JPS6353284A - Electrolysis method - Google Patents

Electrolysis method

Info

Publication number
JPS6353284A
JPS6353284A JP19641486A JP19641486A JPS6353284A JP S6353284 A JPS6353284 A JP S6353284A JP 19641486 A JP19641486 A JP 19641486A JP 19641486 A JP19641486 A JP 19641486A JP S6353284 A JPS6353284 A JP S6353284A
Authority
JP
Japan
Prior art keywords
seawater
current
inorg
matter
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19641486A
Other languages
Japanese (ja)
Inventor
Hideo Tsuge
柘植 日出夫
Tetsuo Nagashitani
流谷 哲雄
Akira Igarashi
明 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19641486A priority Critical patent/JPS6353284A/en
Publication of JPS6353284A publication Critical patent/JPS6353284A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To continuously and stably carry out electrolytic operation for a long time by passing a DC pulse current or a DC rectangular pulse current at the specified time in electrolysis to prevent the deposition of inorg. matter on both electrodes when seawater, etc., are electrolyzed. CONSTITUTION:Seawater 12 is supplied from a supply pipe 9 into an electrolytic cell 10 by a pump P, and an electric current is passed between an anode 13 of a Pt sheet and a cathode 14 made of stainless steel to produce NaOCl. In this case, inorg. matter such as Mg(OH)2 is deposited on the cathode surface due to the Mg ion in seawater, and inorg. matter such as FeOOH is disposed on the anode surface. The electrical resistance between both electrodes 13 and 14 is increased because of the deposition of inorg. matter, hence the electrolytic reaction of seawater is inactivated, and the product NaOCl cannot be stably produced. In this case, a DC pulse current or a DC rectangular pulse current is passed between both electrodes for a time shorter than the transition duration for the deposition of the inorg. matter on the electrode surfaces to remove the deposited inorg. matter, and the production of NaOCl by the electrolysis of seawater is stably carried out for a long period.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は、電極上への無機物質の析出を阻止することに
成功した電気分解法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolysis method that successfully prevents the deposition of inorganic substances on electrodes.

ここに無機物質とは、特に限定されるものではないが、
代表的なものを挙げて例示的に説明すると、海水の電解
によって次亜塩素酸ナトリウムを製造するときに陰極板
上に生じる水酸化マグネシウムスケールE以下単にMg
(OH)2ということがある]、並びにFe陽極を用い
る電解において溶出Faイオンと被電解液中の溶存酸素
とが反応した結果陽極上に析出するオキシ水酸化鉄や四
三酸化鉄のスケール[以下単にFe0OHやFe、04
ということがあるコ等が包含されるので、以下の説明に
おいてはこれらの場合におけるスケール防止技術を中心
に述べることとするが無機物質の種類については前述の
如く特定されずまたスケールという語は上記例示の如く
広範な意味を有するものとして理解されるべきである。
Inorganic substances here include, but are not particularly limited to,
To give a representative example and explain it, magnesium hydroxide scale E, which is simply Mg
(OH)2], and scales of iron oxyhydroxide and triiron tetroxide that precipitate on the anode as a result of the reaction between eluted Fa ions and dissolved oxygen in the electrolyte during electrolysis using Fe anodes [ Hereinafter, simply Fe0OH, Fe, 04
Therefore, the following explanation will focus on scale prevention technology in these cases, but the type of inorganic substance is not specified as mentioned above, and the word scale does not refer to the above. It should be understood that the illustrative examples have a wide range of meanings.

[従来の技術] 電気分解法は今日、あらゆる分野で利用されその重要性
は益々増大している。
[Prior Art] Today, electrolysis is used in all fields and its importance is increasing.

この様な電気分解を応用した技術として、海水から次亜
塩素酸ナトリウムを製造する技術が挙げられる。この技
術は第2図(原理図)に示す如く、電解槽1中に収容さ
れた海水2に、例えば白金を陽極3.ステンレス鋼を陰
極4として直流電流を流し、陽極3及び陰極4で起こる
下記電極反応(1) 、  (2)を利用するものであ
る。
As a technology that applies such electrolysis, there is a technology for producing sodium hypochlorite from seawater. As shown in FIG. 2 (principle diagram), this technology involves adding, for example, platinum to seawater 2 contained in an electrolytic cell 1 and anode 3. Direct current is passed through stainless steel as the cathode 4, and the following electrode reactions (1) and (2) occurring at the anode 3 and cathode 4 are utilized.

