JPS6353460A - Organic semiconductor gas sensor element - Google Patents

Organic semiconductor gas sensor element

Info

Publication number
JPS6353460A
JPS6353460A JP19933786A JP19933786A JPS6353460A JP S6353460 A JPS6353460 A JP S6353460A JP 19933786 A JP19933786 A JP 19933786A JP 19933786 A JP19933786 A JP 19933786A JP S6353460 A JPS6353460 A JP S6353460A
Authority
JP
Japan
Prior art keywords
sensor element
gas sensor
organic semiconductor
semiconductor gas
insoluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19933786A
Other languages
Japanese (ja)
Other versions
JPH0721476B2 (en
Inventor
Shizukuni Yada
静邦 矢田
Hajime Kinoshita
肇 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP19933786A priority Critical patent/JPH0721476B2/en
Publication of JPS6353460A publication Critical patent/JPS6353460A/en
Publication of JPH0721476B2 publication Critical patent/JPH0721476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a sensor element excellent in resistance to oxidation and chemical resistance, by providing an electrode on a molding comprising a non- soluble non-melting substrate with a specified skelton structure as obtained by thermally treating a condensate of an aromatic hydrocarbon compound having a phenolic hydroxide group and aldehyde. CONSTITUTION:A molding 1 is formed which comprises a non-soluble non- melting substrate having a polyacene-based skelton structure with atomic ratio of 0.6-0.15 in hydrogen atom/carbon atom as obtained thermally treating an aromatic condensation polymer as condensate of an aromatic hydrocarbon compound having a phenolic hydroxide group and aldehyde. A gold evaporated film 2 is deposited on the molding 1 with a vacuum evaporating machine and a copper wire 3 adheres to the evaporation surface thereof by a silver conductive paste 4 to mount at least two electrodes. Thus, a gas sensor element can be obtained superior in resistance to oxidation and chemical resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機半導体ガスセンサー素子に係り、更に詳細
にはフェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド類の縮合物である芳香族系ポリマーの熱処
理物を適用した極性ガスの吸着及び脱着によす電気伝導
度の変化により、センサー機能を発揮する有機半導体ガ
スセンサー素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an organic semiconductor gas sensor element, and more particularly to an aromatic gas sensor element that is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. The present invention relates to an organic semiconductor gas sensor element that exhibits a sensor function through changes in electrical conductivity caused by adsorption and desorption of polar gas using a heat-treated polymer.

[従来の技術〕 高分子材料は成型性、軽量性及び危産性に優れている。[Conventional technology] Polymer materials have excellent moldability, light weight, and safety.

そのため高分子材料のこれらの特性を生かして、電気的
に半導性を有する有機高分子材料がエレクトロニクス産
業を始めとし、多くの産業分野において希求されている
。初期の有機半導体はフィルム状、あるいは板状に成形
することが困難であり、用途的にも限定されていた。近
年、ポリアセチレンを代表例とする比較的成形性に優れ
た有機半導体が得られる様になった。ところが、ポリア
セチレンは酸素によって酸化され易い欠点がある。この
ため空気中で取り扱うことが困難であり工業材料として
は実用性に欠ける。
Therefore, by taking advantage of these properties of polymer materials, organic polymer materials that have electrical semiconductivity are desired in many industrial fields including the electronics industry. Early organic semiconductors were difficult to form into films or plates, and their uses were limited. In recent years, organic semiconductors with relatively excellent moldability, typified by polyacetylene, have become available. However, polyacetylene has the drawback of being easily oxidized by oxygen. For this reason, it is difficult to handle in the air and lacks practicality as an industrial material.

また本願と同一出願人の出願にかがる特開昭58−13
6649号公報には炭素、水素および酸素から成る芳香
族系縮合ポリマーの熱処理物であって水素原子/炭素原
子の原子比が0.6〜0.15のポリアセン系骨格構造
を含有する不溶不融性基体が開示されている。上記不溶
不融性基体は耐熱性、耐酸化性に優れている。しかしな
がら上記不溶不融性基体を用いた有機半導体ガスセンサ
ー素子に関しては何ら記載されていない。
In addition, Japanese Patent Application Laid-Open No. 58-13 filed by the same applicant as the present application
Publication No. 6649 describes a heat-treated aromatic condensation polymer consisting of carbon, hydrogen and oxygen, which contains an insoluble and infusible polyacene skeleton structure with an atomic ratio of hydrogen atoms/carbon atoms of 0.6 to 0.15. A sexual substrate is disclosed. The above-mentioned insoluble and infusible substrate has excellent heat resistance and oxidation resistance. However, there is no description of an organic semiconductor gas sensor element using the above-mentioned insoluble and infusible substrate.

また本願と同一出願人の出願にかかる特開昭60−15
2554号公報には炭素、水素および酸素からなる芳香
族系縮合ポリマーの熱処理物であって水素原子/炭素原
子の原子比が0.60〜0.15であり、かつBET法
による比表面積値が600m2/1以上であるボリアセ
ン系骨格を含有する不溶不融性基体が開示されている。
Also, JP-A-60-15 filed by the same applicant as the present application.
No. 2554 discloses a heat-treated aromatic condensation polymer consisting of carbon, hydrogen and oxygen, which has an atomic ratio of hydrogen atoms/carbon atoms of 0.60 to 0.15, and has a specific surface area value determined by the BET method. An insoluble and infusible substrate containing a boriacene skeleton having an area of 600 m2/1 or more is disclosed.

しかしながら、この先願の明細書にも上記不溶不融性基
体を用いた有機半導体ガスセンサー素子に関しては何ら
記載されていない。
However, the specification of this prior application does not mention anything about an organic semiconductor gas sensor element using the above-mentioned insoluble and infusible substrate.

また本願と同一出願人の出願にかかる先願の特願昭60
−58803号は未だ未公開であるが、同先願において
、炭素、水素および酸素から成る芳香族系縮合ポリマー
の熱処理物であって、水素原子/炭素原子の原子比が0
.6〜0.05であるボリアセン系骨格構造を有し、B
ET法による比表面積値が少なくとも600 m2/I
以上であり、平均孔径10μm以下の連通孔を有する多
孔性有機半導体が提案されている。この先願の明細書に
:も、上記多孔性有機半導体の用途の1つとしてセンサ
ー材が掲げられているものの有機半導体ガスセンサー素
子に関する具体例は何ら記載されていない。
In addition, an earlier patent application filed in 1986 by the same applicant as the present application
No. 58803 is still unpublished, but in the same earlier application, it is a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen, and the atomic ratio of hydrogen atoms / carbon atoms is 0.
.. It has a boriacene skeleton structure of 6 to 0.05, and B
Specific surface area value by ET method is at least 600 m2/I
As described above, a porous organic semiconductor having communicating pores with an average pore diameter of 10 μm or less has been proposed. The specification of this prior application also mentions a sensor material as one of the uses of the porous organic semiconductor, but does not describe any specific example regarding an organic semiconductor gas sensor element.

一方、高度技術社会の深化が進むにつれ、各種センサー
が社会的にも産業的にもますます重要になってきている
。ガスセンサーは酸化スズ、酸化亜鉛等の酸化物半導体
素子を用いたガスセンサーの提案以来、セラミックス多
孔体等様々な無機物を用いたガスセンサー素子が開発さ
れ、多くの工業分野および家庭で使用されている。また
、有機物を用いたガスセンサーも開発が進められ、吸湿
性ポリマーを用いた湿度センサー等が既に使用されてい
るが、欠点も多い。例えば上記湿度センサーは吸湿によ
る樹潤と脱湿による収縮が劣化につながり易いことが指
摘されている。
On the other hand, as society becomes more advanced in advanced technology, various sensors are becoming increasingly important both socially and industrially. Since the proposal of gas sensors using oxide semiconductor elements such as tin oxide and zinc oxide, gas sensor elements using various inorganic materials such as porous ceramics have been developed and are used in many industrial fields and homes. There is. Gas sensors using organic substances are also being developed, and humidity sensors using hygroscopic polymers are already in use, but they have many drawbacks. For example, it has been pointed out that the humidity sensor described above tends to deteriorate due to moisture absorption due to moisture absorption and shrinkage due to dehumidification.

しかしながら、耐酸化性、耐薬品性に優れた有機半導体
ガスセンサー素子はバイテクノロジー時代の今日、社会
的ニーズが非常に大きいにもかかわらず、未だ開発され
ていない。
However, an organic semiconductor gas sensor element with excellent oxidation resistance and chemical resistance has not yet been developed, despite the great social need in today's biotechnology era.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

本発明の目的は有機半導体ガスセンサー素子を提供する
にある。
An object of the present invention is to provide an organic semiconductor gas sensor element.

本発明の他の目的は耐酸化性、耐薬品性(ζ優れた有機
半導体ガスセンサー素子を提供するにある。
Another object of the present invention is to provide an organic semiconductor gas sensor element with excellent oxidation resistance and chemical resistance (ζ).

本発明のさらに他の目的は気体分子の吸着および脱着1
ζ伴い電気伝導度が変化することを利用した有機半導体
ガスセンサー素子を提供するにある。
Still another object of the present invention is to adsorb and desorb gas molecules.
An object of the present invention is to provide an organic semiconductor gas sensor element that utilizes the fact that electrical conductivity changes with ζ.

本発明のさらに他の目的はフィルム状、板状、円筒状等
の形態にある有機半導体ガスセンサー素子を提供するに
ある。
Still another object of the present invention is to provide an organic semiconductor gas sensor element in the form of a film, plate, cylinder, or the like.

本発明のさらに他の目的は気体分子の吸着および脱着が
締り返し行うことが可能な又吸着および脱着の繰り返し
に対して安定な有機半導体ガスセンサー素子を提供する
にある。
Still another object of the present invention is to provide an organic semiconductor gas sensor element that is capable of repeatedly adsorbing and desorbing gas molecules and is stable against repeated adsorption and desorption.

本発明のさらに他の目的および利点は以下の説明から明
らかとなろう。
Further objects and advantages of the present invention will become apparent from the description below.

