JPH0536091B2 - - Google Patents

Info

Publication number
JPH0536091B2
JPH0536091B2 JP59041771A JP4177184A JPH0536091B2 JP H0536091 B2 JPH0536091 B2 JP H0536091B2 JP 59041771 A JP59041771 A JP 59041771A JP 4177184 A JP4177184 A JP 4177184A JP H0536091 B2 JPH0536091 B2 JP H0536091B2
Authority
JP
Japan
Prior art keywords
formula
membrane
group
polymer
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041771A
Other languages
Japanese (ja)
Other versions
JPS60187304A (en
Inventor
Munehisa Okada
Isao Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP59041771A priority Critical patent/JPS60187304A/en
Publication of JPS60187304A publication Critical patent/JPS60187304A/en
Publication of JPH0536091B2 publication Critical patent/JPH0536091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、良好な分離性と透過性、特に気体に
対して優れた分離性と透過性を有し、物質混合
物、特に気体混合物の選択的分離に適した分離膜
に係わるものである。 以下の説明では、物質混合物の例として気体混
合物をとりあげる。 気体混合物の選択的分離に適した分離膜として
は、気体に対する高い分離率と大きな透過速度が
要求される。このような要求を満たすためには、
実質的な分離性能を呈する膜の厚さは可及的薄い
ことが望ましく、実用に当つては、かかる膜を通
気性のある多孔性の層(例えば和紙、不織布、合
成紙、紙、布、金網、過膜、限外過膜等)
によつて保持させた構造からなるものが好まし
い。 上記のような構造体を製造するために多くの方
法が提案されている。例えば、通気性を有する多
孔膜の上に、別途製膜した分離性を有する薄膜を
重ね合わせる方法、表皮層(分離性を有する)と
多孔層(通気性を有しかつ支持体となる)とが一
体となつているシート体を一気に製膜する方法、
多孔質の膜の上に種々の方法によりモノマーから
直接重合などを行い、分離性を有する薄膜を形成
させる方法、又は多孔質の膜の上にポリマー溶液
をコーテイングし、しかる後溶媒を蒸発させて分
離性を有する薄膜を形成させる方法などが知られ
ている。 以上の各種方法の中では、支持体となる通気性
の多孔質の膜の上に別の高分子材料の溶液をコー
テイングし、しかる後溶媒を蒸発して分離性のあ
る薄膜層を形成させる方法が、比較的多種、多様
の高分子材料の適用を可能にするので好ましい。
しかしこの場合、被覆する膜の厚さをあまり薄く
すると分離性能が減退し、従つて、ある程度以上
厚く被覆する必要があり、この要求を満たすため
厚く被覆すると被処理物の透過速度が低下すると
いう二律背反の問題がある。このような不都合を
軽減するために、膜材料の面から次の二つの対策
が考えられている。すなわち、第1には、薄膜化
は無理であるが、現行の厚さでも気体の透過性が
比較的高く、しかも分離性能を有する材料を選ぶ
こと、第2には、薄膜にしても、ピンホールを生
じない材料を選ぶことである。しかしながら、現
在のところ、いずれの場合についても満足すべき
ものは得られていない。 例えば、炭化水素系ゴム(例えば天然ゴム、ポ
ロブタジエン)は分子内に二重結合をもち、気体
特にCO2の透過系数がオルガノポリシロキサンに
次いで大きい高分子材料の一つとして知られてい
るが、他方、ゴム弾性を有し、凝集力が強く、薄
膜化は困難である。しかも、無理に数十μ以下の
厚さの膜にすると、厚みに関する不均一性の問題
と、ピンホール発生という問題が生じ、良好な気
体分離性能を示さない。 また、アセチレン化合物重合体は、分子内に共
役の二重結合をもつていることからみて、炭化水
素系ゴムと同様の良好な気体透過性が期待でき
る。しかし実際には、重合体として低分子量のも
のしか得られなかつたり、また高分子量物が得ら
れても良好な溶媒がない場合や、溶媒があつても
高温でのみ可溶であつたりして、溶解時にその熱
不安定性に基因して変質したりする。このように
現在に至るまで分離膜としての要望に答え、しか
も良好に薄膜化し得るポリマーは知られていな
い。 一方、一置換フエニルアセチレン類又は二置換
アセチレン類からは新規な鎖状重合体を高収率で
得ることができること、しかもその生成重合体は
光散乱法による重量平均分子量で1万以上、特に
10万〜100万という、アセチレン化合物重合体と
しては非常に高い分子量を有するのに加えて、ト
ルエン、シクロヘキサンなどの炭化水素類に完全
に溶解するという特長をもつていることなどにつ
いては、特公昭55−23565号、特開昭58−32608号
等の各公報などに記載されていて公知である。し
かしながら、これらの一置換フエニルアセチレン
類又は二置換アセチレン類から得られる新規な鎖
状重合体の気体混合物や液体混合物等に対する分
離性については、未だ全く知られていない。 本発明者等は、かかる現状に鑑み、これらの新
規な置換ポリアセチレンを用い、気体や液体等の
物質混合物に対する分離性につき鋭意検討を重ね
た結果、これらの鎖状重合体を膜材料の主体とし
た場合に、気体混合物の分離において、優れた選
択性を保持しながら、気体の透過係数は従来の同
系統の膜より大きな膜が得られることを見出し
た。すなわち、置換アルキン類、例えば 一般式() HC≡C−R′ ……() (上式において、R′は分岐を有するアルキル
基であり、このアルキル基はその基の水素の1個
以上が置換基で置換されていてもよい。)で表わ
される一置換アセチレンを単量体とする重量平均
分子量1万以上の鎖状重合体を主体とする分離
膜、 一般式() (上式において、Aはアルキル基、アリール
基、アラルキル基、アルコキシ基、アリールオキ
シ基のような置換基、又はハロゲン原子を示し、
nは0〜5の整数を示す。)で表わされる二置換
アセチレンを単量体とする重量平均分子量1万以
上の鎖状重合体を主体とする分離膜、あるいは 一般式() CH3−C≡C−R″ ……() (上式において、R″はアリール基であり、こ
のアリール基はその水素の1個以上が置換基でさ
らにハロゲン原子、アリール基、アルコキシ基又
はアリールオキシ基でいくつか置換されていても
よい。)で表わされる二置換アセチレンを単量体
とする重量平均分子量1万以上の鎖状重合体を主
体する分離膜などを用いることによつて、気体混
合物の分離において優れた選択性を保持しなが
ら、気体の透過係数は従来の同系統の膜と同等以
上の膜が得られることを初めて見出し、さきに出
願したのである。(特願昭57−066475号、特願昭
57−117813号及び特願昭57−174389号。) 本発明者等は、上記の如き新規な知見に基き、
アセチレン類の高重合体には物質混合物に対する
良好な分離性を期待できると考え、まず一置換フ
エニルアセチレン類や一置換複素環アセチレン類
等の重合体を用い、物質混合物例えば気体混合物
に対する分離性につきさらに検討を進めた結果、
この鎖状重合体を膜材料の主体とした場合に、気
体混合物の分離において、優れた選択性を保持し
ながら、気体の透過係数は従来の同系統の膜と同
等な膜が得られることを見出し、本発明に到達し
た。すなわち、本発明は、混合物、特に気体混合
物の分離において優れた選択性を保持しながら、
気体の透過係数の大きな膜を提供することを目的
とするものであつて、その要旨とするところは、
一般式 () HC≡C−X ……() (式中、Xは
The present invention relates to a separation membrane that has good separation properties and permeability, particularly for gases, and is suitable for selectively separating substance mixtures, especially gas mixtures. In the following description, gas mixtures will be taken as examples of substance mixtures. A separation membrane suitable for selectively separating gas mixtures is required to have a high gas separation rate and a high permeation rate. In order to meet such demands,
It is desirable that the thickness of the membrane that exhibits substantial separation performance be as thin as possible, and in practical use, such a membrane is coated with an air-permeable porous layer (e.g. Japanese paper, non-woven fabric, synthetic paper, paper, cloth, etc.). wire mesh, permeable membrane, ultrapermeable membrane, etc.)
Preferably, the structure is held by Many methods have been proposed for manufacturing structures such as those described above. For example, a method in which a separately formed thin film with separability is superimposed on a porous membrane with breathability, a skin layer (having separability) and a porous layer (having breathability and serving as a support) A method of forming a sheet body in one piece,
Direct polymerization of monomers on a porous membrane using various methods to form a thin film with separation properties, or coating a porous membrane with a polymer solution and then evaporating the solvent. A method of forming a thin film having separability is known. Among the various methods mentioned above, a method in which a solution of another polymeric material is coated on an air-permeable porous membrane serving as a support, and then the solvent is evaporated to form a separable thin film layer. However, it is preferable because it allows the application of a relatively wide variety of polymeric materials.
However, in this case, if the thickness of the membrane to be coated is made too thin, the separation performance will deteriorate, so it is necessary to coat the membrane thicker than a certain level. There is a problem of trade-offs. In order to alleviate such inconveniences, the following two measures have been considered from the viewpoint of membrane materials. First, although it is impossible to make a thin film, it is necessary to select a material that has relatively high gas permeability and separation performance even at the current thickness. The key is to choose a material that does not create holes. However, at present, nothing satisfactory has been obtained in either case. For example, hydrocarbon rubber (e.g. natural rubber, polybutadiene) has double bonds in its molecules and is known as one of the polymer materials with the second highest permeation number for gases, especially CO 2 , after organopolysiloxane. On the other hand, it has rubber elasticity and strong cohesive force, making it difficult to form a thin film. Moreover, if the film is forced to have a thickness of several tens of microns or less, problems of non-uniformity in thickness and the occurrence of pinholes will arise, and good gas separation performance will not be exhibited. Furthermore, since acetylene compound polymers have conjugated double bonds in their molecules, they can be expected to have good gas permeability similar to hydrocarbon rubbers. However, in reality, only low-molecular-weight polymers can be obtained, or even if high-molecular-weight polymers are obtained, there are cases in which there is no suitable solvent, or even if a solvent is available, it is only soluble at high temperatures. , when melted, it may change in quality due to its thermal instability. Thus, until now, no polymer has been known that meets the demands for separation membranes and that can be made into thin films. On the other hand, it is possible to obtain novel chain polymers in high yield from monosubstituted phenylacetylenes or disubstituted acetylenes, and the resulting polymer has a weight average molecular weight of 10,000 or more as measured by light scattering method, especially
In addition to having an extremely high molecular weight for an acetylene compound polymer, ranging from 100,000 to 1,000,000, it is also completely soluble in hydrocarbons such as toluene and cyclohexane. It is described in various publications such as No. 55-23565 and Japanese Unexamined Patent Publication No. 58-32608, and is well known. However, the separability of novel chain polymers obtained from these monosubstituted phenylacetylenes or disubstituted acetylenes in gas mixtures, liquid mixtures, etc. is still completely unknown. In view of the current situation, the present inventors have conducted intensive studies on the separability of substance mixtures such as gases and liquids using these novel substituted polyacetylenes, and have determined that these chain polymers can be used as the main component of membrane materials. We have found that when this method is used, it is possible to obtain a membrane with a higher gas permeability coefficient than conventional membranes of the same type while maintaining excellent selectivity in the separation of gas mixtures. That is, substituted alkynes, for example, the general formula () HC≡C-R' ... () (In the above formula, R' is a branched alkyl group, and this alkyl group has one or more hydrogen atoms in the group. A separation membrane mainly composed of a chain polymer having a weight average molecular weight of 10,000 or more and having monosubstituted acetylene as a monomer represented by the general formula (), which may be substituted with a substituent. (In the above formula, A represents a substituent such as an alkyl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, or a halogen atom,
n represents an integer of 0 to 5. ), or a separation membrane based on a chain polymer with a weight average molecular weight of 10,000 or more and containing disubstituted acetylene as a monomer, or with the general formula () CH 3 −C≡C−R″ ...() ( In the above formula, R'' is an aryl group, and one or more of the hydrogen atoms of this aryl group may be substituted with a substituent, and some may be further substituted with a halogen atom, an aryl group, an alkoxy group, or an aryloxy group.) By using a separation membrane mainly composed of a chain polymer with a weight average molecular weight of 10,000 or more and having disubstituted acetylene as a monomer represented by It was discovered for the first time that a membrane with a gas permeability coefficient equal to or higher than that of conventional membranes of the same type could be obtained, and the patent application was filed. (Special Application No. 57-066475,
No. 57-117813 and patent application No. 57-174389. ) The present inventors, based on the above novel findings,
Considering that high polymers of acetylenes can be expected to have good separation properties for substance mixtures, we first used polymers such as monosubstituted phenylacetylenes and monosubstituted heterocyclic acetylenes to improve separation properties for substance mixtures, such as gas mixtures. As a result of further consideration,
It has been shown that when this chain polymer is used as the main membrane material, a membrane can be obtained that maintains excellent selectivity in separating gas mixtures and has a gas permeability coefficient equivalent to that of conventional membranes of the same type. Heading, we arrived at the present invention. That is, the present invention provides excellent selectivity in the separation of mixtures, especially gaseous mixtures, while
The purpose is to provide a membrane with a large gas permeability coefficient, and its gist is as follows:
General formula () HC≡C-X ...() (wherein, X is

【式】で表わされる置 換フエニル基又はThe position represented by [formula] substituted phenyl group or

【式】【formula】

【式】【formula】

【式】【formula】

【式】若しくは[Formula] or

【式】の複素環基を表わし、またRはニト ロ基、炭素数1〜6のアルコキシ基、フエノキシ
基、フエニルスルホニル基、フエニルチオ基又は
−CH=N−N(C6H53を表わし、かつnは1,
2又は3の数である)で示される−置換アセチレ
ンを単量体とする数平均分子量1000以上の鎖状重
合体を主体とする分離膜にある。 以下、本発明を詳細に説明する。 本発明の分離膜の主体は、前示一般式()で
表わされる一置換アセチレンの単量体を付加重合
して得られる重合体である。すなわち、
[Formula] represents a heterocyclic group, and R represents a nitro group, an alkoxy group having 1 to 6 carbon atoms, a phenoxy group, a phenylsulfonyl group, a phenylthio group, or -CH=N-N(C 6 H 5 ) 3 and n is 1,
The separation membrane is mainly composed of a chain polymer having a number average molecular weight of 1000 or more and having -substituted acetylene as a monomer represented by the number 2 or 3. The present invention will be explained in detail below. The main component of the separation membrane of the present invention is a polymer obtained by addition polymerization of a monosubstituted acetylene monomer represented by the general formula (). That is,

【式】の構造単位を含有し、その含有量 は20〜100モル%、好ましくは50〜100モル%の重
合体であつて、重合体の数平均分子量は単量体の
種類や重合条件によつて異なるがほぼ1000〜30万
の間にある。 本発明の分離膜の主体をなす鎖状重合体は、1
種又はそれ以上の一置換アセチレン化合物を溶剤
中で触媒を用い重合させることによつて得られ
る。この場合の溶剤としては、ベンゼン、トルエ
ン、テトラリン等の芳香族炭化水素、ジオキサ
ン、ジブチルエーテル、アニソール等のエーテル
類、安息香酸メチル、酢酸エチル等のエステル
類、四塩化炭素、オルトジクロロベンゼン、1,
2−ジクロロエタン等の塩素化炭化水素等を単独
又は混合して用いることができる。 触媒としては、(1)六塩化タングステンWCl6
(2)五塩化モリブテンMoCl5、(3)W(CO)6又はMo
(CO)6に代表される周期律表第族遷移金属カル
ボニルと、有機ハロケン化合物例えばCCl4
CBr4、又はCCl3COOEtとの光反応生成物が用い
られる。この触媒と併せて用いられる助触媒とし
て、水、アルコール類や有機スズ化合物を用いて
もよい。特に有機スズ化合物が好ましく、中でも
テトラフエニルスズが好ましい。 単量体と(主)触媒との割合は、モル比で前者
100に対し、後者5〜0.2の範囲が適当であり、助
触媒対主触媒の割合はモル比で、0.3〜3の範囲
が好ましい。触媒は溶液状で用いられ、主触媒と
助触媒を溶媒に溶解し、30〜60℃で10〜60分間放
置した後に用いるのがよい。 重合反応における単量体の濃度は0.1〜5モ
ル/の範囲が好ましい。重合反応の温度は通常
0〜60℃、反応時間は数十分〜数時間の範囲から
選択される。 反応終了後、反応に用いた溶媒で希釈した後、
大量のメタノール中に投入すると生成重合体が沈
殿するので、これを別、乾燥する。 かくして得られた一置換アセチレンの重合体
は、その溶液をキヤストすることにより均質の薄
膜が得られる。分離膜としては、上記のようにし
て得られた重合体又はこれを主成分としたもので
よく、他成分との共重合体の形にしたもの、また
ブレンド品として他の成分と混合したものを製膜
したものでもよい。 本発明の分離膜は、上述のようにして得られた
重合体を主体とし、これを公知の製膜方法、例え
ば乾湿式製膜性(溶液流延法で均質膜又は非対称
膜を作成する方法)、液面製膜法(水面上展開
法)、溶液塗布法(ポリマーコーテイング法)及
び真空蒸着法等により製膜したものを分離膜とし
て使用することができる。なお、溶液塗布法は、
支持体となる通気性のある多孔質の膜、例えば平
膜、管状膜や中空糸膜上に別の高分子材料の溶液
をコーテイングし、しかる後溶媒を蒸発して分離
性のある薄膜層を形成させる方法であり、比較的
多種、多様の高分子材料に適用可能であつて、本
発明の分離膜の製膜法としても好適である。 本発明の分離膜は、優れた特性のために、均質
膜、非対称膜および複合膜の形態にて、物質混合
物中の特定物質の分離に使用することができる。
対象物質としては、気体、特に酸素、窒素、炭酸
ガス、一酸化炭素、水素、ヘリウム、メタン、ア
ルゴンの少くとも一つの気体を含有する気体混合
物を相互に分別するために使用することができ
る。例えば、酸素富化空気の製造における窒素と
酸素の分離、天然ガスからヘリウムの回収におけ
るメタンとヘリウムの分離、水添反応廃ガスから
の水素の回収におけるアルゴンと水素、メタンと
水素、窒素と水素の分離、クラツキングガス中の
水素の回収における一酸化炭素と水素の分離、燃
焼ガスからの二酸化炭素の回収における二酸化炭
素と窒素の分離などに応用することができる。 次に、本発明を、実施例及び実施例で用いる重
合体の製造例により更に具体的に説明する。本明
細書中、「%」は特に断わらない限り重量による
ものである。 製造例 1 六塩化タングステン−トルエンのスラリー液と
テトラフエニルスズ−トルエンのスラリー液を別
途に調整した後、各々の濃度が0.1Mになる様に
混合した。混合後のスラリー液は最初暗灰色であ
るが、室温で30分撹拌すると暗かつ色に変化し
た。この様にして得られた触媒スラリー液を、
2.12gの4−エチニルフエニルフエニルエーテル
〔HC≡C−X,X:
A polymer containing the structural unit of [Formula] with a content of 20 to 100 mol%, preferably 50 to 100 mol%, and the number average molecular weight of the polymer depends on the type of monomer and polymerization conditions. It varies depending on the time, but it is approximately between 10 million and 300,000. The chain polymer forming the main body of the separation membrane of the present invention is 1
It is obtained by catalytically polymerizing one or more monosubstituted acetylene compounds in a solvent. In this case, solvents include aromatic hydrocarbons such as benzene, toluene, and tetralin, ethers such as dioxane, dibutyl ether, and anisole, esters such as methyl benzoate, and ethyl acetate, carbon tetrachloride, orthodichlorobenzene, ,
Chlorinated hydrocarbons such as 2-dichloroethane can be used alone or in combination. As a catalyst, (1) tungsten hexachloride WCl 6 ,
(2) Molybdenum pentachloride MoCl 5 , (3) W(CO) 6 or Mo
Group transition metal carbonyl of the periodic table represented by (CO) 6 and organic halokene compounds such as CCl 4 ,
A photoreaction product with CBr 4 or CCl 3 COOEt is used. As a co-catalyst used in conjunction with this catalyst, water, alcohols or organic tin compounds may be used. Particularly preferred are organic tin compounds, and among these, tetraphenyltin is preferred. The ratio of monomer to (main) catalyst is the former in terms of molar ratio.
100, the latter range is suitably in the range of 5 to 0.2, and the molar ratio of the promoter to the main catalyst is preferably in the range of 0.3 to 3. The catalyst is used in the form of a solution, and the main catalyst and co-catalyst are preferably dissolved in a solvent and left at 30-60°C for 10-60 minutes before use. The monomer concentration in the polymerization reaction is preferably in the range of 0.1 to 5 mol/mol. The temperature of the polymerization reaction is usually selected from 0 to 60°C, and the reaction time is selected from the range of several tens of minutes to several hours. After the reaction is completed and diluted with the solvent used for the reaction,
If it is poured into a large amount of methanol, the resulting polymer will precipitate, so this is separated and dried. The thus obtained monosubstituted acetylene polymer can be cast into a homogeneous thin film by casting the solution. The separation membrane may be the polymer obtained as described above or a product containing this as the main component, a copolymer with other components, or a blend product mixed with other components. A film formed by forming a film may also be used. The separation membrane of the present invention is mainly composed of the polymer obtained as described above, and is produced by a known membrane forming method, such as a dry-wet film forming method (a method for producing a homogeneous membrane or an asymmetric membrane by a solution casting method). ), liquid surface film forming method (water surface development method), solution coating method (polymer coating method), vacuum evaporation method, etc. can be used as the separation membrane. In addition, the solution coating method is
A solution of another polymeric material is coated onto an air-permeable porous membrane that serves as a support, such as a flat membrane, a tubular membrane, or a hollow fiber membrane, and then the solvent is evaporated to form a thin membrane layer with separation properties. This method is applicable to a relatively wide variety of polymer materials, and is also suitable as a method for forming the separation membrane of the present invention. Due to its excellent properties, the separation membrane of the present invention can be used in the form of homogeneous membranes, asymmetric membranes and composite membranes for the separation of specific substances in substance mixtures.
The target substance can be used to separate gases from each other, in particular gas mixtures containing at least one of the following gases: oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen, helium, methane, argon. For example, separation of nitrogen and oxygen in the production of oxygen-enriched air, separation of methane and helium in the recovery of helium from natural gas, argon and hydrogen, methane and hydrogen, nitrogen and hydrogen in the recovery of hydrogen from hydrogenation reaction waste gas. It can be applied to the separation of carbon monoxide and hydrogen in the recovery of hydrogen from cracking gas, the separation of carbon dioxide and nitrogen in the recovery of carbon dioxide from combustion gas, etc. Next, the present invention will be explained in more detail with reference to Examples and production examples of polymers used in the Examples. In this specification, "%" is by weight unless otherwise specified. Production Example 1 A slurry liquid of tungsten hexachloride-toluene and a slurry liquid of tetraphenyltin-toluene were prepared separately and then mixed so that the concentration of each was 0.1M. The slurry liquid after mixing was initially dark gray, but after stirring at room temperature for 30 minutes, it turned dark and colored. The catalyst slurry liquid obtained in this way was
2.12 g of 4-ethynyl phenyl phenyl ether [HC≡C-X,X:

【式】〕 (以下、「モノマー」という。)のトルエン溶液に、
モノマーに対し各触媒が3.8モル%になる様に加
え、室温にて24時間撹拌したところ、2.00g(収
率=94%)のレンガ色の重合体粉末を得た。得ら
れた重合体生成物のIRスペクトルは、モノマー
に存在する末端アセチレン固有の3300cm-1の吸収
の消失を示した。また、当該生成物の元素分析値
は、下表に示すように、重合体の構造単位を として計算した値とよく一致した。
[Formula]] (hereinafter referred to as "monomer") in toluene solution,
Each catalyst was added in an amount of 3.8 mol % based on the monomer and stirred at room temperature for 24 hours to obtain 2.00 g (yield = 94%) of a brick-colored polymer powder. The IR spectrum of the resulting polymer product showed the disappearance of the absorption at 3300 cm -1 inherent to the terminal acetylene present in the monomer. In addition, the elemental analysis values of the product are based on the structural units of the polymer, as shown in the table below. It was in good agreement with the calculated value.

【表】 得られた一置換アセチレンの重合体の数平均分
子量は9900であつた。 なお、数平均分子量はゲルパーミエーシヨンク
ロマトグラフイーにより測定した。この際のポリ
スチレンの検量線使用、条件は次の通りである。 カラム:TSK G5432mix 溶媒:テトラヒドロフラン 検出:屈折率を使用 流量:10ml/min 温度:40℃ 溶液濃度:0.5Wt% 注入量:100μ 製造例 2〜6 製造例1の4−エチニルフエニルフエニルエー
テルの代りに、HC≡C−Xで示されるX
[Table] The number average molecular weight of the monosubstituted acetylene polymer obtained was 9,900. Note that the number average molecular weight was measured by gel permeation chromatography. In this case, the polystyrene calibration curve used and the conditions are as follows. Column: TSK G5432mix Solvent: Tetrahydrofuran Detection: Using refractive index Flow rate: 10 ml/min Temperature: 40°C Solution concentration: 0.5 Wt% Injection amount: 100μ Production examples 2 to 6 Production example 1 of 4-ethynyl phenyl phenyl ether Instead, X denoted by HC≡C−X

【式】(製造例2)、[Formula] (Production Example 2),

【式】(製造例3)、[Formula] (Production Example 3),

【式】(製造例4)、[Formula] (Production Example 4),

【式】(製造例5)又は[Formula] (Production Example 5) or

【式】(製造例6) の5種の一置換アセチレンを用いた他は、製造例
1と全く同様にして、赤かつ色〜黒かつ色固体の
5種の一置換アセチレンの重合体を得た。 製造例2〜6で得られた5種の重合体の収率は
それぞれ100%、38%、63%、96%、63%であり、
また当該重合体の数平均分子量はそれぞれ7800、
10300、2200、11200、2500であつた。 実施例 1 製造例1で4−エチニルフエニルフエニルエー
テルから得られた重合体をトルエンに溶解して1
%溶液とし、この溶液に多孔質膜〔ミリポアフイ
ルターVSWP(日本ミリポアリミテツド製)〕を
浸漬し、塗布した。乾燥後、得られた複合膜にお
ける固形分の塗膜厚さを重量法により求めたとこ
ろ、1.6g/m2であつた。 得られた複合膜を透過試験装置に装着し、各種
気体の透過特性を測定した。測定装置としては限
外過用装置〔米国アミコン(Amicon)社製、
モデル52〕を用い、上記の複合膜を装着した後、
膜の上面に所定ガスを1.0Kg/cm2Gの圧力で加圧
し、膜の下面をガスビユーレツトにつなぎ、25
℃、一定時間に膜を透過するガス量を測定してガ
ス透過速度を求めた。これらの結果を後記表−1
に示す。表中、各種気体のガス透過速度の単位は
cm3(STP)/cm2・sec・cmHgである。 実施例 2〜6 実施例1において、製造例1で得られた4−エ
チニルフエニルフエニルエーテルからの重合体の
代りに、製造例2〜6で得られた各重合体を用
い、かつ溶媒の一部変更(重合体がトルエンに不
溶の時はクロロホルムを使用)を行つた他は、実
施例1と全く同様の操作を行つた。 製造例2〜6の5種の重合体のそれぞれを用い
て得られた実施例2〜6の各複合膜につき、実施
例1と同様にして各種気体のガス透過速度を測定
した。これらの結果は後記表−1にまとめて示
す。 比較例 1 実施例1において、製造例1の4−エチニルフ
エニルフエニルエーテルから得られた重合体を用
いなかつた他は、全く同様の操作を行つて得られ
た膜につき、実施例1と同様にして各種気体のガ
ス透過速度を測定した。その結果を下記表−1に
示す。 表−1の結果から、本発明の複合膜は、比較例
1の従来の膜に比べ、各種気体のガス透過速度の
比が格段に大きく、気体混合物の分離膜として特
に優れていることが分かる。
[Formula] (Production Example 6) A polymer of five monosubstituted acetylenes having a red color to black and a solid color was obtained in exactly the same manner as in Production Example 1, except that five types of monosubstituted acetylenes having the formula (Production Example 6) were used. Ta. The yields of the five types of polymers obtained in Production Examples 2 to 6 were 100%, 38%, 63%, 96%, and 63%, respectively.
The number average molecular weights of the polymers are 7800 and 7800, respectively.
They were 10300, 2200, 11200, and 2500. Example 1 The polymer obtained from 4-ethynyl phenyl phenyl ether in Production Example 1 was dissolved in toluene to obtain 1
% solution, and a porous membrane [Millipore Filter VSWP (manufactured by Nippon Millipore Limited)] was immersed in this solution and applied. After drying, the coating thickness of the solid content in the obtained composite film was determined by gravimetric method and was found to be 1.6 g/m 2 . The obtained composite membrane was installed in a permeation test device, and the permeation characteristics of various gases were measured. The measuring device is an ultraviolet device [manufactured by Amicon, USA;
Model 52], after installing the above composite membrane,
A specified gas was applied to the upper surface of the membrane at a pressure of 1.0 kg/cm 2 G, and the lower surface of the membrane was connected to a gas burette.
The gas permeation rate was determined by measuring the amount of gas permeating through the membrane over a certain period of time at ℃. These results are shown in Table 1 below.
Shown below. In the table, the units of gas permeation rate for various gases are
cm 3 (STP)/cm 2・sec・cmHg. Examples 2 to 6 In Example 1, each polymer obtained in Production Examples 2 to 6 was used instead of the polymer from 4-ethynyl phenyl phenyl ether obtained in Production Example 1, and the solvent The same procedure as in Example 1 was carried out, except for some changes (chloroform was used when the polymer was insoluble in toluene). The gas permeation rates of various gases were measured in the same manner as in Example 1 for each composite membrane of Examples 2 to 6 obtained using each of the five types of polymers of Production Examples 2 to 6. These results are summarized in Table 1 below. Comparative Example 1 A membrane obtained by performing exactly the same procedure as in Example 1 except that the polymer obtained from 4-ethynyl phenyl phenyl ether of Production Example 1 was not used was used. Gas permeation rates of various gases were measured in the same manner. The results are shown in Table 1 below. From the results in Table 1, it can be seen that the composite membrane of the present invention has a much higher ratio of gas permeation rates for various gases than the conventional membrane of Comparative Example 1, and is particularly excellent as a separation membrane for gas mixtures. .

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式() HC≡C−X ……() (式中、Xは【式】で表わされる置 換フエニル基又は【式】【式】 【式】【式】若しくは 【式】の複素環基を表わし、またRはニト ロ基、炭素数1〜6のアルコキシ基、フエノキシ
基、フエニルスルホニル基、フエニルチオ基又は
−CH≡N−N(C6H53を表わし、かつnは1,
2又は3の数である)で示される−置換アセチレ
ンを単量体とする数平均分子量1000以上の鎖状重
合体を主体とする分離膜。 2 分離膜は気体分離膜である特許請求の範囲第
1項記載の分離膜。
[Claims] 1 General formula () HC≡C-X ... () (wherein, X is a substituted phenyl group represented by [formula] or [formula] [formula] [formula] [formula] or [formula] represents a heterocyclic group of the formula], and R represents a nitro group, an alkoxy group having 1 to 6 carbon atoms, a phenoxy group, a phenylsulfonyl group, a phenylthio group, or -CH≡N-N(C 6 H 5 ) 3 , and n is 1,
A separation membrane mainly composed of a chain polymer having a number average molecular weight of 1000 or more and having a -substituted acetylene monomer represented by the number 2 or 3. 2. The separation membrane according to claim 1, wherein the separation membrane is a gas separation membrane.
JP59041771A 1984-03-05 1984-03-05 Separation membrane Granted JPS60187304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041771A JPS60187304A (en) 1984-03-05 1984-03-05 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041771A JPS60187304A (en) 1984-03-05 1984-03-05 Separation membrane

Publications (2)

Publication Number Publication Date
JPS60187304A JPS60187304A (en) 1985-09-24
JPH0536091B2 true JPH0536091B2 (en) 1993-05-28

Family

ID=12617648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041771A Granted JPS60187304A (en) 1984-03-05 1984-03-05 Separation membrane

Country Status (1)

Country Link
JP (1) JPS60187304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238663A (en) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd Air cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262725A (en) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol Gas separation membrane
JP2527737B2 (en) * 1987-05-07 1996-08-28 昌祥 田畑 Process for producing para-substituted phenylacetylene polymers
JP5596912B2 (en) 2007-08-31 2014-09-24 キヤノン株式会社 Block polymers and devices
KR102278459B1 (en) * 2018-08-21 2021-07-16 삼성에스디아이 주식회사 Polymer, organic layer composition and method of forming patterns

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919506A (en) * 1982-07-22 1984-02-01 Sanyo Chem Ind Ltd Gas separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919506A (en) * 1982-07-22 1984-02-01 Sanyo Chem Ind Ltd Gas separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238663A (en) * 2009-03-09 2010-10-21 Sumitomo Chemical Co Ltd Air cell

Also Published As

Publication number Publication date
JPS60187304A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
SU718001A3 (en) Membrane producing method
US4689267A (en) Composite hollow fiber
JPS5895541A (en) Gas separating membrane
Alentiev et al. Stereoselective synthesis and polymerization of Exo‐5‐trimethylsilylnorbornene
JPS62723B2 (en)
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
US4728431A (en) Pervaporation method for separating liquids in mixture
JPH0536091B2 (en)
JP5155255B2 (en) Asymmetric membrane of siloxane functional cyclic olefin (co) polymer and process for producing the same
JPS60212414A (en) Acetylenic polymer and separating membrane consisting thereof
JPH0221856B2 (en)
JPS62262725A (en) Gas separation membrane
Sakaguchi et al. Synthesis and gas permeability of novel poly (diphenylacetylenes) having polyethylene glycol moieties
JPH0464729B2 (en)
JPH0380048B2 (en)
JPS60110303A (en) Permselective membrane and composite film
JP6261906B2 (en) Carbon dioxide separator
JPS61120817A (en) Copolymer of substituted acetylene compound with cycloolefin and its production
JPH0255100B2 (en)
JPS581711A (en) Novel copolymer and membrane prepared therefrom
JPS5966307A (en) Separation membrane
JPS58183905A (en) Separation membrane
JPH0475050B2 (en)
JPS5959211A (en) Gas separation membrane
JPS5964610A (en) Hydrocarbon polymer and separation membrane comprising same