陽8i: 2(1!−−Cl3.+2e−−・・・・−
(1)陰極: 2Na+2H20+2e−−*)(2+
2NaOH・・・・・・  (2) また被電解液中にFeイオンを溶出させこれを防食処理
等に利用する下記の如き技術も知られている。即ち第3
図において6は復水管であフて、該復水管6の内周面に
は被電解液が矢印aの如く流されている。ところで復水
管6における被電解液人口側Aに電極(陽極7をFe、
陰極8をステンレス鋼とする)を設置し、これに電流を
流すと、陽Vi7からFeイオンが溶出する(Fe−F
 e”+ 2 e−、尚陰極8では2)120+2e−
−*H2+20H−の反応が起こる)。上記被電解液中
にはその性状・組成に応じて色々な濃度の溶存酸素が含
まれているので、該溶存酸素と上記Feイオンが反応し
Fe0OHやFe3O4等が形成され、矢印すの如く該
復水管6内面に析出し、防食処理がなされるのである。
Positive 8i: 2 (1!--Cl3.+2e--...-
(1) Cathode: 2Na+2H20+2e--*)(2+
2NaOH (2) The following technique is also known in which Fe ions are eluted into the electrolyte and used for anticorrosion treatment. That is, the third
In the figure, reference numeral 6 denotes a condensate pipe, and the electrolyte is flowed on the inner circumferential surface of the condensate pipe 6 as shown by arrow a. By the way, an electrode (the anode 7 is made of Fe,
When a cathode 8 is made of stainless steel) and a current is passed through it, Fe ions are eluted from the positive Vi7 (Fe-F
e”+ 2 e-, and for cathode 8 2) 120+2e-
-*H2+20H- reaction occurs). The electrolyte solution contains various concentrations of dissolved oxygen depending on its properties and composition, so the dissolved oxygen and the Fe ions react to form Fe0OH, Fe3O4, etc. It is deposited on the inner surface of the condensate pipe 6 and anti-corrosion treatment is performed.

[発明が解決しようとする問題点コ 海水から次亜塩素酸ナトリウムを製造する前記技術にお
いては下記の如き問題が指摘される。即ち陰極において
は電極反応(2)によってQH−イオンが絶えず発生し
ているが、このOH−イオンは海水中のMg2“イオン
と反応し、Mg (OH) 2となって陰極上に析出す
る。この様にMg (OH) 2が析出すると極板間通
電抵抗の増大を来たし、次亜塩素酸ナトリウム製造の安
定化に支障が生じる。また上記析出が激しくなって極板
間が閉塞してしまうこともしばしば経験するところであ
る。
[Problems to be Solved by the Invention] The following problems have been pointed out in the above technology for producing sodium hypochlorite from seawater. That is, QH- ions are constantly generated at the cathode by electrode reaction (2), and these OH- ions react with Mg2'' ions in seawater to become Mg (OH) 2 and precipitate on the cathode. If Mg (OH) 2 is precipitated in this way, the current flow resistance between the electrode plates will increase, which will hinder the stabilization of sodium hypochlorite production.Also, the precipitation will become more intense and the space between the electrode plates will be blocked. This is something I often experience.

一方Feイオンを溶出させる上記技術について 。On the other hand, regarding the above technology for eluting Fe ions.

は、陰極では上記と同様にMg(OH)2が析出すると
共に、Fe0OH等が陽極板上に少量ずつ析出してしま
い、前記Mg (OH)2析出の場合と同様の問題が生
じる。
In this case, Mg(OH)2 is precipitated at the cathode in the same way as above, and Fe0OH etc. are precipitated little by little on the anode plate, causing the same problem as in the case of Mg(OH)2 precipitation.

本発明は、こうした事情を憂慮してなされたものであっ
て、電極上への前記無機物質の析出を阻止すると共に、
これによって長期に連続的な運転を安定して行なうこと
のできる電気分解法を提供しようとするものである。
The present invention has been made in consideration of these circumstances, and is designed to prevent the deposition of the inorganic substance on the electrode, and to
This is intended to provide an electrolysis method that can be stably operated continuously over a long period of time.

[問題点を解決する為の手段] 本発明に係る電気分解法とは、被電解液中に陽極及び陰
極を挿入して電気分解を行なうに当たり、無機物質の電
極表面への析出過渡時間より短い通電時間を含む直流パ
ルス電流又は直流矩形波電流を流して電気分解を行なう
ところにその要旨が存在するものである。
[Means for Solving the Problems] The electrolysis method according to the present invention is such that when performing electrolysis by inserting an anode and a cathode into an electrolyte, the transition time for the deposition of an inorganic substance on the electrode surface is shorter than that of the inorganic substance on the electrode surface. The gist is that electrolysis is carried out by passing a DC pulse current or a DC rectangular wave current that includes a current flow time.