本発明によれば、本発明の上記目的および利点はフェノ
ール性水酸基を有する芳香族炭化水素化合物とアルデヒ
ド類との結合物である芳香族系縮合ポリマーの熱処理物
であって水素原子/炭素原子の原子比が0.6〜0.1
5であるポリアセン系骨格構造を有する不溶不融性基体
から成る成形体1ζ少なくとも2つの電極を取り付けた
ことを特徴とする有機半導体ガスセンサー素子によって
達成される。
According to the present invention, the above-mentioned objects and advantages of the present invention are a heat-treated product of an aromatic condensation polymer which is a combination of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, and which has a hydrogen atom/carbon atom ratio. Atomic ratio is 0.6-0.1
This is achieved by an organic semiconductor gas sensor element characterized in that a molded body 1ζ consisting of an insoluble and infusible substrate having a polyacene skeleton structure as shown in No. 5 is attached with at least two electrodes.

本発明における芳香族系縮合ポリマーは、フェノール性
水酸基を有する力”番数炭化水素化合物とアルデヒド類
との縮合物である。かかる芳香族炭化水素化金物として
は例えばフェノール、クレゾール、キシレノールの如き
いわゆるフェノール類が好適であるが、これらに限られ
ない、4フえば下ここて、Xおよびyはそれぞれ独自に
0.1、又は2である。
The aromatic condensation polymer in the present invention is a condensate of a hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. Preferred are, but are not limited to, phenols, where X and y are each independently 0.1 or 2.

で表わされるメチレン−ビスフェノール類であることが
でき、あるいはヒドロキシ−ビフェニル類、ヒドロキシ
ナフタレン類であることもできる。これらのうち、実用
的にはフェノール類、特にフェノールが好適である。
It can be methylene-bisphenols represented by the following, or it can also be hydroxy-biphenyls or hydroxynaphthalenes. Among these, phenols, particularly phenol, are practically preferred.

本発明における芳香族系縮合ポリマーとしては、さらに
フェノール性水酸基を有する芳香族炭化水素化合物の1
部をフェノール性水酸基を有さない芳香族炭化水素化合
物、例えばキシレン、トルエン等で置換した変性芳香族
系ポリマー、例えばフェノールとキシレンとホルムアル
デヒドとの縮合物である変性芳香族系ポリマーを用いる
こともできる。
The aromatic condensation polymer in the present invention further includes one of aromatic hydrocarbon compounds having a phenolic hydroxyl group.
It is also possible to use a modified aromatic polymer in which part of the polymer is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, etc., such as a modified aromatic polymer that is a condensation product of phenol, xylene, and formaldehyde. can.

またアルデヒドとしてはホルムアルデヒドのみならス、
アセトアルデヒド、フルフラールの如き、その他アルデ
ヒドも使用することができるが、ホルムアルデヒドが好
適である。フェノール・ホルムアルデヒド縮合物として
はノボラック型、又はレゾール型或いはそれらの複合物
のいずれであっても良い。
Also, as an aldehyde, if only formaldehyde is used,
Although other aldehydes such as acetaldehyde and furfural can also be used, formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a composite thereof.

本発明の有機半導体ガスセンサー素子は上記の如き、芳
香族系縮合ポリマーの熱処理物を利用したものであって
例えば次のようにして製造することができる。
The organic semiconductor gas sensor element of the present invention utilizes a heat-treated aromatic condensation polymer as described above, and can be manufactured, for example, as follows.

フェノール性水酸基を有する芳香族炭化水素化金物又は
フェノール性水酸基を有する芳香族炭化水素化合物とフ
ェノール性水酸基を有さない芳香族炭化水素化合物およ
びアルデヒド類の初期縮合物を準備し、この初期縮合物
を適当な型に流し込み、例えば50〜200℃の温度に
加熱して、該型内で例えばフィルム状あるいは円筒状等
の形態に硬化し、且つ変換し、次いでこの硬化体を非酸
化性雰囲気下(真空状態も含む)350〜800℃の温
度、好ましくは400〜700℃の温度まで加熱する。
An initial condensate of an aromatic hydrocarbon metal compound having a phenolic hydroxyl group or an aromatic hydrocarbon compound having a phenolic hydroxyl group, an aromatic hydrocarbon compound having no phenolic hydroxyl group, and aldehydes is prepared, and this initial condensate is prepared. is poured into a suitable mold, heated to a temperature of, for example, 50 to 200°C, and cured and converted into a film-like or cylindrical form within the mold, and then this cured product is placed in a non-oxidizing atmosphere. Heat to a temperature of 350 to 800°C (including vacuum), preferably 400 to 700°C.

熱処理の際の好ましい昇温速度は、使用する芳香族系ポ
リマー又はその硬化処理の程度あるいはその形状等によ
って多少相違するが一般に室温から300℃程度の温度
までは比較的大きな昇温速度とすることが可能であり、
例えば100℃/時間の速度とすることも可能である。
The preferred rate of temperature increase during heat treatment varies somewhat depending on the aromatic polymer used, the degree of curing treatment, its shape, etc., but in general, a relatively high rate of temperature increase should be used from room temperature to a temperature of about 300°C. is possible,
For example, a rate of 100° C./hour is also possible.

300℃以上の温度になると、該芳香族系縮合ポリマー
の熱分解が開始し、水蒸気(H2O)、水素、メタン、
−酸化炭素の如きガスが発生し始めるため、充分に遅い
速度で昇温せしめるのが有利である。
When the temperature reaches 300°C or higher, the aromatic condensation polymer starts to thermally decompose, producing water vapor (H2O), hydrogen, methane,
- It is advantageous to raise the temperature at a sufficiently slow rate, since gases such as carbon oxides begin to evolve.

芳香族系ポリマーにかかる加熱、熱処理は非酸化性雰囲
気下においておこなわれる。非酸化性雰囲気は例えば窒
素、アルゴン、ヘリウム、ネオン、二酸化炭素等であり
、窒素が好ましく用いられる。
Heating and heat treatment of the aromatic polymer are performed in a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include nitrogen, argon, helium, neon, carbon dioxide, etc., and nitrogen is preferably used.

かかる非酸化性雰囲気は静止していても流動していても
さしつか丸ない。
Such a non-oxidizing atmosphere does not have a round shape whether it is stationary or flowing.

かくして、上記加熱、熱処理により、本発明の有機半導
体ガスセンサー素子に用いる不溶不融性基体から成る成
形体が得られるが、さらに次のようにして製造すること
もできる。
Thus, by the above-mentioned heating and heat treatment, a molded body made of an insoluble and infusible substrate used in the organic semiconductor gas sensor element of the present invention can be obtained, but it can also be produced in the following manner.

上記初期縮合物と無機塩とを含む水溶液を調製し、この
水溶液を適当な型に流し込み、次いで水分の蒸発を抑止
しつつ、該水溶液を該型内で例えばフィルム状あるいは
円筒状等の形態Iこ硬化し且つ変換し、次いでこの硬化
体を非酸化性雰囲気中で350′〜800℃の温度まで
加熱し、次いで得られた熱処理体を洗浄して該熱処理体
に含有される無機塩を除去する。
An aqueous solution containing the above-mentioned initial condensate and an inorganic salt is prepared, and this aqueous solution is poured into a suitable mold. Next, while suppressing the evaporation of water, the aqueous solution is poured into a film-like or cylindrical shape in the mold. The cured body is then heated to a temperature of 350' to 800°C in a non-oxidizing atmosphere, and the resulting heat-treated body is washed to remove inorganic salts contained in the heat-treated body. do.

初期縮合物と共に用いる上記無機塩は後の工程で除去さ
れ、硬化体に連通孔を付与するために用いられる孔形成
剤であり、例えば塩化亜鉛、リン酸ナトリウム、水酸化
カリウムあるいは硫化カリウム等である。これらのうち
塩化亜鉛が好ましく用いられる。無機塩は初期縮合物の
例えば2.5〜10重量倍で用いることができる。初期
縮合物と無機塩の水溶液は使用する無機塩の種類によっ
ても異なるが、例えば無機塩の0.1〜1重量倍量の水
を用いて謂裂することができる。かくして、該水溶液は
適当な型に流し込まれ、例えば50〜200℃の温度に
加熱される。この加熱の際、水溶液中の水分の蒸発を抑
止するのが肝要である。
The above-mentioned inorganic salt used together with the initial condensate is removed in a later step and is a pore-forming agent used to provide communicating pores to the cured product, such as zinc chloride, sodium phosphate, potassium hydroxide, or potassium sulfide. be. Among these, zinc chloride is preferably used. The inorganic salt can be used in an amount of, for example, 2.5 to 10 times the weight of the initial condensate. The aqueous solution of the initial condensate and the inorganic salt can be cleaved using, for example, water in an amount of 0.1 to 1 times the weight of the inorganic salt, although it varies depending on the type of inorganic salt used. The aqueous solution is then poured into a suitable mold and heated to a temperature of, for example, 50 to 200°C. During this heating, it is important to suppress evaporation of water in the aqueous solution.

すなわち、水溶液中において初期縮合物は加熱を受けて
除々に硬化し、塩化!鉛、水を分能しながら連通孔が発
達し、3次元網目構造に成長するものと考えられる。
That is, in an aqueous solution, the initial condensate is heated and gradually hardens, turning into salt! It is thought that communicating pores develop while separating lead and water, and a three-dimensional network structure grows.

−かくして得られた硬化体は前述の方法と同様に非酸化
性雰囲気下(真空状態も含む)で350〜700℃の温
度、好ましくは400〜600℃の温度まで加熱され熱
処理される。得られた熱処理体を水あるいは希塩酸によ
って十分に洗浄することによって、熱処理体中に含まれ
る無機塩を除去することができ、その後これを乾燥する
と連通孔の発達したしかも比表面積の大きな多孔性不溶
不融性基体を得ることができる。
- The thus obtained cured product is heat-treated by heating to a temperature of 350 to 700°C, preferably 400 to 600°C, in a non-oxidizing atmosphere (including a vacuum state) in the same manner as in the above-mentioned method. By sufficiently washing the obtained heat-treated body with water or dilute hydrochloric acid, the inorganic salts contained in the heat-treated body can be removed, and when it is then dried, it becomes a porous insoluble material with developed communicating pores and a large specific surface area. An infusible substrate can be obtained.

か(して、上記前述あるいは後述の方法で水素原子/炭
素原子の原子比が0.6〜0.15のポリアセン系骨格
構造を有する、あるいはこれに加え平均孔径が10μm
以下の連通孔、例えば0.03〜10 Itmの連通孔
を持ち、且つBET法による比表面積比が600782
/ 1以上である、本発明の有機半導体ガスセンサー素
子に用いる不溶不融性基体から成る成形体が得られる。
(Thus, by the method described above or below, it has a polyacene skeleton structure with an atomic ratio of hydrogen atoms / carbon atoms of 0.6 to 0.15, or in addition to this, an average pore diameter of 10 μm.
It has the following communicating holes, for example, communicating holes of 0.03 to 10 Itm, and has a specific surface area ratio of 600782 by BET method.
/1 or more, a molded body made of an insoluble and infusible substrate used in the organic semiconductor gas sensor element of the present invention is obtained.

該不溶不融性基体の水素原子/炭素原子の原子比が0.
6を越える場合電気伝導度が低く実用性に欠け、又0,
15未満の場合ガスの吸着による電気伝導度の上昇が小
さく望ましくない。
The atomic ratio of hydrogen atoms/carbon atoms of the insoluble and infusible substrate is 0.
If it exceeds 6, the electrical conductivity is low and lacks practicality, and if it exceeds 0,
If it is less than 15, the increase in electrical conductivity due to gas adsorption is undesirable.

該成形体は耐熱性、耐酸化性、耐薬品性に優れている。The molded article has excellent heat resistance, oxidation resistance, and chemical resistance.

また酸素原子/炭素原子の原子比は通常0.06以下、
好ましくは0.03以下である。またX線回折(CuK
2 )によれば、メインビークの位置は2θで表して2
0.5〜28.5°の間に存在し、また該メインビーク
の他に41〜46°の間にブロードなピークが存在する
In addition, the atomic ratio of oxygen atoms/carbon atoms is usually 0.06 or less,
Preferably it is 0.03 or less. Also, X-ray diffraction (CuK
2), the position of the main beak is expressed in 2θ as 2
It exists between 0.5 and 28.5 degrees, and in addition to the main peak, there is a broad peak between 41 and 46 degrees.

すなわち上記成形体はポリ7セン系のベンゼンの多環構
造がポリアセン系分子間に均−且つ適度に発達したもの
であると理解される。
That is, it is understood that the above-mentioned molded article is one in which the polycyclic structure of poly7cene-based benzene is evenly and appropriately developed between polyacene-based molecules.

本発明の不溶不融性基体から成る成形体はフィルム状、
板状、円筒状の形態に成形されたものであるが、フィル
ム状に成形されたものが好適であり、このフィルムの厚
みは、0.01〜500μmであり、好ましくは0.0
1〜10μmである。
The molded article made of the insoluble and infusible substrate of the present invention is in the form of a film,
Although it is molded into a plate shape or a cylindrical shape, it is preferable to mold it into a film shape, and the thickness of this film is 0.01 to 500 μm, preferably 0.0 μm.
It is 1 to 10 μm.

本発明の有機半導体ガスセンサー素子は該不溶不融性基
体から成る成形体に少なくとも2つ以上の電極を取り付
けたものである。この電極は例えば金、白金、銅、銀、
アル史ニウムの如き伝導性金属を蒸着等の方法を用いて
取り付けたものでもよし、あるいは銀、炭素等の導電性
ペーストを塗布することにより取り付けたものでもよい
が、金、白金を蒸着して取り付けるのが好適である。か
かる電極を取り付けることにより該成形体の電気伝導度
を直接測定することができる。
The organic semiconductor gas sensor element of the present invention has at least two or more electrodes attached to a molded body made of the insoluble and infusible substrate. This electrode can be made of, for example, gold, platinum, copper, silver,
It may be attached using a method such as vapor deposition with a conductive metal such as aluminum, or it may be attached by applying a conductive paste such as silver or carbon. It is preferable to attach it. By attaching such an electrode, the electrical conductivity of the molded body can be directly measured.

かくして得られた本発明の有機半導体ガスセンサー素子
は極性ガスの吸着により電気伝導度が上昇することを利
用して極性ガスに対して感応するものである。極性ガス
とは分子の構造上双曲子モーメントを持つガスであり例
えば水蒸気、メタノールガス等のアルコール類ガス、ア
セトンガス、−酸化炭素ガス等である。該極性ガス雰囲
気下に本発明の有機半導体ガスセンサー素子をおき、該
極性ガスを吸着させた時、電気伝導度が例えば2〜10
,000倍に上昇し、次いで該極性ガスを脱着させると
電気伝導度は該極性ガスの吸着前の値まで減少する。ま
た該極性ガスの吸着および脱着を繰り返すこともでき、
この繰り返しに対して本発明の有機半導体ガスセンサー
素子は劣化することなく非常に安定である。さらに本発
明の有機半導体ガスセンサー素子は該極性ガスの濃度に
応じ電気伝導度が変化するため、該極性ガスの濃度も感
知することが可能である。
The thus obtained organic semiconductor gas sensor element of the present invention is sensitive to polar gases by utilizing the fact that the electrical conductivity increases due to the adsorption of polar gases. A polar gas is a gas having a hyperbolic moment due to its molecular structure, and includes, for example, water vapor, alcohol gas such as methanol gas, acetone gas, and carbon oxide gas. When the organic semiconductor gas sensor element of the present invention is placed in the polar gas atmosphere and the polar gas is adsorbed, the electrical conductivity is, for example, 2 to 10.
,000 times, and then when the polar gas is desorbed, the electrical conductivity decreases to the value before adsorption of the polar gas. It is also possible to repeat adsorption and desorption of the polar gas,
The organic semiconductor gas sensor element of the present invention is extremely stable without deterioration even after repeated repetitions of this process. Furthermore, since the organic semiconductor gas sensor element of the present invention has electrical conductivity that changes depending on the concentration of the polar gas, it is also possible to sense the concentration of the polar gas.

特に初期縮合物に無機塩を含ませることにより多数の連
通孔を持ち且つBET法による比表面積値が600 m
2/g以上の不溶不融性基体から成る成形体を用いた本
発明の有機半導体ガスセンサー素子は、該極性ガスを大
量に吸着させることが可能であり、微量のガスに対して
も感応することができる。
In particular, by including an inorganic salt in the initial condensate, it has a large number of communicating pores and a specific surface area value of 600 m by the BET method.
The organic semiconductor gas sensor element of the present invention using a molded body made of an insoluble and infusible substrate of 2/g or more is capable of adsorbing a large amount of the polar gas and is sensitive to even a trace amount of gas. be able to.

以上の様に本発明の有機半導体ガスセンサー素子は耐熱
性、耐酸化性、耐薬品性に優れ、しかも極性ガスの吸着
および脱着に応すて電気伝導度が変化し、さらに吸着お
よび脱着の繰り返しが可能であり、その繰り返しにより
、劣化することがない良好なガスセンサー素子である。
As described above, the organic semiconductor gas sensor element of the present invention has excellent heat resistance, oxidation resistance, and chemical resistance, and its electrical conductivity changes in accordance with the adsorption and desorption of polar gases, and furthermore, the organic semiconductor gas sensor element of the present invention has excellent heat resistance, oxidation resistance, and chemical resistance. This is a good gas sensor element that does not deteriorate due to repeated use.

実施例1 (1)  メタノール可溶性レゾール(約60%濃度)
をフィルムアプリケータでガラス板上に成膜し、約15
0℃の温度で1時間加熱して硬化させた。
Example 1 (1) Methanol-soluble resol (approximately 60% concentration)
was deposited on a glass plate using a film applicator for approximately 15 minutes.
It was cured by heating at a temperature of 0° C. for 1 hour.

該フェノール樹脂を2 cm X 1 cmの大きさに
切断し、その後シリコニット電気炉中に入れ、窒素気流
下で40℃/時間の温度まで昇温しで600℃まで熱処
理を行ないフィルム状の不溶不融性基体を得た。該フィ
ルムの厚みは10μmであり電気伝導度を室温で直流4
端子法で測定したところ1O−8(0・cm)’であっ
た。また元素分析を行ったところ水素原子/炭素原子の
原子比は0,35であった。X線回折からのピークの形
状はポリアセン系骨格構造に基因するパターンであり2
θで20〜22°付近にブロードなメインピークが存在
し、また41〜46°付近に小さなピークが確認された
The phenolic resin was cut into pieces of 2 cm x 1 cm, then placed in a silicone electric furnace, heated at a rate of 40°C/hour under a nitrogen stream, and heat-treated to 600°C to form an insoluble film. A fusible substrate was obtained. The thickness of the film is 10 μm, and the electrical conductivity is 4 at room temperature.
When measured by the terminal method, it was 10-8 (0 cm)'. Further, elemental analysis revealed that the atomic ratio of hydrogen atoms/carbon atoms was 0.35. The shape of the peak from X-ray diffraction is a pattern based on the polyacene skeleton structure2.
A broad main peak was observed around 20 to 22 degrees, and a small peak was observed around 41 to 46 degrees.

該フィルムに真空蒸着機で金を蒸着し、その蒸着面に銅
線を銀導電性ペーストで接着することにより!極を取り
、第1図、第2図に示す有機半導体ガスセンサー素子を
得た。
By depositing gold on the film using a vacuum evaporation machine and bonding copper wire to the deposited surface with silver conductive paste! The poles were removed to obtain organic semiconductor gas sensor elements shown in FIGS. 1 and 2.

(2)次に該有機半導体ガスセンサー素子を、第1表に
示したガス雰囲気下に入れ電気伝導度を室温で測定した
。結果はまとめて第1表Iζ示す。
(2) Next, the organic semiconductor gas sensor element was placed in a gas atmosphere shown in Table 1, and its electrical conductivity was measured at room temperature. The results are summarized in Table 1 Iζ.

その後該有機半導体ガスセンサー素子のあるガス雰囲気
を取り除くと電気伝導度は吸着前の値に戻った。上記の
操作を10回繰り返したが1回目から10回目まですべ
て同じ結果であった。
After that, when the gas atmosphere surrounding the organic semiconductor gas sensor element was removed, the electrical conductivity returned to the value before adsorption. The above operation was repeated 10 times, but the results were the same from the first to the 10th time.

第1表 実施例2 (1)水浴性レゾール(約60%濃度)/塩化亜塩/水
を重点比で10725/4の割合で混合した水溶液をフ
ィルムアプリケーターでガラス板上に成膜した。次に成
膜した水溶液上にガラス板を被せ水分が蒸発しないよう
;こして約100℃の温度で1時間加熱して硬化させた
Table 1 Example 2 (1) Water bath property An aqueous solution containing a mixture of resol (approximately 60% concentration)/subsalt chloride/water at a ratio of 10725/4 was formed into a film on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating; the film was then heated at a temperature of about 100° C. for 1 hour to harden it.

該フェノールtiA ’A6フイルムを2cmX1cm
に切断した後シリコニット電気炉中に入れ窒素気流下で
40℃/時間の速度で昇温しで、第2表に示した皿々の
所定温度まで加熱し、熱処理を行った。次に該熱処理物
を希塩酸で洗った後、水洗し、その後乾燥することによ
ってフィルム状の多孔体を得た。該フィルムの厚みは5
0μmであり、BET法による比表面積値はいずれの熱
処理温度でも約2000 m2/g/であった。元素分
析の測定結果は第2表にまとめて示す。
The phenol tiA'A6 film is 2cm x 1cm.
After cutting, the plates were placed in a siliconite electric furnace and heated at a rate of 40° C./hour under a nitrogen stream to the predetermined temperature shown in Table 2 for heat treatment. Next, the heat-treated product was washed with dilute hydrochloric acid, then water, and then dried to obtain a film-like porous body. The thickness of the film is 5
The specific surface area value determined by the BET method was approximately 2000 m2/g/ at any heat treatment temperature. The measurement results of elemental analysis are summarized in Table 2.

実施例1と同様にして電極を取り付け、フィルみ状有機
半導体ガスセンサー素子を得た。
Electrodes were attached in the same manner as in Example 1 to obtain a film-like organic semiconductor gas sensor element.

(2)次に該有機半導体ガスセンサー素子を水蒸気雰囲
気下に入れ電気伝導度を室温で測定した。
(2) Next, the organic semiconductor gas sensor element was placed in a water vapor atmosphere and its electrical conductivity was measured at room temperature.

結果はまとめて第2表に示す。その後該有機半導体ガス
センサー素子のある水蒸気雰囲気を取り除くと電気伝導
度は吸着前の値に戻った。
The results are summarized in Table 2. After that, when the water vapor atmosphere in the organic semiconductor gas sensor element was removed, the electrical conductivity returned to the value before adsorption.

上記の操作を10回繰り返したが、すべて同じ結果であ
った。
The above operation was repeated 10 times, all with the same result.

@2表 実施例3 実施例2の憲1と同様にして得られたフィルム状有機半
導体ガスセンサー素子を@3表に示したガス雰囲気下に
入れ電気伝導度を室温で測定した。
@Table 2 Example 3 A film-like organic semiconductor gas sensor element obtained in the same manner as in Example 2, No. 1, was placed in the gas atmosphere shown in Table @3, and its electrical conductivity was measured at room temperature.

結果はまとめて第3表に示す。その後肢有機半導体ガス
センサー素子のあるガス雰囲気を取り除くと電気伝導度
は吸着前の値に戻った。
The results are summarized in Table 3. When the gas atmosphere around the hindlimb organic semiconductor gas sensor element was removed, the electrical conductivity returned to the value before adsorption.

上記の操作を10回繰り返したが、すべて同じ結果であ
った。
The above operation was repeated 10 times, all with the same result.

第3表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る有機半導体ガスセンサー
素子の側面図、第2図はその平面図であり、図中(1)
は不溶不融性基体より成る成形体、(2〕は金蒸着膜、
(3)は銅線、(4)は銀導電ペーストを表わす。 \1−も】′+
FIG. 1 is a side view of an organic semiconductor gas sensor element according to an embodiment of the present invention, and FIG. 2 is a plan view thereof.
(2) is a molded body made of an insoluble and infusible substrate, (2) is a gold vapor-deposited film,
(3) represents a copper wire, and (4) represents a silver conductive paste. \1-also】′+

Claims (6)

【特許請求の範囲】[Claims] (1)フェノール性水酸基を有する芳香族炭化水素化合
物とアルデヒド類の縮合物である芳香族系縮合ポリマー
の熱処理物であって、水素原子/炭素原子の原子比が0
.6〜0.15であるポリアセン系骨格構造を有する不
溶不融性基体から成る成形体に少なくとも2つの電極を
取り付けたことを特徴とする有機半導体ガスセンサー素
子。
(1) A heat-treated product of an aromatic condensation polymer that is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, the atomic ratio of hydrogen atoms/carbon atoms being 0.
.. An organic semiconductor gas sensor element comprising at least two electrodes attached to a molded body made of an insoluble and infusible substrate having a polyacene skeleton structure having a molecular weight of 6 to 0.15.
(2)芳香族ポリマーがフェノールとホルムアルデヒド
との縮合物である特許請求の範囲第1項に記載の有機半
導体ガスセンサー素子。
(2) The organic semiconductor gas sensor element according to claim 1, wherein the aromatic polymer is a condensate of phenol and formaldehyde.
(3)不溶不融性基体が平均孔径10μm以下の連通孔
を持つものである特許請求の範囲第1項に記載の有機半
導体ガスセンサー素子。
(3) The organic semiconductor gas sensor element according to claim 1, wherein the insoluble and infusible substrate has communicating pores with an average pore diameter of 10 μm or less.
(4)不溶不融性基体のBET法による比表面積値が6
00〜3000cm^2/gである特許請求の範囲第1
項に記載の有機半導体ガスセンサー素子。
(4) The specific surface area value of the insoluble and infusible substrate by the BET method is 6.
Claim 1 which is 00 to 3000cm^2/g
The organic semiconductor gas sensor element described in .
(5)不溶不融性基体の酸素原子(O)/炭素原子(C
)の原子比が0.06以下であるポリアセン系骨格構造
を有する特許請求の範囲第1項に記載の有機半導体ガス
センサー素子。
(5) Oxygen atom (O)/carbon atom (C
The organic semiconductor gas sensor element according to claim 1, having a polyacene-based skeleton structure in which the atomic ratio of ) is 0.06 or less.
(6)不溶不融性基体が多数の連通孔を介して3次元網
目構造を示す特許請求の範囲第1項に記載の有機半導体
ガスセンサー素子。
(6) The organic semiconductor gas sensor element according to claim 1, wherein the insoluble and infusible substrate exhibits a three-dimensional network structure through a large number of communicating holes.
JP19933786A 1986-08-25 1986-08-25 Organic semiconductor gas sensor-element Expired - Fee Related JPH0721476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19933786A JPH0721476B2 (en) 1986-08-25 1986-08-25 Organic semiconductor gas sensor-element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19933786A JPH0721476B2 (en) 1986-08-25 1986-08-25 Organic semiconductor gas sensor-element

Publications (2)

Publication Number Publication Date
JPS6353460A true JPS6353460A (en) 1988-03-07
JPH0721476B2 JPH0721476B2 (en) 1995-03-08

Family

ID=16406111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19933786A Expired - Fee Related JPH0721476B2 (en) 1986-08-25 1986-08-25 Organic semiconductor gas sensor-element

Country Status (1)

Country Link
JP (1) JPH0721476B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214858A (en) * 2005-02-03 2006-08-17 National Institute Of Advanced Industrial & Technology Water vapor sensor and its manufacturing method, water vapor measuring instrument, and transpiration amount measuring method
JP2007332702A (en) * 2006-06-16 2007-12-27 Yuka Denshi Co Ltd Repairing agent injector
CN105842290A (en) * 2016-03-24 2016-08-10 山东大学 Inorganic/organic composited gas sensor vacuum on-situ composition method for improving performances of gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214858A (en) * 2005-02-03 2006-08-17 National Institute Of Advanced Industrial & Technology Water vapor sensor and its manufacturing method, water vapor measuring instrument, and transpiration amount measuring method
JP2007332702A (en) * 2006-06-16 2007-12-27 Yuka Denshi Co Ltd Repairing agent injector
CN105842290A (en) * 2016-03-24 2016-08-10 山东大学 Inorganic/organic composited gas sensor vacuum on-situ composition method for improving performances of gas sensor
CN105842290B (en) * 2016-03-24 2018-07-03 山东大学 A kind of vacuum in situ complex method for the inorganic-organic hybrid gas sensor for being used to improve gas sensor performance

Also Published As

Publication number Publication date
JPH0721476B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US4699804A (en) Process for producing electrically conductive composite polymer article
US7781028B2 (en) Thin film materials of amorphous metal oxides
US4696835A (en) Process for applying an electrically conducting polymer to a substrate
EP1150346A3 (en) A process for preparing insulating material having low dielectric constant
JP2001520446A (en) Manufacturing method of membrane electrode
KR101355933B1 (en) Method for adsorbtion of various biomaterials to chemically modified graphene
Sterescu et al. Fullerene-modified poly (2, 6-dimethyl-1, 4-phenylene oxide) gas separation membranes: why binding is better than dispersing
US2728831A (en) Electric hygrometer
JPS6353460A (en) Organic semiconductor gas sensor element
JP2017165823A (en) Phenol resin composition for porous carbon material, porous carbon material, and method for producing the same
Yang et al. Polypyrrole—polypropylene composite films: preparation and properties
KR102283136B1 (en) Hollow type nitride-based carbon nanostructure and manufacturing method of the same
JPS61218640A (en) Porous organic semiconductor
KR101772328B1 (en) Hydrogen and Moisture absorption getter and method of fabricating of the same
JPH044244B2 (en)
JP2001316103A (en) Porous carbon material, its manufacturing method and electrical two layer capacitor
Sharath Kumar et al. Recent Advances in Functionalized Micro and Mesoporous Carbon Nanostructures for Humidity Sensors
JPH0643545B2 (en) Electrically conductive organic polymer materials
KR100423095B1 (en) Method for preparing activated carbon-supported fibers using the inorganic fiber materials
JPS58136649A (en) Electrically conductive organic high-molecular material and production thereof
KR20160107628A (en) Functional substrate
JP3723844B2 (en) Method for producing carbon material from polyvinyl alcohol
US4221750A (en) Method of curing phenolic resin in an electrical apparatus without degrading polyethyleneterephthalate insulation also in the electrical apparatus
JP2003239028A (en) Method of producing nickel porous body with nanofine pore structure
JPS61218641A (en) Porous organic semiconductor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees