JPS60212414A - Acetylenic polymer and separating membrane consisting thereof - Google Patents

Acetylenic polymer and separating membrane consisting thereof

Info

Publication number
JPS60212414A
JPS60212414A JP59069856A JP6985684A JPS60212414A JP S60212414 A JPS60212414 A JP S60212414A JP 59069856 A JP59069856 A JP 59069856A JP 6985684 A JP6985684 A JP 6985684A JP S60212414 A JPS60212414 A JP S60212414A
Authority
JP
Japan
Prior art keywords
formula
polymer
membrane
propyne
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59069856A
Other languages
Japanese (ja)
Other versions
JPH06825B2 (en
Inventor
Toshinobu Higashimura
東村 敏延
Toshio Masuda
俊夫 増田
Munehisa Okada
宗久 岡田
Isao Konno
勲 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP59069856A priority Critical patent/JPH06825B2/en
Publication of JPS60212414A publication Critical patent/JPS60212414A/en
Publication of JPH06825B2 publication Critical patent/JPH06825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:The titled novel polymer useful as a separating membrane for gases, etc. for separation and concentration of gases, having >=weight-average molecular weight of >=a specific value, obtained by polymerizing a substituted acetylene with a 1-alkyldimethylsilyl-1-propyne in a specific composition. CONSTITUTION:(A) A substituted acetylene (e.g., 2-decyne, etc.) shown by the formula I (R<1> is H, or alkyl; R<2> is alkyl) is copolymerized with (B) a 1-alkyldimethylsilyl-1-propyne (e.g., 1-trimethylsilyl-1-propyne, etc.) shown by the formula II, to give the desired polymer comprising 10-90mol% structural unit shown by the formula III and 90-10mol% structural unit shown by the formula IV, having >=10,000 weight-average molecular weight. The copolymer is dissolved in toluene, etc. to give a solution, a porous membrane is immersed in it so that the polymer is applied to the surface of the membrane, to obtain a separating membrane for gases.

Description

【発明の詳細な説明】 本発明は新規のアセチレン系重合体およびそを構成要素
とする新規のポリマー材料を提供することにあり、本発
明の第二の目的はかかるポリマー材料を気体混合物中に
特定成分の分離あるいは濃縮に用りる気体分離膜な提供
することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel acetylenic polymer and a novel polymer material containing the same as a constituent.A second object of the present invention is to provide a novel acetylenic polymer and a novel polymer material containing the same as a constituent. The purpose of the present invention is to provide gas separation membranes used for separating or concentrating specific components.

しかして上記第一の目的は本発明に従い、下記(1)式
および(II)式で表わされる構造単位をもち、その割
付が(1)式の構造単位が7θ〜20モルチ、および(
II)式で表わされる構造単位が90− / 9モル%
である、重量平均分子量1万以上のポリマーによって達
成される。
According to the present invention, the first object is to have structural units represented by the following formulas (1) and (II), and whose allocation is such that the structural units of formula (1) are 7θ to 20 molti, and (
II) The structural unit represented by the formula is 90-/9 mol%
This is achieved using a polymer having a weight average molecular weight of 10,000 or more.

1 (上記(1)式において、R1は水素原子またはアルキ
ル基であり B2はアルキル基である。また上記(11
)式においてRaはアルキル基である。)更に前Htj
J二の目的は、上記ポリマーを生体とする気体分離膜に
より″C達成される。
1 (In the above formula (1), R1 is a hydrogen atom or an alkyl group, and B2 is an alkyl group. Also, in the above (11)
) In the formula, Ra is an alkyl group. ) further agoHtj
The second objective "C" is achieved by the gas separation membrane using the above-mentioned polymer as a living body.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のポリマーは、下記(1)式および(II)式で
表わされる構造単位をもち、その割付が(I)式の構造
単位y、6io〜goモルチ、および下記(n)式で表
わされる構造単位f90−10モルチである、重量平均
分子1Iti万以上のポリマーである。好ましくは(1
)のS造単位と(II)の構造単位が、それぞれ25〜
73モル%、コS〜75モルチである。
The polymer of the present invention has structural units represented by the following formulas (1) and (II), and the allocation thereof is represented by the structural units y, 6io to go molti of the formula (I), and the following formula (n). It is a polymer having a structural unit f90-10 mol and a weight average molecular weight of 1 Iti 10,000 or more. Preferably (1
) S structural unit and (II) structural unit are each 25 to 25
73 mol%, coS~75 mol.

+C−Cす ・・・・・・・・・CI)1 1 nR すを− 上記(1)式において、R’t’;を水素原子および炭
素数l〜6の直鎖状もしくは分岐状のアルキル基が選ば
れる。RRは炭素数7〜10の直鎖状もしくは分岐状の
アルキル2!Iiiが選ばれ、これらの基は、その基の
水素原子の1個以上が置換基で置換されてもよい。置換
基としては、ハロゲン原子、アリール基、アルコキシル
基又はアリールオキシ4なとが挙けられる。
+C-Csu......CI)1 1 nRsuo- In the above formula (1), R't'; is a hydrogen atom and a linear or branched chain having 1 to 6 carbon atoms. An alkyl group is chosen. RR is a linear or branched alkyl having 7 to 10 carbon atoms 2! III is selected, and these groups may have one or more of the hydrogen atoms of the group substituted with a substituent. Examples of the substituent include a halogen atom, an aryl group, an alkoxyl group, and aryloxy.

また上記(11)式においてRsは炭素数l−ダの直鎖
状もしくは分岐状のアルキル基が選はれる。
In the above formula (11), Rs is a linear or branched alkyl group having 1-da carbon atoms.

もちろん、少割付であれば曲水(I)および(IIJ式
の構造単位以外の構造単位を有していてもよい。
Of course, if the allocation is small, it may have structural units other than the structural units of the curved water (I) and (IIJ formulas).

しかしてこのポリマーは、下記一般式(1)および(1
v)で表わされる単量体を共重合することによって得ら
れる。
However, this polymer has the following general formulas (1) and (1).
It can be obtained by copolymerizing the monomers represented by v).

B1− c = c −n” ・−−(1)(ここで 
13 、12およびRsは前足(1)式および(11)
式における意輌に同じである。)単量体の具体例として
は、(皇)式では、二級もしくは三級ブチルアセチレン
、ターシャリ−4LIJ:$オペンチルアセチレン、コ
ーヘキシン、−一ヘブテン、λ−オクテン、コーノニン
、2−デシン、q−メチルーーーベンテン、 +、p’
−ジメチルーa−ペンチン、り、ダ′−シメテルーコー
ヘキシン、 j、j’−ジメテルーーーヘキシン、3−
オクチン、3−ノニン1.?−7’シン、弘−オクテン
等が挙げられる。
B1− c = c −n” ・−−(1) (here
13, 12 and Rs are the front leg formula (1) and (11)
It is the same as the meaning in the ceremony. ) Specific examples of monomers include (English) formula: secondary or tertiary butylacetylene, tertiary-4LIJ: $opentylacetylene, cohexine, -monohebutene, λ-octene, cornonine, 2-decyne, q -Methyl-bentene, +, p'
-dimethyl-a-pentyne, ri, da'-cymeter-cohexine, j, j'-dimeter-hexine, 3-
Octyne, 3-nonine 1. ? Examples include -7'syn, Hiro-octene, and the like.

(IV)式では、/−)ジメチルシリルーl−プロピン
、ノーエチルジメチルシリル−7−プロピン、/−n−
プロピルジメチルシリル−7−プロピン、1−i−7’
ロビルジメチルシリルー7−ブロピン、/−n−ブチル
ジメチルシリル−/−プロピン47.−/−1−ブチル
ジメチルシリル−1−プロピン等が挙げられる。
In formula (IV), /-)dimethylsilyl-l-propyne, no-ethyldimethylsilyl-7-propyne, /-n-
Propyldimethylsilyl-7-propyne, 1-i-7'
lobildimethylsilyl-7-bropine,/-n-butyldimethylsilyl-/-propyne47. -/-1-butyldimethylsilyl-1-propyne and the like.

もちろん、(1)式および(y)式の単倉体以外の単量
体を少割会にて含むコポリマーであってもよい。
Of course, a copolymer containing a small proportion of monomers other than monomers of formulas (1) and (y) may also be used.

上記(蓋)式および(ff)式の単量体から重量平均分
子i!:/万以上の鎖状重合体を得るには、ニオブ又は
タンタルのハロゲン化物の触媒が用いられる・この触媒
は、いずれも市販品として入手でき、吸湿性ではあるが
、V系に対して女足な粉末であり、取扱いが容易である
。それらのハロゲン化部の中で、特に塩化物および臭化
物が商い収率で尚分子量の重合体を生成する。ヨウ化物
もかなりの活性を示す。フッ化物は鎖状オリゴマーな副
生じ易い。
From the monomers of formula (lid) and formula (ff) above, weight average molecule i! In order to obtain a chain polymer of 10,000 or more, niobium or tantalum halide catalysts are used. All of these catalysts are commercially available, and although they are hygroscopic, they are less effective than V-based polymers. It is a solid powder and easy to handle. Among those halogenated moieties, chloride and bromide in particular produce high molecular weight polymers in commercial yields. Iodide also shows considerable activity. Fluoride tends to produce chain oligomer by-products.

1台触媒の使用量は、通常、単量体に対して07〜5モ
ル%が適当である。
The appropriate amount of one catalyst to be used is usually 0.7 to 5 mol % based on the monomer.

重付反応は溶媒中で行なうのがよく、かかるmmとして
はトルエンなどの芳香族炭化水木、シクロヘキサンなど
の脂肪族炭化水素、四塩化炭紫、二塩化エチレン等のハ
ロゲン化炭化水素などが挙げられる・ 重付温度は単量体の種類、溶媒の種−1その他の条件に
より必ずしも一定しないが、通常は50〜/jtO℃の
間で辿択する。重付時間は通常、数時11」〜数十時間
である。重合は乾燥窒素雰囲気下で行なう。
The weighting reaction is preferably carried out in a solvent, and examples of such reaction include aromatic hydrocarbons such as toluene, aliphatic hydrocarbons such as cyclohexane, halogenated hydrocarbons such as tetrachloride, ethylene dichloride, etc. - The weighting temperature is not necessarily constant depending on the type of monomer, type of solvent-1, and other conditions, but is usually set between 50 and /jtO°C. The loading time is usually from several hours to several tens of hours. Polymerization is carried out under a dry nitrogen atmosphere.

反応終了後、反応系を、反応に用いた溶媒で祁釈した佼
、大意のメタノール中に投入すると、生成重合体が沈澱
するので、これをF別、乾燥する。
After the reaction is complete, the reaction system is poured into methanol that has been diluted with the solvent used in the reaction, and the resulting polymer precipitates, which is then separated and dried.

上記の方法によって、上記(1)式および(IV)式の
単量体から、ポリマー中に存在するCI)式および(n
)式の構成要素が、各々10〜90モルチおよび90−
10モルチ以上、好ましくは各−5〜75モルチおよび
?j−〜コ5モル%の割合で含む新規の鎖状菖会体を篩
状¥で得ることができ、その重合体はゲルパーミェーシ
ョンクロマトグラフィ(以下、GPCと略)による重量
平均分子′に/万以上であり、トルエン、シクロヘキサ
ンなどの炭化水素類に完全に溶解するという特徴を有す
る◎ 生成重合体は本発明の第2の目的である気体分離層の材
料として使用することができる。
By the above method, from the monomers of formulas (1) and (IV), formulas CI) and (n
) components of the formula are 10 to 90 molti and 90 molti, respectively.
10 molti or more, preferably -5 to 75 molti each and ? A new chain-like irises containing 5 mol% of j- to co can be obtained in the form of a sieve, and the polymer can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) to the weight average molecular /10,000 or more, and has the characteristic of being completely soluble in hydrocarbons such as toluene and cyclohexane.◎ The produced polymer can be used as a material for a gas separation layer, which is the second objective of the present invention.

製膜方法は特に限定しないが、好ましい製膜方法として
は、別途製膜した多孔質の膜に被覆する方法、緘密な表
皮ノーと多孔質層からなる異方性膜にする方法、別途製
膜した分離性をMする薄膜を多孔質の膜に重ね脅せる方
法、ポリマー浴液をガラス板等に流延させて階媒を蒸発
させて均質膜にする方法等がある。
The film forming method is not particularly limited, but preferred film forming methods include coating a separately formed porous film, forming an anisotropic film consisting of a dense skin layer and a porous layer, and forming a separately formed porous film. There are a method in which a porous membrane is layered with a thin film with a high separation property, and a method in which a polymer bath solution is cast onto a glass plate or the like to evaporate the solvent to form a homogeneous membrane.

まず多孔質の膜に被覆する方法については、前記の新規
なポリマーを有機溶媒に溶解して、この溶液の中に別途
製膜した別の材料からなる多孔質の族を浸漬して後、有
機溶媒を乾燥する。
First, regarding the method of coating a porous membrane, the above-mentioned novel polymer is dissolved in an organic solvent, and a porous group consisting of another material, which is separately formed, is immersed in this solution. Dry the solvent.

ポリマーを溶解して製膜溶液にするに際し使用する有機
溶媒としては、前記ポリマーを溶解させ、又比較的脱溶
媒し易い低沸点の溶媒であり、かつ支持体となる多孔質
の膜を溶解させなめものであれは特に限定しない。この
ようなものとして多孔質の膜の材料の種類にもよるが、
例工Id、ベンゼン、トルエン、ペンタン、ヘキサン、
ヘプタン、テトラヒドロフラン等があげられる。
The organic solvent used when dissolving the polymer to form a membrane forming solution is a low boiling point solvent that dissolves the polymer, is relatively easy to desolvent, and dissolves the porous membrane that will serve as the support. There are no particular restrictions on the name of the name. Depending on the type of porous membrane material,
Example Id, benzene, toluene, pentane, hexane,
Examples include heptane and tetrahydrofuran.

本発明に麿いて用いられる多孔質の膜とはスポンジ状構
造乞もち、その両面に開口した孔を有するノ戻、又は膜
の一方の面は緻缶な層をもち他の面は開口した孔を有す
る膜、又は分子的に、ミクロな超微細気孔を有する膜で
あって要素ガスの透過速度が、単位膜面積(/d)、単
位時間(7秒間)、単位圧力差(/ CrrrHf )
当りの透過量で/ X 10−’cd/CTt ・@e
c −CWHf 以上であるようなものを意味する。
The porous membrane used in the present invention is a membrane with a sponge-like structure and open pores on both sides, or a membrane with a dense layer on one side and open pores on the other side. or a membrane with molecularly micro-ultra-fine pores in which the permeation rate of elemental gas is unit membrane area (/d), unit time (7 seconds), unit pressure difference (/CrrrHf).
Transmission amount/X 10-'cd/CTt ・@e
c - CWHf or more.

この様な膜は種々の方法によってりくることが出来るが
、例えば多孔質の膜材料に有機溶媒あるいは添加剤を加
えてS脱抜、有機溶媒あるいは添加剤を溶出することに
よりつくることが出来る。
Such a membrane can be formed by various methods, for example, by adding an organic solvent or an additive to a porous membrane material and removing S, or by eluting the organic solvent or additive.

多孔質の腰の材料の種類は特に限定しないが、例ytば
ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ
ビニルアルコール、ポリメチルメタアクリレート、ポリ
アクリロニトリル、ポリカーボネート、ポリフェニレン
オキサイド、ポリアミド、ポリスルホン、ポリエーテル
スルホン、ポリスルホンアミド、ポリピペラジン、ポリ
イミド、酢酸セルロース、rhe酪ditセルロース、
テフロン、弗化ビニリデン、ポリビニルトリメチルシラ
ン、ポリアミノ酸構造を含むポリマー等が例示される。
The type of porous material is not particularly limited, but examples include polypropylene, polyvinyl chloride, polystyrene, polyvinyl alcohol, polymethyl methacrylate, polyacrylonitrile, polycarbonate, polyphenylene oxide, polyamide, polysulfone, polyether sulfone, and polysulfone. amide, polypiperazine, polyimide, cellulose acetate, rhebutyric cellulose,
Examples include Teflon, vinylidene fluoride, polyvinyltrimethylsilane, and polymers containing a polyamino acid structure.

又ガラスなどの無機材料も使用することが出来る。Inorganic materials such as glass can also be used.

本発明のポリマーを有機溶媒に溶解し、多孔膜に複核す
る場合の溶液濃度は、ポリマーの分子量、分子量分布及
び溶媒の種類によって異なるが、0./Mth1%乃至
50重量斧好ましくは、1重量斧乃至lOX童チである
The solution concentration when the polymer of the present invention is dissolved in an organic solvent and multinucleated into a porous membrane varies depending on the molecular weight and molecular weight distribution of the polymer and the type of solvent, but may be 0. /Mth 1% to 50 weight axe, preferably 1 weight axe to 1OX douche.

濃度が01重量%より薄い場合には、被榎する膜の厚み
も薄くなり、気体の透過速度は大きいが、元方な分離性
能が得られず、又濃度が50重量%より−い場合には被
榎する膜の厚みが厚くなり、分離性能は得られる反面気
体の透過速度が小さくなる。
When the concentration is less than 0.1% by weight, the thickness of the membrane to be extracted becomes thinner, and the gas permeation rate is high, but the original separation performance cannot be obtained, and when the concentration is less than 50% by weight, In this case, the thickness of the membrane to be extracted becomes thicker, and while the separation performance is improved, the gas permeation rate becomes lower.

通常ポリマーの被覆量が多孔質の膜の面積l−当り0.
0 /〜io〜になる様に選ばれる。
Usually the amount of polymer coated is 0.0.
0/~io~.

又多孔質の膜の厚みは特に限定しないが、10μ〜10
0μが好ましい。
The thickness of the porous membrane is not particularly limited, but is 10μ to 10μ.
0μ is preferred.

多孔質膜に不発明の新規ポリマー溶液覆する方法は特に
限定しないが、ポリマーの浴液中に多孔質膜を浸漬する
方法、ポリマーの溶液を多孔質膜の表面に流延する方法
などを行うことが出来る。
The method of coating the porous membrane with the uninvented novel polymer solution is not particularly limited, but methods include immersing the porous membrane in a polymer bath solution, and casting a polymer solution on the surface of the porous membrane. I can do it.

次に異方性膜の#膜力法につめて述べる。Next, we will discuss the #membrane force method for anisotropic films.

異方性膜の製膜方法鉱、特開昭ダ4−2093に記載さ
れているビニルトリオルガノシランの異方性膜の製膜方
法に従って製膜することが出来る。
Method for forming an anisotropic film The film can be formed according to the method for forming an anisotropic film of vinyltriorganosilane described in JP-A-4-2093.

(1)少くとも30Cの沸点差ヲ有し、且つポリより高
い沸点を有し、且つポリマーに対して非溶媒である1種
類の溶媒からなる3成分系混合物に、ポリマーを溶かし
た溶液を支持体上に流しく以下に於て揮発性のより低い
溶媒を重溶媒と呼ぶ) (2) 軽溶゛媒の全部もしくは一部を除去し、(3)
生成したフィルムを凝固液(非溶媒)で処理し、そして (4) 該フィルムな乾燥する、 ことからなる方法により製膜することが出来る。
(1) Supporting a solution in which the polymer is dissolved in a ternary mixture consisting of one type of solvent that has a boiling point difference of at least 30 C, has a boiling point higher than that of poly, and is a non-solvent for the polymer. (2) remove all or part of the light solvent; (3) remove all or part of the light solvent;
A film can be formed by a method comprising: treating the produced film with a coagulating liquid (non-solvent), and (4) drying the film.

重溶媒及び重溶媒にシクロヘキサン、ベンゼン及びトル
エンのごとき脂肪族および芳香族炭化水素、及びジクロ
ルメタン、ジクロルエチレン、テトラクロルエチレン、
クロロホルム、ジクロルベンゼン及びモノクロルベンゼ
ンのごときハロゲン化炭化水素から適当に選択される。
Heavy solvents and heavy solvents include aliphatic and aromatic hydrocarbons such as cyclohexane, benzene and toluene, and dichloromethane, dichloroethylene, tetrachloroethylene,
Suitably selected from halogenated hydrocarbons such as chloroform, dichlorobenzene and monochlorobenzene.

重合体に対する適当な非溶媒には、水、メタノール、エ
タノール及び第1級、第一級、及びm3級ブタノールの
ごときアルコール、去びにアセトン、メチルエチルケト
ン及びシクロヘキサノンのごときケトンが含まれる。
Suitable non-solvents for the polymer include alcohols such as water, methanol, ethanol and primary, primary, and m-butanols, and ketones such as acetone, methyl ethyl ketone, and cyclohexanone.

重溶媒、重溶媒、非溶媒の割合は、ポリマーがこれら3
成分系混合物中に可溶であり、そして重溶媒/非溶媒の
混合物中に不#(但し恐らくは膨潤し得る)であるよう
なものでなければならない。
The ratio of heavy solvent, heavy solvent, and non-solvent is
It must be such that it is soluble in the component system mixture and immovable (but possibly swellable) in the heavy solvent/nonsolvent mixture.

また、別途製膜した分離性を有する薄膜を多孔質の腺に
重ね合せるには、まず、ポリマー合液を水面上へ展開す
る。ポリマー溶液は水面上を薄く展開し、溶媒が蒸発す
ると、ポリマーの極薄膜が形成される。極薄膜は通常、
干渉しまが観察され、lμ未満の厚みが容易に得られる
In addition, in order to overlay a separately produced thin film with separability on a porous gland, a polymer mixture is first spread on the water surface. The polymer solution spreads thinly on the water surface, and when the solvent evaporates, an extremely thin film of polymer is formed. Ultra-thin films are usually
Interference fringes are observed and thicknesses of less than lμ are easily obtained.

この薄膜を多孔質支持膜上へ捕集、積層して、複合膜と
すればよい。
This thin film may be collected and laminated onto a porous support membrane to form a composite membrane.

均質膜を得る方法とは、ポリマーの良溶媒に溶かした溶
液を、ガラス板等の平担な平面に流延する事により、膜
となす方法である。
The method for obtaining a homogeneous film is to form a film by casting a solution of a polymer dissolved in a good solvent onto a flat surface such as a glass plate.

多孔質膜上に核種する場合、又は異方性膜に製膜する場
合のいずれに於ても (1)膜の形状は、中空繊維状、チューブ状、スパイラ
ル状、平板状のいずれの形態に於ても使用することが出
来る。(多孔質膜上に核種する場合には多孔質膜の形状
ン選択すればよい。) (2)製膜後更に換の熱処理ケ行うことも出来る0(3
)本発明の膜の表面にプラズマ重合等により更に被覆層
を積層することも出来る0 (4)膜材料の新規なポリマーにポリシロキサン結合を
有するポリマー火混会して透過速度を改良することが出
来る。
In either case of depositing the nuclide on a porous membrane or forming an anisotropic membrane, (1) The shape of the membrane may be hollow fiber, tube, spiral, or flat plate. It can also be used in (If the nuclide is deposited on a porous membrane, the shape of the porous membrane should be selected.)
) A coating layer can be further laminated on the surface of the membrane of the present invention by plasma polymerization etc. (4) The permeation rate can be improved by mixing the new polymer of the membrane material with a polymer having a polysiloxane bond. I can do it.

本発明の膜は気体特に酸素、窒素、炭酸ガス、−酸化炭
素、水素、ヘリウム、メタン、アルゴンの少なくとも一
つの気体を含有する気体混合物を互いに分離する為に使
用することが出来る。
The membranes of the invention can be used to separate gases from each other, in particular gas mixtures containing at least one of the following gases: oxygen, nitrogen, carbon dioxide, -carbon oxide, hydrogen, helium, methane, argon.

例えば、酸素富化空気の製造に於けるN累と酸素の分離
、天然ガスからのヘリウムの回収に於けるメタンとヘリ
ウムの分離、水添反応排ガスからの水素の回収に於ける
アルゴンと水素、メタンと水素、箪累と水素の分離、ク
ランキングガス中の水素の回収に於ける、−e化炭素と
水素の分離、燃焼ガスからの二酸化炭素の回収に於ける
二酸化炭素と窒素の分離等に応用出来る。
For example, separation of nitrogen and oxygen in the production of oxygen-enriched air, separation of methane and helium in the recovery of helium from natural gas, argon and hydrogen in the recovery of hydrogen from hydrogenation reaction exhaust gas, Separation of methane and hydrogen, storage and hydrogen, separation of -e carbon and hydrogen in the recovery of hydrogen from cranking gas, separation of carbon dioxide and nitrogen in the recovery of carbon dioxide from combustion gas, etc. It can be applied to

次に実施例により本発明の詳細な説明するが本発明の内
容は実施例のみに限定されるものではない。
Next, the present invention will be explained in detail with reference to Examples, but the content of the present invention is not limited to the Examples.

実施例1 充分に精製したトルエンlざO−中に、乾燥窒素雰囲気
下で、よく攪拌しながら五塩化ニオ、プ3.7ミリモル
を加え、10℃で溶解した。この溶液に各009モルの
コープシンおよび/ −トリメチルシリル−7−プロピ
ンを添加し、Ir0Cで重合を進行させた。3時間後、
反応混合物を大量のメタノール中へ投入して生成重合体
を沈澱させ、戸別乾燥した。重合体の収率はxi法によ
れば76%であった。
Example 1 In a sufficiently purified toluene solution under a dry nitrogen atmosphere, 3.7 mmol of niobium pentachloride was added with thorough stirring and dissolved at 10°C. To this solution were added 009 mol each of copsin and/-trimethylsilyl-7-propyne, and the polymerization was allowed to proceed at Ir0C. 3 hours later
The reaction mixture was poured into a large amount of methanol to precipitate the resulting polymer, which was then dried separately. The yield of the polymer was 76% according to the xi method.

この生成物についてGPCi測定した。測定条件は、検
出器東洋曹達製RI−f型、カラムTSK−Gの、!r
000H1亭000H,3000H。
This product was subjected to GPCi measurement. The measurement conditions were a detector RI-f type manufactured by Toyo Soda, and a column TSK-G. r
000H1 000H, 3000H.

−100011,88テトラヒドロフラン、流速/ t
d/mg、 31 C,プレッシャーケミカル(米国)
製単分散ポリスチレンにて検量したもので、値はすべて
ポリステレ/換算した・ 前記生成物のGPC測定結果は、ポリスチレン換算の数
平均分子量及び重量平均分子量がそれぞれ烏600.及
び コに6θOであり、Mw/’MNがムコであった。
-100011,88 tetrahydrofuran, flow rate/t
d/mg, 31 C, Pressure Chemical (USA)
The results were calibrated using monodisperse polystyrene produced by the company, and all values were converted into polystere.The GPC measurement results of the product showed that the number average molecular weight and weight average molecular weight in terms of polystyrene were 600. and 6θO, and Mw/'MN was muco.

生成重合体は淡黄色の固体であり、ベンゼン、トルエン
、シクロヘキサン、n−ヘキサン、テトラヒドロフラン
、四塩化炭素に溶解した。
The resulting polymer was a pale yellow solid and dissolved in benzene, toluene, cyclohexane, n-hexane, tetrahydrofuran, and carbon tetrachloride.

生成重合体の分析値は次の通りであった。The analytical values of the produced polymer were as follows.

赤外吸収スペクトル(単位:crn”) :3ooo〜
コt5θ(S入 /16θ(m入 /4A70〜/41
ダ0(ml13り0(m)、 lコ5θ(1)、 / 
/ 90(rn入 / /−〇A−1Oθθ(W入92
θ(m入 g Q O(s入 りt、oryrs入 6
ざ0〜& ’I 0(v)、なおモノマーに存在するコ
ノ00A−コJOOcrI!″″1のアセチレンの吸収
は消失している。
Infrared absorption spectrum (unit: crn”): 3ooo~
Cot5θ (S included /16θ (m included /4A70~/41
Da0 (ml13ri0(m), lko5θ(1), /
/ 90 (rn included / /-〇A-1Oθθ(W included 92
θ(m included g Q O(s included t, oryrs included 6
za0~&'I 0(v), and the KONO00A-KOJOOcrI present in the monomer! The absorption of acetylene in ""1 has disappeared.

NMRスペクトル(/ 00 MHz、重クロロホルム
中)のプロトンシグナルは次の通りであった。
The proton signals in the NMR spectrum (/00 MHz, in deuterated chloroform) were as follows.

0.2ppm・・・トリメチルシリル基のメチルシグナ
ル θ9 ppm・・・(I)式のR(n−ヘプチル基)の
末端メチルシグナル io〜i !r ppm −CI)式のR(n−ヘプf
JLt基)の主鎖に隣接した一個を除く、 メチレンシグナル 1 !−Q/ ppm −−−(i)および(II)式
のRおよび81R,を除いた、主鎖に置換員 ているメチルシグナル ユl〜29 ppm・・・(I)式のR(n−へブチル
基)の主鎖に隣接した1個のメチ シンシグナル なお、0..2ppmと0.9 ppmのピークからC
I)式と(It)式の存在比をめた所(I) : (I
t) −55二弘5であった。
0.2 ppm...Methyl signal of trimethylsilyl group θ9 ppm...Terminal methyl signal of R (n-heptyl group) in formula (I) io~i! r ppm -CI) of the formula R(n-hep f
Methylene signal 1 except for one adjacent to the main chain of JLt group)! -Q/ppm --- Methyl signal units substituted in the main chain excluding R and 81R of formulas (i) and (II) ~29 ppm...R(n- However, one methicine signal adjacent to the main chain of the hebutyl group) is 0. .. C from the peaks of 2 ppm and 0.9 ppm
Calculating the abundance ratio of formula I) and formula (It) (I): (I
t) -55 Nihiro 5.

元素分析値C(I) CroH+a ・(損C6HH1
Si 〕実測値 Cニアに2λ、H:/19コ、St 
; 914計算値 ((1):(n)=5j ニゲ5と
した場会)C: 72ffJ、 H; /L/9、st
;q、vq実実施コ コ記実施例1で得られたコープシンと/−)リメテルシ
リルーl−プロピンとの共亘合体をトルエンに溶かして
1重電チの溶液とし、この溶液に多孔質膜〔ミリポアフ
ィルタ−vswpよりめると、lbt/rWであった。
Elemental analysis value C(I) CroH+a ・(Loss C6HH1
Si] Actual value 2λ to C near, H: /19, St
; 914 calculated value ((1): (n) = 5j when set to 5) C: 72ffJ, H; /L/9, st
;q, vq Practical implementation notes The copolymerization of copesin obtained in Example 1 and /-)limetersilyl-l-propyne is dissolved in toluene to form a solution of 1-cell solution, and a porous membrane [Millipore] is added to this solution. From the filter vswp, it was lbt/rW.

この複合膜を透過試験装置に装着し、各種気体の透過特
性を測定した。測定装置としては限外濾過用装置、〔米
国アミコン(λmic◇n)社製、モデルSλ〕を用い
、膜を装着した後、腺の上面に所定ガス’ljf /、
Okf / C1/l Gの圧力で加圧し、膜の下面を
ガスビューレットにつなぎ、コjC1一定時間に膜を透
過するガスiv測定し、ガス透過速度をめる。この結果
を辰−1に示す。
This composite membrane was attached to a permeation test device, and the permeation characteristics of various gases were measured. As a measurement device, an ultrafiltration device [manufactured by Amicon (Amicon, USA, Model Sλ)] was used. After attaching a membrane, a specified gas 'ljf/,
The membrane is pressurized at a pressure of Okf/C1/l G, the lower surface of the membrane is connected to a gas buret, and the gas permeating through the membrane is measured over a certain period of time to calculate the gas permeation rate. The results are shown in Tatsu-1.

各種気体のガス透過速度の単位は−(STP)/cd 
°sea °CrrrHf テアル。
The unit of gas permeation rate for various gases is -(STP)/cd
°sea °CrrrHf Teal.

なお、この時使用したミリポアフィルタ−v swpの
ガス透過性能は次の通りであった。気体透過速度(cd
l/Cdt−1+ec −CmHf ) N2− i?
X1o−”、0、=17×l0−2気体透過速度の比(
O□/N、 ) −0,92゜実施例3 実施例1で得られたコープシンとl−トリメチルシリル
−7−プロピンとの共重合体ントルエンに溶かして1重
量%の溶液とし、3亭℃に保持する。
The gas permeation performance of the Millipore filter-vswp used at this time was as follows. Gas permeation rate (cd
l/Cdt-1+ec-CmHf) N2-i?
X1o-”, 0, = 17×l0-2 gas permeation rate ratio (
O□/N, ) -0,92゜Example 3 The copolymer of copesin and l-trimethylsilyl-7-propyne obtained in Example 1 was dissolved in toluene to make a 1% by weight solution and heated to 3°C. Hold.

該重合体溶液な、あらかじめ容器に満たされ、72℃に
保持された水に、ミクロピペットに\−滴添加する。こ
の時の液滴の平均重量は12Jダであった。
The polymer solution is added dropwise with a micropipette to water previously filled in a container and maintained at 72°C. The average weight of the droplets at this time was 12 J da.

添加されだ液滴は、水面上にて、ただちに広がり、円形
状の極薄膜が得られた。この時の膜面積u lq ct
/lであり、これから重量法にてめた膜厚は0.tμで
ある。ここで得られた極薄膜を多孔質膜(ミリポアフィ
ルタ−vswp)上にとりだし、複合膜を作製した。こ
の複@−膜の気体透過速度を実施例コと同様の方法にて
測定した。結果を表−7に示す。
The added droplets immediately spread on the water surface, resulting in an extremely thin circular film. At this time, the membrane area ulq ct
/l, and the film thickness calculated from this using the gravimetric method is 0. It is tμ. The ultrathin membrane obtained here was taken out onto a porous membrane (Millipore filter-vswp) to produce a composite membrane. The gas permeation rate of this composite @-membrane was measured in the same manner as in Example C. The results are shown in Table-7.

Claims (1)

【特許請求の範囲】 fl) 下記(1)式および(11)式で表わされる構
造単位をもち、その割合が(1)式の構造単位が70−
90モル係、および(II)式の構造単位が’yo−i
oモル斧である、態量平均分子量1万以上のポリマー しt− (上記(1)式において、R1は水素原子またはアルキ
ル基であり、R1はアルキル基である。 また、上記(It)式にpいてR3はアルキル基である
。) (2) 下記(1)式および(川)式で表わされる構造
単位をもち、その割合が(1)式の構造単位が10−9
0モル%、および(II)式の構造単位が90−10モ
ル%である重蓋平均分子童1万以上のポリマー (上記(I)式においてR′は水素原子またはアルキル
基であり 12はアルギル基である。また(11)式に
おいてR3はアルキル基である。)を主体とする気体分
離膜
[Claims] fl) It has structural units represented by the following formulas (1) and (11), and the proportion of the structural units of formula (1) is 70-
90 molar ratio, and the structural unit of formula (II) is 'yo-i
o mole ax, a polymer having a weight average molecular weight of 10,000 or more (in the above formula (1), R1 is a hydrogen atom or an alkyl group, and R1 is an alkyl group. and R3 is an alkyl group.) (2) It has a structural unit represented by the following formula (1) and (Kawa) formula, and the ratio of the structural units of formula (1) is 10-9
0 mol%, and a polymer having an average molecular weight of 10,000 or more and having a structural unit of formula (II) of 90-10 mol% (in the above formula (I), R' is a hydrogen atom or an alkyl group, and 12 is an argyl group) (In formula (11), R3 is an alkyl group.)
JP59069856A 1984-04-07 1984-04-07 Acetylene-based polymer and separation membrane comprising the polymer Expired - Fee Related JPH06825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069856A JPH06825B2 (en) 1984-04-07 1984-04-07 Acetylene-based polymer and separation membrane comprising the polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069856A JPH06825B2 (en) 1984-04-07 1984-04-07 Acetylene-based polymer and separation membrane comprising the polymer

Publications (2)

Publication Number Publication Date
JPS60212414A true JPS60212414A (en) 1985-10-24
JPH06825B2 JPH06825B2 (en) 1994-01-05

Family

ID=13414868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069856A Expired - Fee Related JPH06825B2 (en) 1984-04-07 1984-04-07 Acetylene-based polymer and separation membrane comprising the polymer

Country Status (1)

Country Link
JP (1) JPH06825B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222111A (en) * 1984-04-20 1985-11-06 Sanyo Chem Ind Ltd Gas separating membrane
JPS61174212A (en) * 1985-01-28 1986-08-05 Toyo Soda Mfg Co Ltd Copolymer of substituted acetylene
US4657564A (en) * 1985-12-13 1987-04-14 Air Products And Chemicals, Inc. Fluorinated polymeric membranes for gas separation processes
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
JPH0534048B2 (en) * 1985-01-11 1993-05-21 Tosoo Kk
US5501722A (en) * 1992-11-04 1996-03-26 Membrane Technology And Research, Inc. Natural gas treatment process using PTMSP membrane
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075306A (en) * 1983-09-30 1985-04-27 Toshinobu Higashimura Liquid separation membrane
JPS60149022A (en) * 1984-01-14 1985-08-06 Toyo Contact Lens Co Ltd Contact lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075306A (en) * 1983-09-30 1985-04-27 Toshinobu Higashimura Liquid separation membrane
JPS60149022A (en) * 1984-01-14 1985-08-06 Toyo Contact Lens Co Ltd Contact lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222111A (en) * 1984-04-20 1985-11-06 Sanyo Chem Ind Ltd Gas separating membrane
JPH0446172B2 (en) * 1984-04-20 1992-07-29 Sanyo Chemical Ind Ltd
JPH0534048B2 (en) * 1985-01-11 1993-05-21 Tosoo Kk
JPS61174212A (en) * 1985-01-28 1986-08-05 Toyo Soda Mfg Co Ltd Copolymer of substituted acetylene
JPH0582407B2 (en) * 1985-01-28 1993-11-18 Tosoh Corp
US4657564A (en) * 1985-12-13 1987-04-14 Air Products And Chemicals, Inc. Fluorinated polymeric membranes for gas separation processes
US4859215A (en) * 1988-05-02 1989-08-22 Air Products And Chemicals, Inc. Polymeric membrane for gas separation
US5501722A (en) * 1992-11-04 1996-03-26 Membrane Technology And Research, Inc. Natural gas treatment process using PTMSP membrane
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Also Published As

Publication number Publication date
JPH06825B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
JPH0147210B2 (en)
Takahashi et al. Studies of Poly-yne Polymers Containing Transition Metals in the Main Chain. 2. Synthesis of Poly [trans-bis (tri-n-butylphosphine) platinum 1, 4-butadiynediyl] and Evidence of a Rodlike Structure
KR910005718B1 (en) Fluorinated pollmeric membranes for separation process
US4813983A (en) Composite membrane for use in gas separation
KR920000189B1 (en) Poly trialkylgermylpropyne polymers and membranes
CA2029001A1 (en) Sulfonated hexafluoro bis-a polysulfone membranes and process for fluid separations
Higashimura et al. Gas permeability of polyacetylenes with bulky substituents
Chapala et al. Synthesis and Gas‐Transport Properties of Novel Copolymers Based on Tricyclononenes Containing One and Three Me3Si‐Groups
JPS60212414A (en) Acetylenic polymer and separating membrane consisting thereof
Alentiev et al. Crosslinking of addition copolymers from tricyclononenes bearing (CH3) 3Si‐and (C2H5O) 3Si‐groups as a modification of membrane gas separation materials
US4567245A (en) Substituted polyacetylene copolymer
JPS6178402A (en) Separation of organic liquid mixture
Matson et al. Structure and properties of poly (4-methyl-2-pentyne) synthesized with NbBr5 and TaBr5-based catalytic systems
US5019631A (en) Alkylene oxide modified poly(2,6-dimethyl-p-oxyphenylene)
JPH0536091B2 (en)
US5494989A (en) Acetylenic copolymers and membranes thereof
Hayakawa et al. Gas and vapor permeability of perfluoroalkylated polymers
JP2559588B2 (en) Gas separation membrane
JPH0610216B2 (en) 0- (trialkylsilyl) phenylacetylene polymer and process for producing the same
JPS5964610A (en) Hydrocarbon polymer and separation membrane comprising same
JPH0221856B2 (en)
JPH0352926A (en) Amorphous modified poly(2,6-dimethyl-p-oxyphenylene)
Rickle Synthesis and gas transport properties of high molecular weight block copolymers of styrene and vinyltrimethylsilane
Kim et al. Synthesis and characterization of poly [4, 4‐bis (pivaloxymethyl)‐1, 6‐heptadiyne] having high oxygen permselectivity
JPS5959211A (en) Gas separation membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees