input voltage of the operational amplifier (41). Therefore, in the 5tl-'! period, the integrating capacitor (7) has a slope corresponding to the second stage voltage V2.
voltage increases. The input voltage from t1 to t4 is based on
! i! Since the voltage is lower than the current voltage, the integrating capacitor (7) is charged so that the output terminal (4c) side becomes the positive pole, and a positive output voltage that gradually increases is obtained. t4~1. At the end of the period, switch S5 is turned on and the fifth stage electric IE is turned on.
When V5 becomes the input voltage, this human voltage is the reference voltage v
Since the voltage becomes higher than R, the current flows through the integrating capacitor (7) from the input side to the output side, and the integrating capacitor (4) is slightly discharged, resulting in an output as shown in waveform a2 in Figure 2. The voltage will drop slightly. Switch S6°Sy,
8st NAvc on vcsr), 11 pressure V6. V7.
V81ZII! Next, input the integrating capacitor (7
The discharge at point 1 gradually progresses, and finally returns to the potential at time to at the time of ts. Pseudo ωs@α3 is a sine wave of 906 or 14
It is symmetrical around Tokizuke. Pseudo ωs a (121 is a staircase wave, and by integrating this, a pseudo sine wave with good approximation can be obtained.

t8時点の次には再び第1のスイッチS1がオンQてな
り、基準電圧VRよりも低い第1段の電圧vlが入力電
圧となり、次の正弦波半波の発生が開始する。
After time t8, the first switch S1 is turned on again, the first stage voltage vl lower than the reference voltage VR becomes the input voltage, and the generation of the next half-sine wave starts.

m2図の波形Q2+を正弦波#波にする時VCは波形(
121から基準電圧vRを減算すればよい。
When changing the waveform Q2+ in the m2 diagram to a sine wave # wave, VC has the waveform (
The reference voltage vR may be subtracted from 121.

この回路で形成した擬似正弦波は、インバータ制御のた
めのPWMパルスの形成に使用泗れる。
The pseudo sine wave formed by this circuit is used to form PWM pulses for inverter control.

PWMパルスは正弦波と三角波との比較で形成するため
、マルチプレクサ(2)は三角波に同期動作させる。周
波数を変化ざセる時にはマルチプレクサ(2)にすれる
スイッチS、〜Ssの定食速度を変える。
Since the PWM pulse is formed by comparing a sine wave and a triangular wave, the multiplexer (2) is operated in synchronization with the triangular wave. When the frequency needs to be changed, the set feeding speed of the switches S, ~Ss connected to the multiplexer (2) is changed.

正弦波の振幅の制御はレベル制御回路αDで行う。The amplitude of the sine wave is controlled by a level control circuit αD.

本発明は上述の実施例に限定されるものでなく。The invention is not limited to the embodiments described above.

変形可能なものである。例えば、入力抵抗(5)の前段
にバッファ増幅器を介在させてもよい。また。
It is deformable. For example, a buffer amplifier may be interposed before the input resistor (5). Also.

出力周波数が50 Hzの時と60Hzの時とで出力電
圧波形0zの振幅が同一になるように入力抵抗(5)の
値を切り換える回路を設けてもよい。また、基準電圧V
Rを抵抗R1〜R9の分圧抵抗回路を利用して得ないで
、独立の分圧回路で得てもよい。−!た。
A circuit may be provided that switches the value of the input resistor (5) so that the amplitude of the output voltage waveform 0z is the same when the output frequency is 50 Hz and 60 Hz. Also, the reference voltage V
R may not be obtained using the voltage dividing resistor circuit of the resistors R1 to R9, but may be obtained using an independent voltage dividing circuit. -! Ta.

06〜360’までの正弦波を得るように階段波を発生
させてもよい。
A staircase wave may be generated to obtain a sine wave from 06 to 360'.

〔発明の効果〕〔Effect of the invention〕

上述から明らかな如く、本発明によれば1分圧抵抗回路
と、マルチプレクサと、演算増幅器と、積分コンデンサ
とを組み合セた簡単な回路構成で擬似正弦波を得ること
ができる。
As is clear from the above, according to the present invention, a pseudo sine wave can be obtained with a simple circuit configuration combining a single voltage dividing resistor circuit, a multiplexer, an operational amplifier, and an integrating capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第】図は本発明の実施例VCgf、わる攬似正弦波発生
回路を示す回路図、 第2図は第1図の各部の状態を示す電圧波形図である。 (2)・・・マルチプレクサ、(4)・・・演算増幅器
、(51・・・入力抵抗、(6)・・・基準電圧供給ラ
イン、(71・・・積分用コンデンサs I(I〜R,
・・・抵抗。
FIG. 2 is a circuit diagram showing an example VCgf of the present invention, an analogous sine wave generating circuit, and FIG. 2 is a voltage waveform diagram showing the states of each part of FIG. 1. (2)... Multiplexer, (4)... Operational amplifier, (51... Input resistance, (6)... Reference voltage supply line, (71... Integrating capacitor s I (I to R ,
···resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)直流電源電圧を分割して出力するための複数の分
圧出力ラインを有し、後記のマルチプレクサの出力段に
擬似COS波を得ることができるように前記複数の分圧
出力ラインの電圧値が設定されている分圧抵抗回路と、 擬似COS波を出力するように前記複数の分圧出力ライ
ンの電圧を順次に選択して出力するマルチプレクサと、 前記分圧抵抗回路における中心電圧と同じ電圧を供給す
るための基準電圧供給ラインと、 一方の入力端子が入力抵抗を介して前記マルチプレクサ
に接続され、他方の入力端子が前記基準電圧供給ライン
に接続された演算増幅器と、前記演算増幅器の一方の入
力端子と出力端子との間に接続された積分用コンデンサ
と、 から成る擬似正弦波発生回路。
(1) It has a plurality of divided voltage output lines for dividing and outputting the DC power supply voltage, and the voltage of the plurality of divided voltage output lines is adjusted so that a pseudo COS wave can be obtained at the output stage of the multiplexer described later. a voltage dividing resistor circuit having a set value, a multiplexer that sequentially selects and outputs the voltages of the plurality of divided voltage output lines so as to output a pseudo COS wave, and a voltage equal to the center voltage in the voltage dividing resistor circuit. a reference voltage supply line for supplying voltage; an operational amplifier having one input terminal connected to the multiplexer via an input resistor and the other input terminal connected to the reference voltage supply line; A pseudo sine wave generation circuit consisting of an integrating capacitor connected between one input terminal and an output terminal.
JP19705086A 1986-08-25 1986-08-25 Pseudo sinusoidal wave generating circuit Pending JPS6354003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19705086A JPS6354003A (en) 1986-08-25 1986-08-25 Pseudo sinusoidal wave generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19705086A JPS6354003A (en) 1986-08-25 1986-08-25 Pseudo sinusoidal wave generating circuit

Publications (1)

Publication Number Publication Date
JPS6354003A true JPS6354003A (en) 1988-03-08

Family

ID=16367878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19705086A Pending JPS6354003A (en) 1986-08-25 1986-08-25 Pseudo sinusoidal wave generating circuit

Country Status (1)

Country Link
JP (1) JPS6354003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102916A (en) * 1989-09-18 1991-04-30 Fujitsu Ltd Tone generating circuit
JPH0720745U (en) * 1994-06-09 1995-04-11 財団法人工業技術研究院 Dual Tone Multi Frequency Generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125217A (en) * 1984-11-20 1986-06-12 Pioneer Electronic Corp Parabolic wave generating circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125217A (en) * 1984-11-20 1986-06-12 Pioneer Electronic Corp Parabolic wave generating circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102916A (en) * 1989-09-18 1991-04-30 Fujitsu Ltd Tone generating circuit
JPH0720745U (en) * 1994-06-09 1995-04-11 財団法人工業技術研究院 Dual Tone Multi Frequency Generator

Similar Documents

Publication Publication Date Title
JP2577897B2 (en) Constant voltage power supply circuit
US20140055178A1 (en) Adaptive phase-shifted synchronization clock generation circuit and method for generating phase-shifted synchronization clock
US4430609A (en) Signal transfer device having a transfer characteristic which is adjustable in steps
EP0395387A3 (en) Display drive circuit
JPS6354003A (en) Pseudo sinusoidal wave generating circuit
JPS5917566B2 (en) analog to digital converter
US5394022A (en) Pulse width modulation circuit apparatus
US5180987A (en) DC-to-AC symmetrical sine wave generator
JPS6318725A (en) Low level voltage-pulse converter
US4910456A (en) Electronic watt-hour meter with combined multiplier/integrator circuit
JPS60113521A (en) Timing circuit
SU845145A1 (en) Ac voltage stabilizer
JPS5837568A (en) Dot connector circuit
SU1483438A1 (en) Multiphase pulsed voltage stabilizer
JP2726513B2 (en) Tone generation circuit
SU983983A1 (en) Shifted pulse generator
JPH0660914B2 (en) Level meter display device
JPS60208115A (en) Phase shifter
KR860001705B1 (en) Pulse generator
JPH0413847Y2 (en)
SU1128271A1 (en) Analog integrator
SU1522116A1 (en) Instrument transducer of power
JPH0145187Y2 (en)
SU1262702A1 (en) Variable voltage generator
JP2548418B2 (en) Delay device