[作用コ 本発明者等は、電極板への無機物質の析出を阻止する手
段について、電極材料、電流パターン。
[Function] The present inventors have developed a means for preventing the deposition of inorganic substances on the electrode plate, including electrode materials and current patterns.

電流密度、被電解液の濃度等種々な観点から検討を進め
てぎたが、その過程で電流パターンに工夫を凝らせば上
記析出現象が阻止できるのではないかとの着想を得るに
至った。そこで上記電流パターンを具体的なものとすべ
く検討を加えたところ、直流パルス電流又は直流矩形波
電流(以下これらを一括して称するときは直流パルス電
流等と言う)を用いることが極めて効果的であることを
知った。この様な電流には通電休止期間が存在するので
前記OH−やFe’“の形成が抑制される他、通電期間
中に形成された前記イオンが流水と共に流され、無機物
質として析出する余地がなくなるものと予想される。
We have been conducting investigations from various viewpoints such as current density and concentration of the electrolyte, and in the process we came up with the idea that the above precipitation phenomenon could be prevented by devising the current pattern. Therefore, we conducted a study to make the above current pattern more concrete, and found that it is extremely effective to use DC pulse current or DC square wave current (hereinafter referred to collectively as DC pulse current, etc.). I learned that. Since such current has a non-current period, the formation of OH- and Fe''' is suppressed, and the ions formed during the current period are washed away with the running water, leaving room for them to precipitate as inorganic substances. It is expected that it will disappear.

しかるに色々な直流パルス電流等を用いて電解実験を引
き続き実施繰返していたところ、どの様な直流パルス電
流等を用いても上記効果が安定して得られるという訳で
はなく、直流パルス電流の与え方等によっては有効度合
いに大きな差が生じることが分かった。そこで本発明者
等は、無機物質の析出を、直流パルス電流等の形態との
関連において更に詳細に検討する必要性を感じた。
However, after repeated electrolysis experiments using various DC pulse currents, etc., it was found that the above effect could not be stably obtained no matter what DC pulse current was used, and it was found that the method of applying the DC pulse current was not stable. It was found that there were large differences in the degree of effectiveness depending on the factors. Therefore, the present inventors felt the need to study the precipitation of inorganic substances in more detail in relation to the form of DC pulse current and the like.

まず本発明者等は、上記析出の生じる過程を下記の如き
段階に分けて考えてみた。
First, the present inventors considered the process in which the above-mentioned precipitation occurs by dividing it into the following stages.

■析出の引き金となるイオンが電極反応によって形成さ
れる過程、 ■このイオンと、被電解液中のイオンが反応し、電極上
に析出する過程、 ■上記■、■の繰り返しによって次第に析出量が増して
いく過程、この様に解析した場合、上記■〜■を十分に
進行させようとすれば電流をある一定時間以上は連続的
に流さなければならないことになる。即ち形成されたイ
オンが被処理水の溶存酸素や他のイオンと反応し析出す
るに必要な時間(以下析出過渡時間という)は連続して
通電されていなければならないことになる。もし連続通
電時間が上記析出過渡時間に満たないと、上記■の反応
の進行が阻害されてイオンが流出されてしまうので、無
機物質の析出は起こらないはずである。
■Process in which ions that trigger precipitation are formed by electrode reaction; ■Process in which these ions react with ions in the electrolyte and deposit on the electrode; ■By repeating the above steps ■ and ■, the amount of precipitation gradually increases. If the increasing process is analyzed in this way, if the above-mentioned items (1) to (3) are to proceed sufficiently, the current must be passed continuously for a certain period of time or more. That is, the current must be continuously applied for the time required for the formed ions to react with dissolved oxygen and other ions in the water to be treated and to precipitate (hereinafter referred to as precipitation transition time). If the continuous current application time is less than the above-mentioned precipitation transition time, the progress of the above-mentioned reaction (2) will be inhibited and ions will be flowed out, so that no inorganic substance should be deposited.

そこで本発明者等は、この析出過渡時間に満たない通電
時間を、その波形態様として有する直流パルス電流や直
流矩形波電流を用いるとする本発明に想到するに至った
のである。
Therefore, the present inventors came up with the present invention, which uses a DC pulse current or a DC rectangular wave current having a current conduction time shorter than this precipitation transition time as its wave form.

本発明は火路上述の如く構成されたものであって、無機
物質の電極表面への析出過渡時間より短い通電時間を含
む直流パルス電流又は直流矩形電流を流すという構成を
満たす限り如何なる制限も受けず、例えば、下記の如き
構成を採用することもできる。
The present invention is configured as described above, and is not subject to any limitations as long as the configuration is satisfied in which a DC pulse current or a DC rectangular current is passed that includes a current application time shorter than the transition time for depositing an inorganic substance on the electrode surface. For example, the following configuration may also be adopted.

(1)無機物質及び析出過渡時間について:電極上への
析出が考えられる無機物質としては、前記Mg (OH
)2.Feoo)(、Fe3O4の他CaCO3が挙げ
られる。
(1) Regarding inorganic substances and precipitation transition time: As inorganic substances that can be considered to be deposited on the electrode, the above-mentioned Mg (OH
)2. In addition to Feoo) (, Fe3O4, CaCO3 is mentioned.

一方析出過渡時間は、上記無機物質の種類、該無機物質
を構成する電解生成イオン、被電解液中の該当イオンの
濃度や水温あるいは撹拌状況等、多くの因子に影響され
る量であるが、その−例としては次の通りである。
On the other hand, the precipitation transient time is an amount that is influenced by many factors, such as the type of the inorganic substance, the electrolytically generated ions constituting the inorganic substance, the concentration of the relevant ions in the electrolyte, water temperature, and stirring conditions. An example of this is as follows.

Mg(OH)z:秒或はそれ以下のオーダCaCO3や
鉄スケール:秒から分のオーダであると考えられる(但
しこれら は条件によって相当具なる) (2)被電解液中に他の物質を加える点について: 酸を加えてpt(を7未満とするか、又はスケール抑制
剤を加えてやると、無機物質[Mg(OH)、、Fe0
OH,Fe、04等コの析出を、より一層確実に阻止す
ることがでとる。
Mg(OH)z: on the order of seconds or less CaCO3 and iron scale: on the order of seconds to minutes (however, these vary depending on the conditions) (2) When other substances are added to the electrolyte Regarding addition: If you add an acid to make pt (less than 7) or add a scale inhibitor, inorganic substances [Mg(OH), Fe0
The precipitation of OH, Fe, 04, etc. can be more reliably prevented.

ここに上記酸としては、H2S 04 、 HCfl。Here, the above acids include H2S04 and HCfl.

スルファミン酸1重亜硫酸ソーダ、スケール抑制剤とし
ては、ヘキサメタリン酸ソーダ、フロコン100(商品
名)等縮合リン酸系あるいはアミン系の化合物が用いら
れる。
As the sodium sulfamic acid monobisulfite and the scale inhibitor, condensed phosphoric acid-based or amine-based compounds such as sodium hexametaphosphate and Flocon 100 (trade name) are used.

尚上記酸やスケール抑制剤は、電解反応によって形成さ
れるOH−を中和したり、電解反応によって形成された
スケールの核を成長させないといった作用を発揮するも
のと考えられている。そしてこれらの作用は通電休止期
間を設けることによってより確実なものとなる。
The acid and scale inhibitor described above are thought to have the effect of neutralizing OH- formed by the electrolytic reaction and preventing the growth of scale nuclei formed by the electrolytic reaction. These effects can be made more reliable by providing an energization suspension period.

(3)直流パルス電流や直流矩形波電流の発生回数や、
通電時間と休止時間との比率等については特段の制限を
要しないが、下記(a)〜 (d)の点に配慮して所望
値を選択することが推奨される。
(3) Number of occurrences of DC pulse current or DC square wave current,
Although there is no particular restriction on the ratio between the energization time and the rest time, it is recommended to select a desired value with consideration to the following points (a) to (d).

(a)発生回数を多くし過ぎると通電休止時間が短くな
ってしまうので、電極で発生したイオンを十分に流出さ
せるだけの時間を確保することができず、目的とする電
解発生イオンの発生効率が低下する。
(a) If the number of generation times is too large, the energization pause time will be shortened, making it impossible to secure enough time for the ions generated at the electrode to flow out, and achieving the desired generation efficiency of electrolytically generated ions. decreases.

(b)発生回数が余り少ないと、連続通電時間が長くな
り電極上の電解発生イオン濃度が高くなる。
(b) If the number of occurrences is too small, the continuous current application time becomes long and the concentration of electrolytically generated ions on the electrode becomes high.

(c)比率を大きくし過ぎると通電停止時間が短くなる
ので上記(a)と同様の問題が生じる。
(c) If the ratio is too large, the energization stop time becomes short, resulting in the same problem as in (a) above.

(d)比率を小さくし過ぎると単位時間あたりの通電時
間が短くなって同一の電解効果を得る為の電流値を大き
くしなけれはならなくなり、これに伴なって副反応機会
が多くなり目的とする電解発生イオンの電流効率が低く
なる。
(d) If the ratio is too small, the current application time per unit time will be shortened, and the current value will have to be increased to obtain the same electrolytic effect. The current efficiency of electrolytically generated ions becomes low.

こうした観点から本発明者等は夫々の値を規定したので
あるが、その−例を示すと下記の通りである。発生回数
については60回/秒〜10回/分が好ましく、10回
/秒〜10回/分がより好ましい。また上記比率につい
ては0.5  : 1〜10:1が好ましく、1:1〜
3:1がより好ましい。
From this point of view, the present inventors have defined the respective values, and examples thereof are as follows. The number of occurrences is preferably 60 times/second to 10 times/minute, more preferably 10 times/second to 10 times/minute. The above ratio is preferably 0.5:1 to 10:1, and 1:1 to 10:1.
3:1 is more preferred.

(4)電極を撹拌してやることについて:電極を十分撹
拌してやれば、前記■の反応で形成されるイオンを電極
まわりから被電解液全領域へ拡散させることができ、従
って理論的には電極上における無機物質の析出を阻止す
ることができる。
(4) Stirring the electrode: If the electrode is sufficiently stirred, the ions formed by the reaction in ① above can be diffused from around the electrode to the entire area of the electrolyte. Precipitation of inorganic substances can be prevented.

しかし上記撹拌には実際上程々の限界があり、電極近傍
に発生するイオンを必ずしも十分に拡散することができ
ない(境膜部)。本発明の意義はこうした点にも存在す
るのであるが、上記撹拌に鑑みると、本発明の構成に上
記撹拌操作を加えてやれば本発明の効果をより一層顕著
なものとすることができる。
However, the above-mentioned stirring actually has a certain limit, and ions generated near the electrode cannot necessarily be sufficiently diffused (boundary film part). Although the significance of the present invention lies in these points, in view of the above-mentioned stirring, the effects of the present invention can be made even more remarkable by adding the above-mentioned stirring operation to the structure of the present invention.

尚電極反応生成物(例えば次亜塩素酸ナトリウム)の生
産については、電流値を、パルス電流(又は矩形波電流
)の1サイクルにつき、連続通電とほぼ同等の生成物量
を得ることができるので問題はない。
Regarding the production of electrode reaction products (e.g., sodium hypochlorite), there is no problem because it is possible to obtain approximately the same amount of product per cycle of pulsed current (or square wave current) as with continuous energization. There isn't.

以下比較例と共に実施例を挙げることによって本発明を
具体的に説明するが、本発明は該実施例に限定される性
質のものではなく、前・後の記載の趣旨に徴して適宜変
更することができる。
The present invention will be specifically explained below by giving examples together with comparative examples, but the present invention is not limited to these examples and may be modified as appropriate in keeping with the spirit of the preceding and following descriptions. Can be done.

[実施例] 比較例1 第4図に示す様に、被処理液として海水を電解槽給水ポ
ンプPによって電解槽給水管9経由で電解4Q10へ供
給し、一方では電解処理水管11を通して被処理海水1
2を導出する。従って電解槽10は絶えず新しい海水1
2で交換されていることになる。ところで13は白金め
っきされたチタンよりなる陽極、14はステンレス鋼(
SUS304)よりなる陰極であって、これらの両極間
に直流電源15から連続的に通電することによって次亜
塩素酸ナトリウムを発生させた。尚両極間距離は10m
m、電流密度は40 mA/cm2、海水流量は1.6
117分、発生有効塩素濃度は10 tag/Jlであ
った。
[Example] Comparative Example 1 As shown in FIG. 4, seawater as the liquid to be treated is supplied to the electrolyzer 4Q10 via the electrolytic cell water supply pipe 9 by the electrolytic cell water supply pump P, and on the other hand, the seawater to be treated is supplied through the electrolytic treatment water pipe 11. 1
Derive 2. Therefore, the electrolytic cell 10 is constantly filled with fresh seawater 1.
This means that it has been replaced by 2. By the way, 13 is an anode made of platinized titanium, and 14 is stainless steel (
The cathode was made of SUS304), and sodium hypochlorite was generated by continuously supplying current from a DC power source 15 between these two electrodes. The distance between the two poles is 10m
m, current density is 40 mA/cm2, seawater flow rate is 1.6
At 117 minutes, the generated effective chlorine concentration was 10 tag/Jl.

こうした通電を2ケ月継続した結果、電解電圧は初期5
.0■から12.5Vにまで上昇していることが分かっ
た。また陰f!14は、約3mm厚の白色のMg(OH
)2スケールで被覆されていた。
As a result of continuing this energization for two months, the electrolytic voltage was initially 5.
.. It was found that the voltage rose from 0■ to 12.5V. Yin f again! 14 is a white Mg(OH) with a thickness of about 3 mm.
) was coated with 2 scales.

実施例1 第1図(a)は本発明方法を実施する装置の概略説明図
であり、第1図(b)は上記装置に流す電流の態様を示
す図である。
Example 1 FIG. 1(a) is a schematic explanatory diagram of an apparatus for carrying out the method of the present invention, and FIG. 1(b) is a diagram showing the mode of current flowing through the apparatus.

上記比較例1においては、電流を連続的に流したが、こ
の代りに第1図(b) に示す如き直流矩形波電流(尚
通電時間と通電停止時間の比率は3:1)を流した。尚
直流矩形波電流値(o−b)は、上記比較例1における
電流値(0−a)の4/3倍となる様に第1図(a)に
示す直流矩形波電流発生器16で制御された。
In Comparative Example 1 above, the current was passed continuously, but instead, a DC rectangular wave current (the ratio of the energization time to the energization stop time was 3:1) as shown in Figure 1(b) was passed. . The DC rectangular wave current value (o-b) was set using the DC rectangular wave current generator 16 shown in FIG. controlled.

こうして約2ケ月継続したところ、電解処理水中の有効
塩素濃度は、上記比較例1と同様の値即ち10  mg
/flであり、電解電圧(通常中)は、初期の5.0■
に対して2ケ月経た後であっても5.9■までわずか上
昇したに過ぎず、陰極におけるMg(oH)zスケール
の付着量も市減しておりその厚みも0.5 mm以下で
あった。
After continuing in this way for about two months, the effective chlorine concentration in the electrolyzed water was the same value as in Comparative Example 1, that is, 10 mg.
/fl, and the electrolytic voltage (normally medium) is 5.0μ at the initial stage.
Even after 2 months, the amount of Mg(oH)z scale deposited on the cathode had decreased and its thickness was less than 0.5 mm. Ta.

夫五■ユ 第5図は本発明方法の他の実施例を示すフロー図である
。本実施例においては、電解槽給水管9経由でH230
4が添加され、電解槽10内の海水pHが6.5に調節
される。それ以外は前記実施例1と同様の方法を採用し
た。
FIG. 5 is a flow diagram showing another embodiment of the method of the present invention. In this embodiment, H230 is supplied via the electrolytic tank water supply pipe 9.
4 is added, and the pH of the seawater in the electrolytic cell 10 is adjusted to 6.5. Other than that, the same method as in Example 1 was adopted.

有効塩素濃度は約10mg/J!であり、電解電圧(通
電中)は、2ケ月経過後であっても初期の5.0■から
ほとんど変化せず、また陰極におけるMg (OH)2
の析出もほとんど確認できなかった。
Effective chlorine concentration is approximately 10mg/J! The electrolytic voltage (during energization) hardly changes from the initial 5.0 μ even after two months, and the Mg (OH)2 at the cathode
Almost no precipitation was observed.

また本発明電気分解法は、第6図の如く逆浸透海水淡水
化装置17を含むシステムに接続することができる。即
ち逆浸透海水淡水化装置17へ海水を供給する糸路18
へH2so4を導入し、それによってpHを6.5とし
てから電解槽1oへ分枝し、該電解vi10では前記第
5図と同様の電気分解を行ない、糸路18の上流側(H
2So4導入前の糸路)へ返送する。尚19は保安フィ
ルター120は濃縮水排出管、21は減圧弁、22は脱
塩水排出管である。
Further, the electrolysis method of the present invention can be connected to a system including a reverse osmosis seawater desalination device 17 as shown in FIG. That is, a thread path 18 that supplies seawater to the reverse osmosis seawater desalination device 17
H2so4 is introduced into the cell, thereby setting the pH to 6.5, and then branching to the electrolytic cell 1o. In the electrolytic cell vi10, electrolysis similar to that shown in FIG.
2So4 before introduction). The safety filter 120 is a concentrated water discharge pipe, 21 is a pressure reducing valve, and 22 is a desalinated water discharge pipe.

上記電解槽10においても第5図と同様の効果が得られ
た。尚この様に逆浸透海水淡水化装置17に接続するこ
とによって、該装置17に導入する前の殺菌処理を連続
的且つ確実に行なうことができる。
The same effect as shown in FIG. 5 was also obtained in the electrolytic cell 10. By connecting to the reverse osmosis seawater desalination device 17 in this way, sterilization treatment before introduction into the device 17 can be performed continuously and reliably.

実施例3 第7図は本発明方法の他の実施例を示すフロー図である
。この実施例においても、前記第6図と同様逆浸透海水
淡水化装置17を含むシステムに電解槽10が接続され
ている。しかし電解槽10へ導かれる被処理液は、第6
図の場合の様に濃縮前の塩水ではなく、逆浸透海水淡水
化装置17h)ら供給される濃縮後の塩水である。電気
分解条件は前記第6図と同様のものを採用したが、供給
水(?IA縮後塩水)の濃度は第6図の場合の1.6倍
に増加していた。。この為電解処理水中の有効塩素濃度
は11  mg/u (電流効率が78%から84%に
上昇)であった。しかしそれにもかかわらず2ケ月経過
後、陰極上にはMg(OH)2の析出がほとんど確認で
きなかった。
Embodiment 3 FIG. 7 is a flow diagram showing another embodiment of the method of the present invention. In this embodiment as well, the electrolytic cell 10 is connected to a system including a reverse osmosis seawater desalination device 17 as in FIG. 6 above. However, the liquid to be treated that is led to the electrolytic cell 10 is
This is not salt water before concentration as in the case of the figure, but salt water after concentration supplied from the reverse osmosis seawater desalination device 17h). The electrolysis conditions were the same as those shown in FIG. 6 above, but the concentration of the feed water (?IA shrinkage brine) was 1.6 times higher than in the case shown in FIG. . Therefore, the effective chlorine concentration in the electrolytically treated water was 11 mg/u (current efficiency increased from 78% to 84%). However, despite this, almost no Mg(OH)2 precipitation was observed on the cathode after two months had passed.

比較例2 第4図に示す電解槽10に供給される処理液として、塩
分を約3,000mg/jZ含む潅水を用い、陽極13
に鉄、陰極にステンレス鋼(sus 304 )を採用
し、前記比較例1と同様の電気分解条件で電気分解を実
施した。この時の全鉄濃度は6mg/It。
Comparative Example 2 Dough water containing about 3,000 mg/jZ of salt was used as the treatment liquid supplied to the electrolytic cell 10 shown in FIG.
Electrolysis was carried out under the same electrolysis conditions as in Comparative Example 1, using iron for the electrode and stainless steel (SUS 304) for the cathode. The total iron concentration at this time was 6 mg/It.

溶存酸素は8 mg/λであった。Dissolved oxygen was 8 mg/λ.

こうして1週間の連続的通電を行なったところ、第8図
の如く陽g113上に、Fe0OHやFe= 04の混
合スケール23及びMg(OH)2やCaCO3の混合
スケール24が形成され、これによって両極板間はほと
んど閉塞される状態となった。
After continuous energization for one week in this way, a mixed scale 23 of Fe0OH and Fe=04 and a mixed scale 24 of Mg(OH)2 and CaCO3 were formed on the positive g113 as shown in FIG. The space between the boards was almost completely occluded.

実力d辻A 第1図(a)に示した装置を用い、該装置の直流矩形波
電流発生器16から第1図(b)の如き矩形波電流を流
す以外は前記比較例2と同様の電気分解条件で電気分解
を行なった。
Ability d Tsuji A The same procedure as Comparative Example 2 was used except that the device shown in FIG. 1(a) was used and the rectangular wave current as shown in FIG. 1(b) was passed from the DC rectangular wave current generator 16 of the device. Electrolysis was performed under electrolytic conditions.

1週間経過したときの、陽極への鉄スケール析出量は、
上記比較例2の場合に比べ激減しており付着厚は0.5
 am以下であった。そして陽極が薄くなった結果電極
の交換を行なう必要の生じる約2週間後においても、上
述の如き電極閉塞は認められず、電圧も初期の3.2■
から3.3■へとわずかな上昇が認められたに過ぎなか
った。
The amount of iron scale deposited on the anode after one week is:
The adhesion thickness is 0.5, which is drastically reduced compared to the case of Comparative Example 2 above.
It was below am. Even after about two weeks, when the anode became thinner and it became necessary to replace the electrode, the above-mentioned electrode blockage was not observed, and the voltage remained at the initial level of 3.2mm.
Only a slight increase was observed from 3.3■ to 3.3■.

[発明の効果] 本発明は上述の如く構成されているので、極板上への無
機物質の析出を阻止すると共に、これによって長期連続
的な運転を安定して行なうことができ、結果的に電解目
的の生成効率を高めることのできる電気分解法を提供す
ることができた。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to prevent the precipitation of inorganic substances on the electrode plates, and thereby to stably perform long-term continuous operation. It was possible to provide an electrolysis method that can increase the production efficiency for electrolysis purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明方法を実施する装置の概略説明図
、第1図(b)は上記装置に流す電流パターンを示す図
、第2図は電気分解法の原理図、第3図は復水管の内周
面に鉄酸化物を被覆している状態を示す説明図、第4図
は被処理液を流動させつつ電気分解を行なっている状態
を示す説明図、第5〜7図は本発明方法の実施例を示す
図、第8図は鉄イオン溶出の場合の電極閉塞状態を示す
説明図である。 1及び10・・・電解槽
Figure 1(a) is a schematic explanatory diagram of an apparatus for carrying out the method of the present invention, Figure 1(b) is a diagram showing the current pattern flowing through the apparatus, Figure 2 is a diagram of the principle of electrolysis, and Figure 3. is an explanatory diagram showing a state in which the inner peripheral surface of the condensate pipe is coated with iron oxide, Fig. 4 is an explanatory diagram showing a state in which electrolysis is performed while flowing the liquid to be treated, and Figs. 5 to 7 8 is a diagram showing an example of the method of the present invention, and FIG. 8 is an explanatory diagram showing a state of electrode closure in the case of iron ion elution. 1 and 10...electrolytic cell

Claims (1)

【特許請求の範囲】[Claims] 被電解液中に陽極及び陰極を挿入して電気分解を行なう
に当たり、無機物質の電極表面への析出過渡時間より短
い通電時間を含む直流パルス電流又は直流矩形波電流を
流して電気分解を行なうことを特徴とする電気分解法。
When performing electrolysis by inserting an anode and a cathode into the electrolyte, conduct the electrolysis by passing a DC pulse current or a DC square wave current with a current application time shorter than the transition time for the deposition of inorganic substances on the electrode surface. An electrolysis method characterized by
JP19641486A 1986-08-21 1986-08-21 Electrolysis method Pending JPS6353284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19641486A JPS6353284A (en) 1986-08-21 1986-08-21 Electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19641486A JPS6353284A (en) 1986-08-21 1986-08-21 Electrolysis method

Publications (1)

Publication Number Publication Date
JPS6353284A true JPS6353284A (en) 1988-03-07

Family

ID=16357458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19641486A Pending JPS6353284A (en) 1986-08-21 1986-08-21 Electrolysis method

Country Status (1)

Country Link
JP (1) JPS6353284A (en)

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
US5314589A (en) Ion generator and method of generating ions
US10995021B2 (en) System for oxidation of ammonia
JPH10500614A (en) Water treatment by electrolysis
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
JP2001502229A (en) How to reduce or prevent scale
CN110510713A (en) A kind of electrodialysis plant and the method using electrodialysis plant separating acid and salt
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JPS6059995B2 (en) Impure salt water electrolysis method and device
JP3783972B2 (en) Cyanide water treatment method
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP2006255653A (en) Electrolytic treatment method of water system
JP2005177671A (en) Electrolysis type ozonizer
CN116282400A (en) Double-pulse piezoelectric flocculation method for treating mine acid wastewater containing heavy metals
JPS6353284A (en) Electrolysis method
JP2003190988A (en) Water treatment method for cooling water system
JPH0418919A (en) Method and device for electrodialysis
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP2002143861A (en) Slime treating and slime treatment method
JP2002066259A (en) Pure water production
JPH081167A (en) Water treatment apparatus
JP3521896B2 (en) Water treatment method for cooling water system
TW401379B (en) The treatment for the phosphoric ion acid-containing waste water
JP2001310187A (en) Slime preventing method
JP3454556B2 (en) Ion water generator