JPH0221856B2 - - Google Patents

Info

Publication number
JPH0221856B2
JPH0221856B2 JP57117813A JP11781382A JPH0221856B2 JP H0221856 B2 JPH0221856 B2 JP H0221856B2 JP 57117813 A JP57117813 A JP 57117813A JP 11781382 A JP11781382 A JP 11781382A JP H0221856 B2 JPH0221856 B2 JP H0221856B2
Authority
JP
Japan
Prior art keywords
membrane
gas
polymer
separation
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57117813A
Other languages
Japanese (ja)
Other versions
JPS5910305A (en
Inventor
Toshinobu Higashimura
Toshio Masuda
Munehisa Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57117813A priority Critical patent/JPS5910305A/en
Publication of JPS5910305A publication Critical patent/JPS5910305A/en
Publication of JPH0221856B2 publication Critical patent/JPH0221856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は気䜓混合物に察しお優れた遞択的分
離性ず透過性を有する気䜓分離膜に係わるもので
ある。 気䜓分離膜ずしおは気䜓に察する高い分離率ず
倧きな透過速床が芁求される。このような芁求を
満たすためには、実質的な分離性胜を呈する膜の
厚さが、可胜な限り薄いこずが望たしく、実甚に
圓぀おは、かかる膜を通気性のある倚孔性の局
䟋えば和玙、䞍織垃、合成玙、玙、垃、金網、
過膜、限倖過膜等によ぀お保持させた構造
からなるものが奜たしいず考えられる。 このような構造䜓を補造するために皮々の方法
が提案されおいる。䟋えば通気性を有する倚孔膜
の䞊に、別途補膜した分離性を有する薄膜を重ね
合わせる方法、衚皮局分離性を有するず倚孔
局通気性を有しか぀支持䜓ずなるずが䞀䜓ず
な぀おいるシヌト䜓を䞀気に補膜する方法、倚孔
質の膜の䞊に皮々の方法により、モノマヌから盎
接重合などを行ない、分離性を有する薄膜を圢成
させる方法、又は倚孔質の膜の䞊にポリマヌ溶液
をコヌテむングし、しかる埌、溶媒を蒞発させお
分離性を有する薄膜を圢成させる方法などが知ら
れおいる。 䞊蚘各皮方法の䞭で、支持䜓ずなる通気性の倚
孔質の膜の䞊に別の高分子材料の溶液をコヌテむ
ングし、しかる埌溶媒を蒞発しお分離性のある薄
膜局を圢成させる方法が、比范的倚皮、倚様の高
分子材料の適甚を可胜にするので奜たしい。しか
し、この堎合、被芆する膜の厚さをあたり薄くす
るず分離性胜が枛退し、埓぀お、ある皋床以䞊厚
く被芆する必芁があり、この芁求を満たすため厚
く被芆するず被凊理物の透過速床が䜎䞋するずい
う二埋背反の問題がある。このような䞍郜合を軜
枛するために、膜材料の点から、次の぀察策が
考えられおいる。即ち第には、薄膜化は無理で
あるが、珟行の厚さでも気䜓の透過性が比范的高
く、しかも分離性胜を有する材料を遞ぶこず、第
には薄膜にしおも、ピンホヌルを生じない材料
を遞ぶこずである。しかしながら、珟圚のずこ
ろ、いずれの堎合も満足すべきものが埗られおい
ない。 䟋えば炭化氎玠系ゎム䟋えば倩然ゎム、ポリ
ブタゞ゚ンは分子内に二重結合をもち、気䜓、
特にCO2の透過係数がオルガノポリシロキサンに
次いで倧きい高分子材料の䞀぀ずしお知られおい
るが、䞀方ゎム匟性を有し、凝集力が匷く、薄膜
化は困難である。たた無理に数十Ό以䞋の厚さの
膜にするず、厚みに関する䞍均䞀性の問題ず、ピ
ンホヌル発生ずいう問題が生じ、良奜な気䜓分離
性胜を瀺さない。 たたポリアルキン類は、分子内に共圹の二重結
合をも぀おいるこずからみお、炭玠氎玠系ゎムず
同様の良奜な気䜓透過性が期埅できる。しかし実
際には埗られる重合䜓ずしお䜎分子量のものしか
埗られなか぀たり、たた高分子量物が埗られおも
良奜な溶媒がない堎合や、溶媒があ぀おも高枩で
のみ可溶であ぀たりしお、溶解時にその熱䞍安定
性に起因しお倉質したりする。このように珟圚に
到るたで分離膜ずしおの芁望に答え、しかも良奜
に薄膜化し埗るポリマヌは知られおいない。 本発明者等は、さきに−アルキン類から新芏
な鎖状重合䜓を高収率で埗るこずができるず、し
かもその生成重合䜓は光散乱法による重量平均分
子量で䞇以䞊、特に10䞇〜100䞇ずいう、アセ
チレン化合物重合䜓ずしおは非垞に高い分子量を
有するうえに、トル゚ン、シクロヘキサンなどの
炭化氎玠類に完党に溶解するずいう特長をも぀お
いるこずを芋出した特願昭55−112108号。 この新芏なポリ−アルキンを甚いお分離性に
぀き鋭意怜蚎を重ねた結果、この鎖状重合䜓を膜
材料の䞻䜓ずした堎合に、気䜓混合物の分離にお
いお、優れた遞択性を保持しながら、気䜓の透過
係数が埓来の同系統の膜より倧きな膜が埗られる
こずを芋出した。 即ち本発明は気䜓混合物の分離においお優れた
遞択性を保持しながら、気䜓の透過係数の倧きな
膜を提䟛するこずを目的ずするものであ぀お、そ
の芁旚ずするずころは 䞀般匏 䞊匏においお、はアルキル基、アリヌル基、
アラルキル基、アルコキシ基、アリヌルオキシ
基、又はハロゲン原子を瀺す。は〜の敎数
を瀺す。 で衚わされる化合物を単量䜓ずする重量平均分子
量䞇以䞊の鎖状重合䜓を䞻䜓ずする気䜓分離膜
に存する。 以䞋、本発明を詳现に説明する。 本発明の分離膜は䞊蚘匏で衚わされる単
量䜓からのポリアルキンよりなる。 匏の単量䜓からのポリアルキンに぀いお
述べる。匏におけるはアルキル基、アリ
ヌ基、アラルキル基、アルコキシ基、アリヌルオ
キシ基、又はハロゲン原子を瀺す。たたは〜
の敎数を瀺す。 䞊蚘匏の単量䜓から重量平均分子量䞇
以䞊の鎖状重合䜓を埗るには、族遷移金属カル
ボニルず有機ハロゲン化物あるいは単量䜓ずの混
合物を光照射しお−クロロ−−プニルアセ
チレン類を重合させるこずにより−クロロ−
−プニルアセチレン類の重合䜓を補造するこず
ができる。 䞊蚘族遷移金属カルボニルはいずれも粉末状
であり、か぀空気䞭でも安定であるので取扱いが
容易であり、族遷移金属カルボニルずしおは、
クロムカルボニル、モリブデンカルボニル、タン
グステンカルボニルがあげられ詳现は、共立出
版(æ ª)発行、化孊倧蟞兞、巻201頁、巻294頁、
巻710頁に蚘茉されおいる。モリブテンヘキ
サ・カルボニルが特に高い掻性を瀺す。 䞊蚘鎖状重合䜓を補造する方法においお觊媒調
補に甚いる有機ハロゲン化物ずしおは、四塩化炭
玠、四臭化炭玠などハロゲン化炭化氎玠、トリク
ロル酢酞゚チルなどのハロゲン化脂肪酞゚ステル
ルを甚いるこずができる。四塩化炭玠は安䟡で取
扱いも容易であり、同時に反応溶媒ずもなるので
奜たしい。単量䜓である−クロロ−−プニ
ルアセチレン類はそれ自䜓が塩玠原子を有するの
で、別個に有機ハロゲン化合物を添加するこずな
く、族遷移金属カルボニルず単量䜓ずの混合溶
液を初旗所定時間光照射するこずによ぀お觊媒の
調補ず同時に重合を進行させるこずも可胜であ
る。族遷移金属カルボニルず有機ハロゲン化物
の混合溶液を照射したのち暗䞭にお単量䜓を添加
しお重合させる方法の方が、金属カルボニルず単
量䜓ずの混合溶液を照射ず同時に重合させる方法
により、分子量の高い重合䜓を生成する。有機ハ
ロゲン化合物の䜿甚量は族遷移金属カルボニル
ず等量たたはそれ以䞊であり、䞊蚘四塩化炭玠な
どのように溶媒ずしお甚いるずきにはそれに芋合
う倧量を甚いおもよい。 −クロロ−−プニルアセチレン類の重合
に際し、遷移金属カルボニルの䜿甚量は䞊蚘
匏の単量䜓に察しお0.1〜10モルの範囲が
適圓である。照射に甚いられる光ずしおは、
100W〜1KWの高圧氎銀灯による近玫倖光が最も
奜たしいが、単に倪陜光にさらすだけでも重合に
有効な觊媒皮が生成する。光照射の時間は10分〜
数時間、枩床は〜100℃の範囲が適圓だである。
光の匷床は、100W〜1KWの光源から30cmの距離
における10分以䞊、奜たしくは30分〜時間の照
射量に盞圓する皋床が望たしい。 重合反応の溶媒ずしおはハロゲン化炭化氎玠、
芳銙族炭化氎玠などを甚いるのが奜適である。重
合反応における単量䜓の濃床は0.1〜モル
の範囲が奜たしい。重合反応の枩床は通垞〜60
℃、時間は数十分〜数十時間の範囲から遞され
る。 反応終了埌、反応系を、反応に甚いた溶媒で垌
釈した埌、倧量のメタノヌル䞭に投入するず、生
成重合䜓が沈柱するので、これを別、也燥す
る。 䞊蚘の方法によ぀お䞊蚘匏の−アルキ
ン類から新芏の鎖状重合䜓を高収率で埗るこずが
でき、その重合䜓は光散乱法による重量平均分子
量䞇以䞊、特に10䞇〜100䞇ずいうアセチレン
類重合䜓ずしおは非垞に高い分子量を有するうえ
に、トル゚ン、シクロヘキサンなどの炭化氎玠類
に完党に溶解するずいう特城を有する。 かくしお埗られる重合䜓は、その溶液をキダス
トするこずにより均質の薄膜が埗られる。分離膜
ずしおは䞊蚘のようにしお埗られた重蚈䜓又はこ
れを䞻成分ずしたものでよく、他成分ずの共重合
䜓の圢にしたもの、たたブレンド品ずしお他の成
分ず混合したものを補膜したものでもよい。 本発明の分離膜は䞊述のようにしお埗られたポ
リアルキン類を䞻䜓ずし、これ有機溶剀に溶かし
キダステむング法溶液流延法により透明で䞈
倫なフむルムずしお埗られる。 キダステむング法は、原料を有機溶剀又は氎に
溶かし、必芁に応じ曎に可塑性などを加えお埗ら
れる粘皠な溶液を、この䞭のゎミや気泡を完党に
陀いた埌、平担なガラス板䞊又は回転する平担で
均䞀な金属支持䜓に流延し、溶媒を陀いお薄いフ
むルム状にする方法であり、埗られるフむルムは
厚みの均䞀が優れ、平面性、透明性、光択性にも
優れおいる。たた方向性がなく、異物のない極め
お良質のフむルムが埗られる特城を有し、本発明
のポリアルキンから分離膜を埗る堎合に奜適であ
る。䟋えば溶融法で補膜しようずすれば、本発明
におけるポリアルキン類は融点ず分解枩床が接近
しおいるため、倉質の恐れがあり奜たしくない。 キダスト溶液を䜜るために䜿甚される有機溶剀
ずしおは、ポリアルキンを良く溶解し、たたキダ
スト埌、蒞発し易いものであれば劂䜕なるもので
もよく、具䜓的にはベンれン、トル゚ン、シクロ
ヘキサン、ノルマルヘキサン等の炭化氎玠系溶剀
や、テトラヒドロフランなどが良奜に甚いられ
る。 キダスト溶液から均質の膜を埗るための溶液濃
床は重合䜓の分子量、分子量分垃および溶剀の皮
類によ぀お異なるが、通垞〜50重量、奜たし
くは〜30重量の範囲である。濃床が重量
未満では生成膜を厚みが薄くなり、気䜓の透過速
床は倧きくなるが、充分な分離性胜が発揮され
ず、䞀方溶液濃床が50重量を越えるず、生成膜
の厚さが倧ずなりすぎ、良奜は分離性胜は埗られ
るが、気䜓の透過速床が小さくなる。生成膜の厚
みは特に制限されないが通垞〜50Ό、奜たしい
のは10〜30Όの範囲である。 本発明の分離膜は優れた特性のために、均質
膜、非察称膜および耇合膜の圢態にお、物質混合
物䞭の特定物質の分離に䜿甚するこずができる。
察象物質ずしおは気䜓、特に酞玠、窒玠、炭酞ガ
ス、䞀酞化炭玠、氎玠、ヘリりム、メタン、アル
ゎンの少くずも䞀぀の気䜓を含有する気䜓混合物
を盞互に分別するために䜿甚するこずができる。
䟋えば酞玠富化空気の補造における窒玠ず酞玠ず
の分離、倩然ガスからのヘリりムの回収における
メタンずヘリりムずの分離、氎添反応廃ガスから
の氎玠の回収におけるアルゎンず氎玠、メタンず
氎玠、窒玠ず氎玠の分離、クラツキングガス䞭の
回収における䞀酞化炭玠ず氎玠の分離、燃焌ガス
からの二酞化炭玠の回収における二酞化炭玠ず窒
玠の分離などに応甚できる。 以䞋本発明の実斜䟋およびこの実斜䟋に甚いる
ポリアルキンの補造䟋を説明する。 補造䟋 也燥窒玠雰囲気䞋で、粟補四塩化炭玠䞭に
モリブデンヘキサカルボニル30ミリモルず−ク
ロロ−−プニルアセチレン1.0モルおよびガ
スクロマトグラフむヌの内郚芏準ずしお単量䜓に
察し25容量のテトラリンを添加し、30℃で30分
300W高圧氎銀ランプにより照射した。そののち
23.5時間、30℃暗䞭にお重合させた。 残存単量䜓量をガスクロマトグラフむヌで定量
したずころ、反応率は83であ぀た。生成重合䜓
は反応液を倧量のメタノヌルに投入しお沈柱させ
たのち、別也燥した。メタノヌル䞍溶性重合䜓
の生成量は単量䜓の仕蟌み量に察しお72であ぀
た。 生成重合䜓は黄色がか぀た癜色の固䜓であり、
トル゚ン、四塩化炭玠、二塩化゚チレンなどに可
溶、−ヘキサン、゚ヌテル、アルコヌル等に䞍
溶であ぀た。300℃以䞋で軟化点は芳枬されなか
぀た。 生成物が所期の構造の重合䜓であるこずは以䞋
の分析により確認した。元玠分析倀〔C8H6Cl
〕蚈算倀C70.35、H3.69、Cl25.96、実枬
倀C70.86、H3.67、Cl25.30。赀倖吞収スペ
クトル3100〜3000、1650〜1550、1495
、1445、1090、825、755
、
690、545cm-1。 生成重合䜓の重量平均分子量は光散乱法によれ
ば98䞇、トル゚ン䞭30℃で枬定した固有粘床は、
2.58dlであ぀た。たた、光散乱法で求めた重
量平均分子量Mwず固有認床〔η〕関係匏は次の
様な関係があ぀た。 〔η〕KMa w 10-6.06 1.07 実斜䟋  䞊蚘補造で埗られたポリ−クロロ−−フ
゚ニルアセチレンをトル゚ンに溶かし重量
の溶液ずし、この溶液を倚孔質膜〔ミリポアフむ
ルタヌVSWP日本ミリポリアミテツド補〕の
片面および䞡面に塗垃した。也燥埌、固圢分の塗
膜厚さを重量法により求めるず、2.0m2およ
び8.0m2䞡面の合蚈であ぀た。 この耇合膜を透過詊隓装眮に装着し、各皮気䜓
の透過特性を枬定した。枬定装眮ずしおは限倖
過甚装眮〔米囜アミコンAmicon瀟補、モデ
ル52〕を甚い、膜を装着した埌、膜の䞊面に所定
ガスを1.0Kgcm2の圧力で加圧し、報膜の䞋面
をガスビナヌレツトに぀なぎ、25℃、䞀定時間に
膜を透過するガス量を枬定し、ガス透過性を求め
る。この結果を埌蚘第衚に瀺す。各皮気䜓のガ
ス透過係数の単䜍はc.c.STP・cmcm2・sec・
cmHgである。 比范䟋  実斜䟋においお、ポリ−クロロ−−フ
゚ニルアセチレンを甚いなか぀た即ちポリマ
ヌ重量のトル゚ン溶液以倖は同様の操䜜を
行な぀た。気䜓透過性結果を第衚に瀺す。 実斜䟋  䞊蚘補造䟋で埗られたポリ−クロロ−−
プニルアセチレンをトル゚ンに溶解し、
wtの濃床に調敎し、34℃に保持する。 この重合䜓溶液を、あらかじめ容噚に満たさ
れ、10℃に保持された氎に、ミクロピペツトにお
滎添加する。この時の液滎の重量は、13.7mgで
あ぀た。 滎䞋された液摘は、氎面䞊におただちに広が
り、円圢状の極薄膜が埗られた。この時の膜面積
は18.8cm2であり、これから重量法にお求めた膜厚
は0.38Όである。ここで埗られた極薄膜をポリス
ルホン補倚孔膜䞊にずりだし、耇合膜を䜜補し
た。この耇合膜の気䜓透過量を実斜䟋ず同様の
方法にお枬定した。結果を衚に瀺す。 比范䟋  実斜䟋においおポリ−クロロ−−プ
ニルアセチレンを甚いなか぀た即ち重合䜓
重量のトル゚ン溶液以倖は同様の操䜜を行な
い、気䜓透過性を枬定した。結果を衚に瀺す。
The present invention relates to a gas separation membrane having excellent selective separation and permeability for gas mixtures. A gas separation membrane is required to have a high gas separation rate and a high permeation rate. In order to meet these demands, it is desirable that the thickness of the membrane exhibiting substantial separation performance be as thin as possible, and in practical use such membranes are often coated with an air-permeable porous layer (e.g. Japanese paper, non-woven fabric, synthetic paper, paper, cloth, wire mesh,
It is considered preferable to use a structure that is supported by a membrane (eg, ultrafiltration membrane, ultrafiltration membrane, etc.). Various methods have been proposed for manufacturing such structures. For example, a method in which a separately formed thin film with separability is superimposed on a porous membrane with breathability, a skin layer (having separability) and a porous layer (having breathability and serving as a support) are used. A method of forming an integral sheet body into a film at once, a method of directly polymerizing monomers on a porous film by various methods to form a thin film with separability, or a method of forming a thin film with separability on a porous film. A known method is to coat a polymer solution thereon and then evaporate the solvent to form a thin film with separation properties. Among the various methods mentioned above, there is a method in which a solution of another polymeric material is coated on an air-permeable porous membrane that serves as a support, and then the solvent is evaporated to form a separable thin film layer. , is preferable because it enables the application of a relatively wide variety of polymeric materials. However, in this case, if the thickness of the membrane to be coated is made too thin, the separation performance will deteriorate, so it is necessary to coat the membrane thicker than a certain level, and if the membrane is coated thickly to meet this requirement, the permeation rate of the material to be treated will decrease. There is a trade-off issue. In order to alleviate such inconveniences, the following two measures have been considered from the viewpoint of membrane materials. Firstly, although it is impossible to make the film thinner, it is necessary to choose a material that has relatively high gas permeability and separation performance even at the current thickness.Secondly, even if the film is made thinner, it must be possible to avoid pinholes. The key is to choose materials that do not cause this. However, at present, nothing satisfactory has been obtained in either case. For example, hydrocarbon rubbers (e.g. natural rubber, polybutadiene) have double bonds in their molecules, and gas,
In particular, it is known as one of the polymer materials with the second highest permeability coefficient for CO 2 after organopolysiloxane, but on the other hand, it has rubber elasticity and strong cohesive force, making it difficult to form a thin film. Furthermore, if the film is forced to have a thickness of several tens of microns or less, problems of non-uniformity in thickness and the occurrence of pinholes will occur, and good gas separation performance will not be exhibited. Furthermore, since polyalkynes have conjugated double bonds in their molecules, they can be expected to have good gas permeability similar to that of carbon-hydrogen rubbers. However, in reality, only low-molecular-weight polymers can be obtained, or even if high-molecular-weight polymers are obtained, there are cases in which there is no good solvent, or even if a solvent is available, it is only soluble at high temperatures. When melted, it may change in quality due to its thermal instability. Thus, until now, no polymer has been known that meets the demands for separation membranes and that can be made into thin films. The present inventors first discovered that it is possible to obtain a novel chain polymer from 2-alkynes in high yield, and that the resulting polymer has a weight average molecular weight of 10,000 or more as determined by light scattering, and in particular, 10,000 or more. It was discovered that it has an extremely high molecular weight for an acetylene compound polymer, ranging from 10,000 to 1,000,000, and is also completely soluble in hydrocarbons such as toluene and cyclohexane. No. 112108). As a result of intensive studies on separation properties using this new poly-2-alkyne, we found that when this chain polymer is used as the main membrane material, it can be used to separate gas mixtures while maintaining excellent selectivity. It was discovered that a membrane with a higher gas permeability coefficient than conventional membranes of the same type could be obtained. That is, the present invention aims to provide a membrane with a large gas permeability coefficient while maintaining excellent selectivity in the separation of gas mixtures, and the gist thereof is as follows: (In the above formula, A is an alkyl group, an aryl group,
Indicates an aralkyl group, an alkoxy group, an aryloxy group, or a halogen atom. n represents an integer of 0 to 5. ) The gas separation membrane is mainly composed of a chain polymer having a weight average molecular weight of 10,000 or more and having the compound represented by the following as a monomer. The present invention will be explained in detail below. The separation membrane of the present invention is made of a polyalkyne made of monomers represented by the above formula (). Polyalkynes made from monomers of formula () will be described. A in formula () represents an alkyl group, an ary group, an aralkyl group, an alkoxy group, an aryloxy group, or a halogen atom. Also, n is 0~
Indicates an integer of 5. In order to obtain a chain polymer having a weight average molecular weight of 10,000 or more from the monomer of the above formula (), a mixture of a group transition metal carbonyl and an organic halide or a monomer is irradiated with 2-chloro-1. -2-chloro-1 by polymerizing phenylacetylenes
- Polymers of phenylacetylenes can be produced. All of the above group transition metal carbonyls are in powder form and are stable in air, so they are easy to handle.As group transition metal carbonyls,
Examples include chromium carbonyl, molybdenum carbonyl, and tungsten carbonyl (for details, see Kyoritsu Shuppan Co., Ltd., Chemistry Dictionary, Vol. 3, p. 201, Vol. 9, p. 294,
It is described in Volume 5, page 710. ) Molybutene hexacarbonyl shows particularly high activity. As the organic halides used for catalyst preparation in the above method for producing a chain polymer, halogenated hydrocarbons such as carbon tetrachloride and carbon tetrabromide, and halogenated fatty acid esters such as ethyl trichloroacetate can be used. Carbon tetrachloride is preferred because it is inexpensive, easy to handle, and can also serve as a reaction solvent. Since the monomer 2-chloro-1-phenylacetylene itself has a chlorine atom, a mixed solution of the group transition metal carbonyl and the monomer can be prepared for the first time without adding an organic halogen compound separately. It is also possible to advance the polymerization simultaneously with the preparation of the catalyst by irradiating the catalyst with light for a predetermined period of time. A method in which a mixed solution of a group transition metal carbonyl and an organic halide is irradiated and then polymerized by adding a monomer in the dark is better than a method in which a mixed solution of a metal carbonyl and a monomer is polymerized simultaneously with irradiation. , producing high molecular weight polymers. The amount of the organic halogen compound to be used is equal to or more than the amount of the group transition metal carbonyl, and when used as a solvent like the above-mentioned carbon tetrachloride, a correspondingly large amount may be used. In the polymerization of 2-chloro-1-phenylacetylenes, the amount of transition metal carbonyl used is suitably in the range of 0.1 to 10 mol % based on the monomer of the above formula (). The light used for irradiation is
Although near-ultraviolet light from a 100W to 1KW high-pressure mercury lamp is most preferred, simple exposure to sunlight produces catalytic species effective for polymerization. Light irradiation time is 10 minutes ~
A temperature range of 0 to 100°C is suitable for several hours.
The intensity of the light is preferably such that it corresponds to the amount of irradiation for 10 minutes or more, preferably 30 minutes to 2 hours, at a distance of 30 cm from a 100 W to 1 KW light source. As a solvent for polymerization reaction, halogenated hydrocarbon,
It is preferable to use aromatic hydrocarbons and the like. The concentration of monomer in the polymerization reaction is 0.1 to 5 mol/
A range of is preferred. The temperature of polymerization reaction is usually 0 to 60
°C and time are selected from the range of several tens of minutes to several tens of hours. After the reaction is completed, the reaction system is diluted with the solvent used in the reaction and then poured into a large amount of methanol. Since the resulting polymer precipitates, it is separately dried. By the above method, a new chain polymer can be obtained in high yield from the 2-alkynes of the formula (), and the weight average molecular weight of the polymer as determined by light scattering method is 10,000 or more, especially 100,000. It has a molecular weight of ~1 million, which is extremely high for an acetylene polymer, and is also characterized by being completely soluble in hydrocarbons such as toluene and cyclohexane. By casting the solution of the polymer thus obtained, a homogeneous thin film can be obtained. The separation membrane may be the deuterium obtained as described above or one containing it as the main component, one formed into a copolymer with other components, or one mixed with other components as a blend product. A film formed by forming a film may also be used. The separation membrane of the present invention is mainly composed of the polyalkynes obtained as described above, and is obtained as a transparent and durable film by dissolving it in an organic solvent and casting it (solution casting method). In the casting method, raw materials are dissolved in an organic solvent or water, and if necessary, plasticity is added to obtain a viscous solution. After completely removing dust and air bubbles, the material is poured onto a flat glass plate. Alternatively, it is a method of casting onto a uniform metal support using a rotating flat plate, and removing the solvent to form a thin film.The resulting film has excellent uniformity in thickness, and has excellent flatness, transparency, and photoselectivity. Are better. Furthermore, it has the characteristic that it has no directionality and can produce an extremely high quality film free of foreign substances, and is suitable for obtaining a separation membrane from the polyalkyne of the present invention. For example, if it is attempted to form a film by a melting method, the melting point and decomposition temperature of the polyalkynes of the present invention are close to each other, so there is a risk of deterioration, which is not preferable. The organic solvent used to make the casting solution may be any solvent as long as it dissolves the polyalkyne well and evaporates easily after casting. Specifically, benzene, toluene, cyclohexane, n-hexane, etc. Hydrocarbon solvents, tetrahydrofuran, etc. are preferably used. The solution concentration for obtaining a homogeneous film from the casting solution varies depending on the molecular weight and molecular weight distribution of the polymer and the type of solvent, but is usually in the range of 1 to 50% by weight, preferably 5 to 30% by weight. Concentration is 1% by weight
If the solution concentration is less than 50% by weight, the resulting membrane will be too thick and the gas permeation rate will be high, but sufficient separation performance will not be achieved. Although separation performance can be obtained, the gas permeation rate becomes low. The thickness of the produced film is not particularly limited, but is usually in the range of 5 to 50 microns, preferably 10 to 30 microns. Due to its excellent properties, the separation membrane of the present invention can be used in the form of homogeneous membranes, asymmetric membranes and composite membranes for the separation of specific substances in substance mixtures.
Gases can be used as target substances, in particular gas mixtures containing at least one of the following gases: oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen, helium, methane, argon.
For example, separation of nitrogen and oxygen in the production of oxygen-enriched air, separation of methane and helium in the recovery of helium from natural gas, argon and hydrogen, methane and hydrogen, nitrogen in the recovery of hydrogen from hydrogenation reaction waste gas. It can be applied to the separation of carbon monoxide and hydrogen in the recovery of cracking gas, and the separation of carbon dioxide and nitrogen in the recovery of carbon dioxide from combustion gas. Examples of the present invention and production examples of polyalkynes used in these examples will be described below. Production example Under a dry nitrogen atmosphere, 30 mmol of molybdenum hexacarbonyl and 1.0 mole of 2-chloro-1-phenylacetylene in 1 part of purified carbon tetrachloride and 25% by volume of tetralin based on the monomer as an internal standard for gas chromatography. and 30 minutes at 30℃
Irradiation was performed using a 300W high-pressure mercury lamp. after that
Polymerization was carried out in the dark at 30°C for 23.5 hours. When the amount of residual monomer was determined by gas chromatography, the reaction rate was 83%. The resulting polymer was precipitated by pouring the reaction solution into a large amount of methanol, and then dried separately. The amount of methanol-insoluble polymer produced was 72% of the amount of monomer charged. The resulting polymer is a yellowish white solid;
It was soluble in toluene, carbon tetrachloride, ethylene dichloride, etc., and insoluble in n-hexane, ether, alcohol, etc. No softening point was observed below 300°C. It was confirmed by the following analysis that the product was a polymer with the expected structure. Elemental analysis value [(C 8 H 6 Cl)
o ] Calculated values C70.35%, H3.69%, Cl25.96%, actual values C70.86%, H3.67%, Cl25.30%. Infrared absorption spectrum 3100-3000 (m), 1650-1550 (W), 1495
(S), 1445 (S), 1090 (m), 825 (m), 755 (S)
),
690 (S), 545 (m) cm -1 . According to the light scattering method, the weight average molecular weight of the resulting polymer was 980,000, and the intrinsic viscosity measured at 30°C in toluene was:
It was 2.58 dl/g. Furthermore, the relationship between the weight average molecular weight Mw determined by the light scattering method and the intrinsic recognition [η] was as follows. [η] = KM a w (K = 10 -6.06 a = 1.07) Example 1 Poly(2-chloro-1-phenylacetylene) obtained in the above production was dissolved in toluene to give a concentration of 5% by weight.
This solution was applied to one side and both sides of a porous membrane (Millipore Filter VSWP (manufactured by Nippon Millipore Amit)). After drying, the coating thickness of the solid content was determined by gravimetric method and was 2.0 g/m 2 and 8.0 g/m 2 (total on both sides). This composite membrane was attached to a permeation test device, and the permeation characteristics of various gases were measured. The measuring device used was an ultraviolet device (Model 52, manufactured by Amicon, USA). After the membrane was attached, a specified gas was pressurized to the top of the membrane at a pressure of 1.0 kg/cm 2 G, and the measurement was performed. Connect the bottom surface of the membrane to a gas filter and measure the amount of gas passing through the membrane over a certain period of time at 25°C to determine gas permeability. The results are shown in Table 1 below. The unit of gas permeability coefficient for various gases is cc (STP)・cm/cm 2・sec・
cmHg. Comparative Example 1 The same procedure as in Example 1 was performed except that poly(2-chloro-1-phenylacetylene) was not used (ie, a 0% by weight polymer solution in toluene). Gas permeability results are shown in Table 1. Example 2 Poly(2-chloro-1-
Dissolve phenylacetylene) in toluene and add 3%
(wt) concentration and kept at 34 °C. One drop of this polymer solution is added with a micropipette to water that has been filled in a container and maintained at 10°C. The weight of the droplet at this time was 13.7 mg. The dropped liquid immediately spread on the water surface, and an extremely thin circular film was obtained. The membrane area at this time was 18.8 cm 2 , and the membrane thickness determined from this by the gravimetric method was 0.38 Ό. The ultrathin membrane obtained here was taken out onto a polysulfone porous membrane to produce a composite membrane. The amount of gas permeation through this composite membrane was measured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 2 In Example 2, poly(2-chloro-1-phenylacetylene) was not used (i.e., polymer 0
Gas permeability was measured using the same procedure except for using a toluene solution (wt%). The results are shown in Table 1.

【衚】 以䞊説明し、実斜䟋に挙げたずころは本発明の
理解を助けるための代衚的䟋瀺に係わるものであ
り、本発明はこれら䟋瀺に制限されるこずなく、
本発明の芁旚内で、その他の倉曎䟋をずるこずが
できるものである。
[Table] The above explanation and examples are related to typical examples to help the understanding of the present invention, and the present invention is not limited to these examples.
Other modifications may be made within the spirit of the invention.

Claims (1)

【特蚱請求の範囲】  䞀般匏 䞊匏においお、はアルキル基、アリヌル基、
アラルキル基、アルコキシ基、アリヌルオキシ基
又はハロゲン原子を瀺す。は〜の敎数を瀺
す。 で衚わされる化合物を単量䜓ずする重量平均分子
量䞇以䞊の鎖状重合䜓を䞻䜓ずする気䜓分離
膜。
[Claims] 1. General formula (In the above formula, A is an alkyl group, an aryl group,
Indicates an aralkyl group, an alkoxy group, an aryloxy group, or a halogen atom. n represents an integer of 0 to 5. ) A gas separation membrane mainly composed of a chain polymer having a weight average molecular weight of 10,000 or more and containing a compound represented by the following as a monomer.
JP57117813A 1982-07-08 1982-07-08 Separation membrane Granted JPS5910305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117813A JPS5910305A (en) 1982-07-08 1982-07-08 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117813A JPS5910305A (en) 1982-07-08 1982-07-08 Separation membrane

Publications (2)

Publication Number Publication Date
JPS5910305A JPS5910305A (en) 1984-01-19
JPH0221856B2 true JPH0221856B2 (en) 1990-05-16

Family

ID=14720891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117813A Granted JPS5910305A (en) 1982-07-08 1982-07-08 Separation membrane

Country Status (1)

Country Link
JP (1) JPS5910305A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1269313A (en) * 1985-06-06 1990-05-22 Donald E. Beckett Formation of laminates
JPS62138243A (en) * 1985-12-11 1987-06-22 秋毎株匏䌚瀟 Resin sheet for vacuum molding
US5176724A (en) * 1987-11-10 1993-01-05 Matsushita Electric Industrial Co., Ltd. Permselective composite membrane having improved gas permeability and selectivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190607A (en) * 1981-05-20 1982-11-24 Agency Of Ind Science & Technol Semi-permeable membrane and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190607A (en) * 1981-05-20 1982-11-24 Agency Of Ind Science & Technol Semi-permeable membrane and preparation thereof

Also Published As

Publication number Publication date
JPS5910305A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US4714481A (en) Gas separation membrane
SU718001A3 (en) Membrane producing method
Alentiev et al. Stereoselective synthesis and polymerization of Exo‐5‐trimethylsilylnorbornene
US7785397B2 (en) Highly microporous thermoplastic/bismaleimide semi-interpenetrating polymer network
JPH0324252B2 (en)
CA1281474C (en) Polytrialkylgermylpropyne polymers and membranes
Żak et al. Application of olefin metathesis in the synthesis of functionalized polyhedral oligomeric silsesquioxanes (POSS) and POSS-containing polymeric materials
Chapala et al. Synthesis and Gas‐Transport Properties of Novel Copolymers Based on Tricyclononenes Containing One and Three Me3Si‐Groups
JPS6253211B2 (en)
JPS6178402A (en) Separation of organic liquid mixture
Gacal et al. Modification of polyisoprene‐block‐poly (vinyl trimethylsilane) block copolymers via hydrosilylation and hydrogenation, and their gas transport properties
JP5155255B2 (en) Asymmetric membrane of siloxane functional cyclic olefin (co) polymer and process for producing the same
JPH0221856B2 (en)
JPH0536091B2 (en)
JPH06825B2 (en) Acetylene-based polymer and separation membrane comprising the polymer
JPH0387B2 (en)
JPH024329B2 (en)
JP2559588B2 (en) Gas separation membrane
JPS6223972B2 (en)
JPH0255100B2 (en)
JPS5942004A (en) Gas separating membrane having high permeability
JPS6118421A (en) Gas separating membrane
JPS5959211A (en) Gas separation membrane
JPH0464729B2 (en)
JPH0459325B2 (en)