JPS6353205B2 - - Google Patents

Info

Publication number
JPS6353205B2
JPS6353205B2 JP9966881A JP9966881A JPS6353205B2 JP S6353205 B2 JPS6353205 B2 JP S6353205B2 JP 9966881 A JP9966881 A JP 9966881A JP 9966881 A JP9966881 A JP 9966881A JP S6353205 B2 JPS6353205 B2 JP S6353205B2
Authority
JP
Japan
Prior art keywords
copolymer
repeating unit
membrane
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9966881A
Other languages
Japanese (ja)
Other versions
JPS581711A (en
Inventor
Kyoshi Sugie
Kenko Yamada
Teizo Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP9966881A priority Critical patent/JPS581711A/en
Publication of JPS581711A publication Critical patent/JPS581711A/en
Publication of JPS6353205B2 publication Critical patent/JPS6353205B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な共重合体、更に詳しくは良好な
選択的透過性を有するアリルトリ(アルキルまた
は及びフエニル)シランとジエン類との新規な共
重合体に関する。 或る気体混合物から特定の気体を富化乃至分離
することは工業的にしばしば必要となる。例えば
燃焼用、医療用、廃水処理用などの用途における
酸素富化空気の製造、天然ガスその他からのヘリ
ウムの分離又は回収、石炭熱分解法における混合
ガスからの水素の分離などが挙げられる。 従来、既に合成ポリマーからなる膜によるガス
分離の試みが多くなされている。しかしながらこ
れらの合成ポリマーからなる膜はガス透過率、及
び選択性において充分ではなく、あるいはまた機
械的強度が不充分なために実用に供し得なかつ
た。 例えば、特公昭47−51715号公報にはポリビニ
ルトリメチルシランからなる膜によるガス混合物
の分離技術が開示されている。このようにポリビ
ニルトリメチルシランのような珪素含有炭素鎖重
合体は種々の気体混合物に対して選択透過性を示
すことが知られている。しかしながらポリビニル
トリメチルシランの薄膜は比較的もろく、実用上
充分な透過量が得られるような極めて薄い膜を製
造することがむずかしい。さらに例えばビニルト
リメチルシラン(A)と共役ジエン(B)のABA型ブロ
ツク共重合体は機械的な応力に弱くまた膜形成能
が不充分である。 本発明者らはこれらの問題点を解決すべく、鋭
意研究の結果、アリルトリ(アルキルまたは及び
フエニル)シランを基本とする共重合体が、気体
分離膜として連続的使用に耐える機械的強度を持
ち、気体混合物に対する良好な選択的透過性を有
することを見出し本発明に到達した。 すなわち、本発明は(a)少なくとも1種の下記式
で表わされる繰返し単位()、 〔但し式中R1、R2、R3は一もしくは異なる炭素
数1〜10のアルキル基又は炭素数1〜4のアルキ
ル置換もしくは未置換のフエニル基であるを示
す。〕 と(b)少なくとも1種の下記式で表わされる繰返し
単位()、 〔但し式中R4、R5は同一または相異なり、水素
原子またはメチル基を示す。〕 および/または下記式で表される繰返し単位
()、 〔但し式中R6、R7は同一または相異なり、水素
原子またはメチル基を示す。〕 との実質的な繰返し単位よりなり、(a)(b)の割合が
5:95〜95:5で、かつ共重合体の固有粘度が
1.0〜3.0のものから実質的にななる新規な共重合
体である。 本発明の共重合体を構成する前記繰返し単位
()において、R1、R2、R3は同一もしくは異な
る炭素数1〜10のアルキル基又は炭素数1〜4の
アルキル置換もしくは未置換のフエニル基であ
り、アルキル基の例としては、メチル基、エチル
基、n−プロピル基、iso−プロピル基、n−ブ
チル基、tert−ブチル基、n−ペンチル基、ネオ
ペンチル基、n−ヘキシル基、n−オクチル基、
n−デシル基などが挙げられる。これらの内で特
に好ましいのは炭素数1〜5の直鎖又は分岐アル
キル基である。 前記繰返し単位()に対応するモノマーとし
ては例えばアリルトリメチルシラン、アリルトリ
エチルシラン、アリルトリn−ブチルシラン、ア
リルトリt−ブチルシラン、アリルトリn−デシ
ルシラン、アリルジメチルn−プロピルシラン、
アリルジメチルt−ブチルシラン、アリルジメチ
ルn−オクチルシラン、アリルトリフエニルシラ
ン、アリルジメチルフエニルシラン、アリルジメ
チルトリルシラン等を挙げることができる。これ
らの単量体は1種又は2種以上併用して用いるこ
とができる。 一方、前記繰返し単位()においてR4、R5
は同一もしくは相異なり水素原子またはメチル基
である。 前記繰返し単位()においてR6、R7は同一
もしくは相異なり水素原子またはメチル基であ
る。 前記繰返し単位()及び()は共役ジエン
を重合することによつて得られるが、かかるジエ
ン類として例えばブタジエン、イソブレン、ジメ
チルブタジエンを挙げることができる。これらの
ジエン類は1種又は2種以上併用して用いること
ができる。 本発明の共重合体中の繰り返し単位()と
()及び/又は()の割合は広い範囲に渡つ
て量比を変えて共重合が可能であるが、気体分離
膜として連続的使用に耐える機械的強度を持ち、
気体混合物に対する良好な選択的透過性を有する
膜素材を提供するという本発明の目的を達成する
ためには、前記繰返し単位():()及び/又
は()の割合が5:95〜95:5の範囲、好まし
くは20:80〜80:20の範囲であることが望まし
い。単位()が5%未満では得られた共重合体
が結晶性となるために溶媒に対する溶解性がわる
く、製膜上の障害が生じ、得られた膜の強度もよ
わく実用に供し得ない。さらに単位()が95%
を越えると良好な気体の選択透過性が得られな
い。 本発明の共重合体は前記繰返し単位()と
()及び/又は()で表わされる繰返し単位
の合計が全繰返し単位に対して60モル%以上、好
ましくは70モル%以上であるのが有利である。 本発明の共重合体は繰返し単位()と()
及び/又は()の他にその他の成分を含んでい
てもよくその他の成分の含有形態は共重合、ブレ
ンドいずれであつてもよい。その他の成分の例と
しては例えば、オレフインポリマー、ジエンポリ
マー、ビニルポリマー、アルリル・メタクリルポ
リマー、ポリエーテル、ポリエステル、ポリアミ
ド等が挙げられる。 該共重合体の粘度は25℃にて0.5g/100c.c.のシ
クロヘキセン溶液としてオストワルド粘度計を用
いて測定した固有粘度で1.0〜3.0であることが望
ましく、1.0未満では製膜した場合に膜がもろろ
く、実用に供し得ない。3.0より大きくなると溶
液の流動性が悪くなり、製膜が困難となる。 本発明の新規な共重合体は、前記繰返し単位
()に対応するモノマーと、前記繰返し単位
()及び/又は()に対応するモノマーとを、
例えば通常のα−オレフインの重合触媒と共に10
〜120℃、好ましくは20〜100℃の温度で重合する
ことにより製造することができる。10℃より低い
温度では重合速度が遅く、経済的に不利である。
一方、120℃を越える温度では触媒活性が低下す
る傾向があるので好ましくない。 本発明の共重合体を製造するに採用される触媒
としては、α−オレフインの重合に一般に使用す
ることができる触媒であればよく、好ましい例と
しては、Ziegler−Natta触媒が挙げられる。か
ようなZiegler−Natta触媒としては遷移金属の
ハロゲン化物と金属アルキルとの組合せからな
り、遷移金属の例としてはa族、a族、a
族、a族、族の遷移金属が挙げられる。好適
な遷移金属の例としては例えばTi、Zr、V、Cr、
Mo、W、Mn、Fe等である。これらの内活性が
高いことからTi、Vなどのハロゲン化物が特に
好ましい。金属アルキルの例としては族、族
の金属が挙げられる。好適な金属の例としては
Be、Al、Mg、Zn等が挙げられる。触媒活性が
高いことからAl、Zn等のアルキル化物が好んで
用いられる。遷移金属のハロゲン化物と金属アル
キルとからなる触媒の量比は重合速度、転化率を
大きく左右する。 遷移金属のハロゲン化物と金属アルキルとは遷
移金属対遷移金属以外の金属の原子比が1:1〜
10、特に1:1〜6となるような割合で用いるの
が好ましい。 本発明の共重合体は種々の気体混合物成分に対
して高い選択性を示し、例えばアリルトリメチル
シラン/イソプレン共重合体からなる膜は例えば
酸素−窒素の分離能が高く、空気からの酸素富化
空気の製造という工業上有用なプロセスへの応用
が可能である。 本発明の共重合体は、各種の溶媒、例えばハロ
ゲン系溶媒、炭化水素系溶媒等に可溶であり、
種々の製膜法を選択でき、膜素材としての有用性
は極めて高い。好ましい溶媒の例としてはクロロ
ホルム、トリクロロエチレン、テトラクロロエチ
レン、1,2,3−トリクロロプロパン、ジクロ
ロベンゼン、クロロナフタレン等のハロゲン系溶
媒、ベンゼン、トルエン、キシレン、シクロヘキ
セン、テトラリン、デカリン等の炭化水素系の溶
媒が挙げられる。 本発明の共重合体を分離膜として利用する場
合、透過量は該膜の膜厚に反比例するため、固有
の選択透過性を実質的に損わず、分離膜として連
続使用に耐え得る強度をもつ限り、高い透過量を
得るために、できるだけ薄いほうが望ましい。 例えば好ましい膜厚としては0.01〜500μが適当
である。膜の形態としては中空糸膜、平膜、非対
称膜あるいは相分離法、抽出法、延伸法等種々の
方法で得られる多孔質支持体に担持させた複合膜
等が挙げられ、利用形態に応じた膜厚が選択され
る。 以下、実施例によつて本発明を詳述する。 実施例 1 表1に示した量のアリルトリメチルシラン、イ
ソプレン及び触媒、溶媒をガラスアンプルに仕込
み窒素雰囲気下で溶封した。この封管を−20℃の
恒温槽中で140時間静置して重合を行つた。 得られた粘稠なポリマー溶液をトルエンで希釈
し、INHCl、水の順で充分洗浄し、メタノール
中へ再沈した。更にこれらのポリマー分別沈澱法
により精製した。 結果を表1に示す。
The present invention relates to novel copolymers, and more particularly to novel copolymers of allyltri(alkyl or and phenyl)silanes and dienes having good selective permeability. It is often industrially necessary to enrich or separate a particular gas from a gas mixture. Examples include the production of oxygen-enriched air for combustion, medical, and wastewater treatment applications, the separation or recovery of helium from natural gas and other sources, and the separation of hydrogen from mixed gases in coal pyrolysis processes. Conventionally, many attempts have already been made to separate gases using membranes made of synthetic polymers. However, membranes made of these synthetic polymers are not suitable for practical use because they do not have sufficient gas permeability and selectivity, or have insufficient mechanical strength. For example, Japanese Patent Publication No. 47-51715 discloses a technique for separating gas mixtures using a membrane made of polyvinyltrimethylsilane. It is known that silicon-containing carbon chain polymers such as polyvinyltrimethylsilane exhibit selective permselectivity for various gas mixtures. However, thin films of polyvinyltrimethylsilane are relatively fragile, and it is difficult to manufacture extremely thin films that can provide a practically sufficient amount of permeation. Furthermore, for example, an ABA type block copolymer of vinyltrimethylsilane (A) and a conjugated diene (B) is weak against mechanical stress and has insufficient film-forming ability. In order to solve these problems, the present inventors conducted extensive research and found that a copolymer based on allyltri(alkyl or phenyl)silane has the mechanical strength to withstand continuous use as a gas separation membrane. The present invention was achieved by discovering that this material has good selective permeability to gas mixtures. That is, the present invention provides (a) at least one repeating unit represented by the following formula (); [However, in the formula, R 1 , R 2 and R 3 represent one or different alkyl groups having 1 to 10 carbon atoms, or substituted or unsubstituted phenyl groups with alkyl having 1 to 4 carbon atoms. ] and (b) at least one repeating unit represented by the following formula (), [However, in the formula, R 4 and R 5 are the same or different and represent a hydrogen atom or a methyl group. ] and/or a repeating unit () represented by the following formula, [However, in the formula, R 6 and R 7 are the same or different and represent a hydrogen atom or a methyl group. ], the ratio of (a) and (b) is 5:95 to 95:5, and the intrinsic viscosity of the copolymer is
This is a novel copolymer consisting essentially of 1.0 to 3.0. In the repeating units () constituting the copolymer of the present invention, R 1 , R 2 , and R 3 are the same or different alkyl groups having 1 to 10 carbon atoms, or substituted or unsubstituted phenyl groups to alkyl having 1 to 4 carbon atoms. Examples of alkyl groups include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n-hexyl group, n-octyl group,
Examples include n-decyl group. Among these, particularly preferred are straight chain or branched alkyl groups having 1 to 5 carbon atoms. Examples of monomers corresponding to the repeating unit () include allyltrimethylsilane, allyltriethylsilane, allyltri n-butylsilane, allyltri t-butylsilane, allyltri n-decylsilane, allyldimethyl n-propylsilane,
Examples include allyldimethyl t-butylsilane, allyldimethyl n-octylsilane, allyltriphenylsilane, allyldimethylphenylsilane, and allyldimethyltolylsilane. These monomers can be used alone or in combination of two or more. On the other hand, in the repeating unit () R 4 , R 5
are the same or different and are hydrogen atoms or methyl groups. In the repeating unit (), R 6 and R 7 are the same or different and are a hydrogen atom or a methyl group. The repeating units () and () can be obtained by polymerizing a conjugated diene, and examples of such dienes include butadiene, isobrene, and dimethylbutadiene. These dienes can be used alone or in combination of two or more. Copolymerization can be performed by changing the ratio of repeating units () and () and/or () in the copolymer of the present invention over a wide range, but it can withstand continuous use as a gas separation membrane. Has mechanical strength,
In order to achieve the objective of the present invention of providing a membrane material with good selective permeability to gas mixtures, the ratio of the repeating units ():() and/or () is from 5:95 to 95: 5, preferably 20:80 to 80:20. If the content of units () is less than 5%, the resulting copolymer becomes crystalline, resulting in poor solubility in solvents, resulting in problems in film formation, and the strength of the resulting film is so poor that it cannot be put to practical use. Furthermore, the unit () is 95%
If it exceeds 100%, good gas selective permselectivity cannot be obtained. Advantageously, in the copolymer of the present invention, the sum of the repeating units () and the repeating units represented by () and/or () is 60 mol% or more, preferably 70 mol% or more based on the total repeating units. It is. The copolymer of the present invention has repeating units () and ()
In addition to and/or (), other components may be included, and the other components may be contained in either copolymerization or blending. Examples of other components include olefin polymers, diene polymers, vinyl polymers, allyl-methacrylic polymers, polyethers, polyesters, and polyamides. The viscosity of the copolymer is preferably 1.0 to 3.0 as an intrinsic viscosity measured using an Ostwald viscometer as a 0.5 g/100 c.c. cyclohexene solution at 25°C; The membrane is brittle and cannot be put to practical use. When it is larger than 3.0, the fluidity of the solution deteriorates, making it difficult to form a film. The novel copolymer of the present invention comprises a monomer corresponding to the repeating unit (), a monomer corresponding to the repeating unit () and/or (),
For example, 10
It can be produced by polymerization at a temperature of ~120°C, preferably 20-100°C. At temperatures lower than 10°C, the polymerization rate is slow and economically disadvantageous.
On the other hand, temperatures exceeding 120°C are not preferred because the catalyst activity tends to decrease. The catalyst employed for producing the copolymer of the present invention may be any catalyst that can generally be used for polymerization of α-olefins, and a preferred example is the Ziegler-Natta catalyst. Such a Ziegler-Natta catalyst consists of a combination of a transition metal halide and a metal alkyl, and examples of transition metals include group a, group a,
Examples include transition metals of Group A, Group A, and Group A. Examples of suitable transition metals include Ti, Zr, V, Cr,
These include Mo, W, Mn, Fe, etc. Among these, halides such as Ti and V are particularly preferred because of their high activity. Examples of metal alkyl include group metals. Examples of suitable metals are
Examples include Be, Al, Mg, Zn, etc. Alkylated products of Al, Zn, etc. are preferably used because of their high catalytic activity. The quantitative ratio of the catalyst consisting of a transition metal halide and a metal alkyl greatly influences the polymerization rate and conversion rate. Transition metal halides and metal alkyls have an atomic ratio of transition metal to metal other than transition metal of 1:1 or more.
10, particularly preferably in a ratio of 1:1 to 6. The copolymer of the present invention exhibits high selectivity for various gas mixture components; for example, a membrane made of allyltrimethylsilane/isoprene copolymer has a high oxygen-nitrogen separation ability, and is highly selective for oxygen enrichment from air. Application to the industrially useful process of air production is possible. The copolymer of the present invention is soluble in various solvents, such as halogen solvents and hydrocarbon solvents,
Various membrane forming methods can be selected, and its usefulness as a membrane material is extremely high. Examples of preferred solvents include halogen solvents such as chloroform, trichloroethylene, tetrachloroethylene, 1,2,3-trichloropropane, dichlorobenzene, and chloronaphthalene, and hydrocarbon solvents such as benzene, toluene, xylene, cyclohexene, tetralin, and decalin. can be mentioned. When the copolymer of the present invention is used as a separation membrane, the amount of permeation is inversely proportional to the thickness of the membrane. In order to obtain as much transmission as possible, it is desirable that the material be as thin as possible. For example, a preferable film thickness is 0.01 to 500μ. Membrane forms include hollow fiber membranes, flat membranes, asymmetric membranes, and composite membranes supported on porous supports obtained by various methods such as phase separation, extraction, and stretching. The film thickness is selected. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 Allyltrimethylsilane, isoprene, catalyst, and solvent in the amounts shown in Table 1 were charged into a glass ampoule and sealed under a nitrogen atmosphere. This sealed tube was left standing in a constant temperature bath at -20°C for 140 hours to carry out polymerization. The obtained viscous polymer solution was diluted with toluene, thoroughly washed with INHCl and water in that order, and reprecipitated into methanol. These polymers were further purified by fractional precipitation. The results are shown in Table 1.

【表】 実施例 2 表2に示した量のアリルトリメチルシラン、ス
チレン、イソプレン及び触媒、溶媒をガラスアン
プルに仕込み、窒素雰囲気下で溶封した。この封
管を40℃に保つたオイルバス中で振盪しながら90
時間重合を行つたところ粘稠なポリマー溶液が得
られた。 この溶液をトルエンで希釈した後、INHCl、
水の順で充分洗浄し、メタノール中へ析出させ
た。得られた重合体は更に分別沈澱を行つて精製
した。 重合組成並び得られた重合体の性質を下記表2
に示した。この重合体はトルエンに溶解して均一
溶液を形成し、この溶液からキヤステイングによ
つて自立性のある膜を得ることができた。
[Table] Example 2 The amounts of allyltrimethylsilane, styrene, isoprene, catalyst, and solvent shown in Table 2 were charged into a glass ampoule, and the ampoule was sealed under a nitrogen atmosphere. While shaking this sealed tube in an oil bath kept at 40℃,
When polymerization was carried out for a period of time, a viscous polymer solution was obtained. After diluting this solution with toluene, INHCl,
The residue was thoroughly washed with water and precipitated into methanol. The obtained polymer was further purified by fractional precipitation. The polymer composition and properties of the obtained polymer are shown in Table 2 below.
It was shown to. This polymer was dissolved in toluene to form a homogeneous solution from which a self-supporting membrane could be obtained by casting.

【表】 本発明の有用性をさらに明白にするために本発
明の共重合体を溶解せしめてなる溶液から0.1μ程
度の膜厚を有する超薄膜を形成し、その気体分離
特性を測定した。 実施例 3 シクロヘキセン93.12重量部、シクロヘキセニ
ルヒドロパーオキサイド2.88重量部とからなる溶
媒に実施例1で得られたポリマー4重量部を溶解
せしめて溶液を調製した。 この溶液を50℃に保持し、15℃に保つた静止し
た水の表面上から約10mm上方へ離れた約2mm2の断
面積を有する開口部から該水の表面に1滴滴下し
た。 滴下された液滴は直ちに水面上に展開し、滴下
位置をほぼ中心とする円形状の固体膜を与えた。
同様な操作を繰返して得た固体膜の平均膜面積は
240cm2であつた。 かくして水面上に形成された固体膜を水面下へ
押さえつけるようにしてポリプロピン製多孔質膜
上に密着支持させ、この操作を2回繰り返すこと
によつて多孔質膜上に2枚の固体膜が重なつた複
合膜を得た。この複合膜の酸素透過量は60×10-4
c.c.(STP)/cm2・sec・cmHg、窒素に対する酸素
の透過係数比は3.0であつた。
[Table] In order to further clarify the usefulness of the present invention, an ultra-thin film having a thickness of approximately 0.1 μm was formed from a solution prepared by dissolving the copolymer of the present invention, and its gas separation characteristics were measured. Example 3 A solution was prepared by dissolving 4 parts by weight of the polymer obtained in Example 1 in a solvent consisting of 93.12 parts by weight of cyclohexene and 2.88 parts by weight of cyclohexenyl hydroperoxide. This solution was maintained at 50°C and one drop was placed on the surface of the still water kept at 15°C through an opening having a cross-sectional area of about 2mm 2 spaced about 10mm above the surface. The dropped droplets immediately spread on the water surface, forming a circular solid film centered approximately at the droplet position.
The average membrane area of solid membranes obtained by repeating the same operation is
It was 240cm2 . The solid film thus formed on the water surface is pressed down below the water surface and closely supported on the porous polypropylene membrane, and by repeating this operation twice, the two solid films are placed heavily on the porous membrane. A mature composite membrane was obtained. The oxygen permeation rate of this composite membrane is 60×10 -4
cc(STP)/cm 2 ·sec·cmHg, the permeability coefficient ratio of oxygen to nitrogen was 3.0.

Claims (1)

【特許請求の範囲】 1 (a) 少なくとも1種の下記式で表わされる繰
返し単位() 〔但し式中R1、R2、R3は同一もしくは異なる
炭素数1〜10のアルキル基又は炭素数1〜4の
アルキル置換もしくは未置換のフエニル基を示
す。〕 と (b) 少なくとも1種の下記式で表わされる繰返し
単位() 〔但し式中R4、R5は同一または相異なり、水
素原子またはメチル基を示す。〕 および/または下記式で表わされる繰返し単位
()、 〔但し式中R6、R7は同一または相異なり、水
素原子またはメチル基を示す。〕 との繰返し単位よりなり、(a)(b)の割合が5:95〜
95:5で、かつ共重合体の固有粘度が1.0〜3.0の
ものから実質的になる新規な共重合体。
[Claims] 1 (a) At least one repeating unit represented by the following formula () [However, in the formula, R 1 , R 2 and R 3 represent the same or different alkyl groups having 1 to 10 carbon atoms or substituted or unsubstituted phenyl groups with alkyl having 1 to 4 carbon atoms. ] and (b) at least one repeating unit represented by the following formula ( ) [However, in the formula, R 4 and R 5 are the same or different and represent a hydrogen atom or a methyl group. ] and/or a repeating unit () represented by the following formula, [However, in the formula, R 6 and R 7 are the same or different and represent a hydrogen atom or a methyl group. ] Consists of a repeating unit with (a) and (b) in a ratio of 5:95 ~
A novel copolymer having a ratio of 95:5 and an intrinsic viscosity of 1.0 to 3.0.
JP9966881A 1981-06-29 1981-06-29 Novel copolymer and membrane prepared therefrom Granted JPS581711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9966881A JPS581711A (en) 1981-06-29 1981-06-29 Novel copolymer and membrane prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9966881A JPS581711A (en) 1981-06-29 1981-06-29 Novel copolymer and membrane prepared therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24796887A Division JPS63100905A (en) 1987-10-02 1987-10-02 Permselective membrane formed with novel copolymer

Publications (2)

Publication Number Publication Date
JPS581711A JPS581711A (en) 1983-01-07
JPS6353205B2 true JPS6353205B2 (en) 1988-10-21

Family

ID=14253406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9966881A Granted JPS581711A (en) 1981-06-29 1981-06-29 Novel copolymer and membrane prepared therefrom

Country Status (1)

Country Link
JP (1) JPS581711A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110545A (en) * 1987-10-23 1989-04-27 Bridgestone Corp Silane coupling agent
JP5612567B2 (en) * 2009-04-07 2014-10-22 住友ゴム工業株式会社 Polar group-containing copolymer, rubber composition and studless tire
JP5363239B2 (en) * 2009-08-12 2013-12-11 住友ゴム工業株式会社 Copolymer, rubber composition and pneumatic tire
JP2011225794A (en) * 2010-03-30 2011-11-10 Sumitomo Chemical Co Ltd Conjugated diene polymer, conjugated diene polymer composition, and method for producing conjugated diene polymer

Also Published As

Publication number Publication date
JPS581711A (en) 1983-01-07

Similar Documents

Publication Publication Date Title
Takada et al. Gas permeability of polyacetylenes carrying substituents
Saam et al. Block copolymers of polydimethylsiloxane and polystyrene
US4689267A (en) Composite hollow fiber
Nagase et al. Chemical modification of poly (substituted‐acetylene): II. Pervaporation of ethanol/water mixture through poly (1‐trimethylsilyl‐1‐propyne)/poly (dimethylsiloxane) graft copolymer membrane
JPH0521923B2 (en)
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS6353205B2 (en)
Nagase et al. Chemical modification of poly (substituted‐acetylene). I. Synthesis and gas permeability of poly (1‐trimethylsilyl‐1‐propyne)/poly (dimethylsiloxane) graft copolymer
Lin et al. Ultrahigh oxygen permeability of the desilylated membranes of halogen-containing diphenylacetylene copolymers
Sakaguchi et al. Substituted polyacetylenes
US4746334A (en) Poly(disubstituted acetylene)/polyorganosiloxane graftcopolymer and membrane for gas separation
Sakaguchi et al. Enhancement of oxygen permeability by copolymerization of silyl group-containing diphenylacetylenes with tert-butyl group-containing diphenylacetylene and desilylation of copolymer membranes
Ito et al. Synthesis and properties of germanium‐containing poly (diphenylacetylenes)
JPS63100905A (en) Permselective membrane formed with novel copolymer
JPH0212613B2 (en)
JPS6251130B2 (en)
Nagasaki et al. Novel organosilicon‐containing polymers for an oxygen permselective membrane
WO1996039459A1 (en) Anionically polymerized block copolymers of ethylene and cyclic siloxane monomers
US4755561A (en) Poly(disubstituted acetylene)/polyorganosiloxane graft copolymer and membrane for gas separation
JPH05140299A (en) Preparation of modified amorphous poly(2,6-dimethyl- p-oxyphenylene)
JP2559588B2 (en) Gas separation membrane
JPS5959211A (en) Gas separation membrane
JPH0534048B2 (en)
JPH0536091B2 (en)
Hu et al. Synthesis and properties of poly (diphenylacetylenes) containing siloxy and halogen/methyl groups and their desilylated membranes