JP2559588B2 - Gas separation membrane - Google Patents

Gas separation membrane

Info

Publication number
JP2559588B2
JP2559588B2 JP62108360A JP10836087A JP2559588B2 JP 2559588 B2 JP2559588 B2 JP 2559588B2 JP 62108360 A JP62108360 A JP 62108360A JP 10836087 A JP10836087 A JP 10836087A JP 2559588 B2 JP2559588 B2 JP 2559588B2
Authority
JP
Japan
Prior art keywords
polymer
separation membrane
gas separation
present
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62108360A
Other languages
Japanese (ja)
Other versions
JPS63273610A (en
Inventor
敏延 東村
俊夫 増田
廣重 村松
昭男 植田
邦夫 奥原
晃 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daikin Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP62108360A priority Critical patent/JP2559588B2/en
Publication of JPS63273610A publication Critical patent/JPS63273610A/en
Application granted granted Critical
Publication of JP2559588B2 publication Critical patent/JP2559588B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F38/00Homopolymers and copolymers of compounds having one or more carbon-to-carbon triple bonds

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、含フツ素ポリフエニルアセチレン類からな
る気体分離膜に関する。
Description: TECHNICAL FIELD The present invention relates to a gas separation membrane composed of fluorine-containing polyphenylacetylenes.

従来の技術 本発明含フツ素ポリフエニルアセチレン類は、文献未
記載の新規化合物である。
2. Description of the Related Art The fluorine-containing polyphenylacetylenes of the present invention are novel compounds which have not been described in the literature.

発明が解決しようとする問題点 本発明は、有用な気体分離膜を提供することを目的と
する。
Problem to be Solved by the Invention The present invention aims to provide a useful gas separation membrane.

問題点を解決するための手段 本発明は、下記一般式〔1〕で表わされる含フツ素ポ
リフエニルアセチレン類からなる気体分離膜である。
Means for Solving the Problems The present invention is a gas separation membrane composed of fluorine-containing polyphenylacetylenes represented by the following general formula [1].

〔式中、Rはフツ素原子又は炭素数1〜10のアルキル基
を示し、nは2以上の整数を示す。〕 本発明の上記一般式〔1〕で表わされる含フツ素ポリ
フエニルアセチレン類は、強靭なフイルムを形成でき、
気体分離膜として有用である。
[In the formula, R represents a fluorine atom or an alkyl group having 1 to 10 carbon atoms, and n represents an integer of 2 or more. The fluorine-containing polyphenylacetylenes represented by the above general formula [1] of the present invention can form a tough film,
It is useful as a gas separation membrane.

上記一般式〔1〕で表わされる本発明化合物は、タン
グステンカルボニル若しくは六塩化タングステンの存在
下又は六塩化タングステンと有機金属化合物との共存下
に、一般式 〔式中、Rは上記に同じ。〕 で表わされる化合物を重合させることにより製造され
る。
The compound of the present invention represented by the above general formula [1] has the general formula in the presence of tungsten carbonyl or tungsten hexachloride or in the coexistence of tungsten hexachloride and an organometallic compound. [In the formula, R is the same as above. ] It manufactures by polymerizing the compound represented by these.

上記重合反応は常法に従つて行なえばよく、例えば以
下のようにして行なわれる。即ち、タングステンカルボ
ニル若しくは六塩化タングステン又は六塩化タングステ
ンと有機金属化合物との混合物(以下これらを「重合触
媒」と総称する。)を適当な溶剤に添加し、必要に応じ
て公知の方法に準じてこれら重合触媒を活性化した後、
更に上記一般式〔2〕で表わされる化合物を添加して反
応させればよい。
The above-mentioned polymerization reaction may be carried out according to a conventional method, for example, as follows. That is, tungsten carbonyl or tungsten hexachloride or a mixture of tungsten hexachloride and an organometallic compound (hereinafter collectively referred to as "polymerization catalyst") is added to a suitable solvent, and if necessary, according to a known method. After activating these polymerization catalysts,
Further, the compound represented by the above general formula [2] may be added and reacted.

有機金属化合物とは、アルキル基又はアリール基等の
炭化水素基と金属原子との結合した化合物の他に、前記
炭化水素基と珪素、硼素等のような金属性の少ない原子
(半金属)との結合した化合物であり、その具体例とし
ては、例えば、テトラフエニルスズ、テトラブチルス
ズ、トリエチルシラン、トリフエニルビスマス、トリフ
エニルアンチモン、ブチルリチウム、トリエチルアルミ
ニウム等を挙げることができる。重合触媒の濃度は特に
制限されないが、通常上記一般式〔2〕のモノマーと溶
剤との合計量に対し、5〜100ミリモル/程度とすれ
ばよい。また、六塩化タングステンと有機金属化合物と
を併用する場合には、その使用割合は特に制限されない
が、通常モル比で1:0.1〜1:10程度、好ましくは1:1とす
ればよい。適当な溶剤としては、重合触媒にタングステ
ンカルボニルを使用する場合は四塩化炭素、他の重合触
媒を使用する場合は、例えば、トルエン等の炭化水素
類、六フツ化ベンゼン、1,3−ビス(トリフルオロメチ
ル)ベンゼン、トリクロロトリフルオロエタン、四塩化
炭素等のハロゲン化炭化水素類を挙げることができる。
上記一般式〔2〕で表わされるモノマーの濃度は特に制
限されないが、通常溶媒量に対して0.1〜5モル/程
度、好ましくは0.25〜2.0モル/程度とすればよい。
重合温度は、上記一般式〔2〕中の符号Rがフツ素原子
であるモノマーを使用する場合には、通常0〜80℃程
度、好ましくは30〜80℃程度とすればよい。また、符号
Rが炭素数1〜10のアルキル基であるモノマーを使用す
る場合には、−30〜80℃程度とすればよく、温度が低く
なるほど分子量の大きな重合体が得られる。重合時間は
特に制限されないが、通常1〜24時間程度とすればよ
い。
The organometallic compound includes, in addition to a compound in which a hydrocarbon group such as an alkyl group or an aryl group is bonded to a metal atom, an atom having a low metallicity (semimetal) such as the hydrocarbon group and silicon or boron. Examples thereof include tetraphenyltin, tetrabutyltin, triethylsilane, triphenylbismuth, triphenylantimony, butyllithium, triethylaluminum, and the like. The concentration of the polymerization catalyst is not particularly limited, but is usually 5 to 100 mmol / about the total amount of the monomer of the general formula [2] and the solvent. When tungsten hexachloride and an organometallic compound are used in combination, the use ratio thereof is not particularly limited, but the molar ratio is usually about 1: 0.1 to 1:10, preferably 1: 1. Suitable solvents include carbon tetrachloride when tungsten carbonyl is used as the polymerization catalyst, and hydrocarbons such as toluene, hexafluorobenzene and 1,3-bis (when other polymerization catalysts are used. Examples thereof include halogenated hydrocarbons such as trifluoromethyl) benzene, trichlorotrifluoroethane and carbon tetrachloride.
The concentration of the monomer represented by the above general formula [2] is not particularly limited, but is usually 0.1 to 5 mol / about, preferably 0.25 to 2.0 mol / about the amount of the solvent.
The polymerization temperature is usually about 0 to 80 ° C., preferably about 30 to 80 ° C. when a monomer in which the symbol R in the general formula [2] is a fluorine atom is used. When a monomer in which the symbol R is an alkyl group having 1 to 10 carbon atoms is used, the temperature may be about -30 to 80 ° C, and the lower the temperature, the higher the molecular weight of the polymer obtained. Although the polymerization time is not particularly limited, it is usually about 1 to 24 hours.

上記重合反応で得られた重合体を精製するに際して
は、公知の方法が何れも採用でき、例えば、重合体溶液
に大量のメタノール等の溶媒を加えて重合体を沈澱さ
せ、濾別、乾燥すればよい。
In purifying the polymer obtained by the above polymerization reaction, any known method can be adopted.For example, a large amount of a solvent such as methanol is added to the polymer solution to precipitate the polymer, which is filtered and dried. Good.

かくして得られる一般式〔1〕で表わされる本発明重
合体はこげ茶乃至黒色固体であり、その重合平均分子量
(w)は10万〜200万程度、数平均分子量(n)は
5万〜100万程度及び極限粘度〔η〕(六フツ化ベンゼ
ン中30℃で測定)は0.1〜2.0程度である。また、その重
量損失開始温度は、220〜240℃である。
The polymer of the present invention represented by the general formula [1] thus obtained is a dark brown or black solid, and its polymerization average molecular weight (w) is about 100,000 to 2,000,000 and its number average molecular weight (n) is 50,000 to 100. And the intrinsic viscosity [η] (measured in hexafluorobenzene at 30 ° C) is about 0.1 to 2.0. The weight loss starting temperature is 220 to 240 ° C.

尚、上記一般式〔2〕で表わされる化合物は公知化合
物であり、公知の方法、例えば、コーエらの方法〔P.L.
Coe,R.G.Plevey and J.C.Tatlow,J.Chem.Soc.
(c),1966,596〕、マトウらの方法〔F.S.Matough,R.
Mukhtar and P.L.Coe,Libyan J.Sci.,8A,27(197
8)〕、奥原らの方法〔奥原・小平,第8回ヨーロツパ
フツ素化学シンポジウム,0〜21,要旨:J.Fluorine Che
m.,23,497(1983)〕に準じて製造できる。
The compound represented by the above general formula [2] is a known compound, and known methods such as the method of Koe et al. [PL
Coe, RGPlevey and JCTatlow, J.Chem.Soc.
(C), 1966 , 596], the method of Matou et al. [FS Matough, R.
Mukhtar and PLCoe, Libyan J.Sci., 8A, 27 (197
8)], Okuhara et al. [Okuhara & Kodaira, 8th European Symposium on European Chemistry, 0-21, Abstract: J. Fluorine Che
m., 23, 497 (1983)].

本発明重合体を用いて、気体分離膜を製造するに際し
ては、公知の方法が何れも採用できる。例えば、本発明
重合体を適当な溶媒に溶解し、この溶液をガラス板等の
上に塗布し、室温下3〜48時間程度放置することにより
気体分離膜を得ることができる。
Any known method can be adopted for producing a gas separation membrane using the polymer of the present invention. For example, a gas separation membrane can be obtained by dissolving the polymer of the present invention in a suitable solvent, coating this solution on a glass plate or the like, and leaving it at room temperature for about 3 to 48 hours.

発明の効果 本発明によつて提供される気体分離膜は強靭なフイル
ムであり、酸素透過係数が大きく、しかも酸素と窒素と
の分離係数も大きいため、気体分離膜として有用であ
る。
EFFECTS OF THE INVENTION The gas separation membrane provided by the present invention is a tough film, has a large oxygen permeability coefficient and a large separation coefficient between oxygen and nitrogen, and is therefore useful as a gas separation membrane.

実 施 例 以下に実施例を挙げ、本発明をより一層明瞭なものと
する。
Examples The following examples are provided to further clarify the present invention.

実施例1 攪拌機、温度計及び窒素導入管を備えた50ml容の三口
フラスコに六塩化タングステン79mg(0.2mmol)を仕込
み、次いで水素化カルシウムで乾燥した六フツ化ベンゼ
ン20mlを窒素気流下で仕込んだ。30℃で10分間攪拌した
後、ベンタフルオロフエニルアセチレン4.0g(20.6mmo
l)を加え、同温度で24時間反応させた。反応が終了し
た後、反応液を多量のメタノールに注ぎ、沈澱したポリ
マーを濾別回収した。得られたポリマーを室温で24時間
乾燥を行い、2.0g(収率49%)の黒色固体の本発明ポリ
マーを得た。
Example 1 A 50 ml three-necked flask equipped with a stirrer, a thermometer and a nitrogen inlet tube was charged with 79 mg (0.2 mmol) of tungsten hexachloride, and then 20 ml of hexafluorobenzene dried with calcium hydride was charged under a nitrogen stream. . After stirring at 30 ° C for 10 minutes, 4.0 g of bentafluorophenylacetylene (20.6 mmo
l) was added and reacted at the same temperature for 24 hours. After the reaction was completed, the reaction solution was poured into a large amount of methanol, and the precipitated polymer was collected by filtration. The obtained polymer was dried at room temperature for 24 hours to obtain 2.0 g (yield 49%) of a black solid polymer of the present invention.

生成ポリマーの極限粘度〔η〕(溶媒六フツ化ベンゼ
ン、30℃)は、0.33dl/gであつた。
The intrinsic viscosity [η] (solvent hexafluorobenzene, 30 ° C.) of the produced polymer was 0.33 dl / g.

〔元素分析(%)〕[Elemental analysis (%)]

C F 計算値,(C8HF5として: 50.02; 49.45 実測値 : 49.85; 49.22 また上記ポリマーの赤外線吸収スペクトルを第1図に
示す。
Calculated C F, as (C 8 HF 5 ) n : 50.02; 49.45 Measured value: 49.85; 49.22 The infrared absorption spectrum of the above polymer is shown in FIG.

実施例2〜8 重合触媒を下記の物に代える以外は、実施例1と同様
にして本発明ポリマーを得た。結果を第1表に示す。
Examples 2 to 8 Polymers of the present invention were obtained in the same manner as in Example 1 except that the following polymerization catalysts were used. The results are shown in Table 1.

実施例9 実施例1と同様な容器に、タングステンカルボニル35
mg(0.1mmol)と四塩化炭素20mlを仕込み、乾燥窒素を
通気し容器内を窒素置換した後、30℃に保ちながら100W
高圧水銀ランプから30分間紫外線を照射した。照射後、
ペンタフルオロフエニルアセチレン4.0g(20.6mmol)を
加え、同温度で24時間反応させた。反応が終了した後、
反応液を多量のメタノールに注ぎ、沈澱したポリマーを
濾別回収した。得られたポリマーを室温で24時間乾燥を
行い、3.7g(収率92%)の黒色固体の本発明ポリマーを
得た。
Example 9 A container similar to that used in Example 1 was charged with tungsten carbonyl 35
Charge mg (0.1 mmol) and 20 ml of carbon tetrachloride, aerate dry nitrogen to replace the inside of the container with nitrogen, and then keep 100W while maintaining at 30 ° C.
Ultraviolet rays were irradiated for 30 minutes from a high pressure mercury lamp. After irradiation,
4.0 g (20.6 mmol) of pentafluorophenylacetylene was added, and the mixture was reacted at the same temperature for 24 hours. After the reaction is complete,
The reaction solution was poured into a large amount of methanol, and the precipitated polymer was collected by filtration. The obtained polymer was dried at room temperature for 24 hours to obtain 3.7 g (yield 92%) of a black solid polymer of the present invention.

実施例10 モノマーとしてペンタフルオロフエニルアセチレンに
代えてp−(n−ブチル)テトラフルオロフエニルアセ
チレン4.7g(20.6mmol)を使用し、並びに溶媒として六
フツ化ベンゼンに代えてトルエンを使用する以外は、実
施例1と同様にして本発明ポリマーを得た。
Example 10: P- (n-butyl) tetrafluorophenylacetylene (4.7 g, 20.6 mmol) was used in place of pentafluorophenylacetylene as a monomer, and toluene was used in place of hexafluorobenzene as a solvent. In the same manner as in Example 1, a polymer of the present invention was obtained.

生成ポリマーの分子量は、GPC(ゲルパーミエイシヨ
ン クロマトグラフイ:クロロホルム溶媒)により、
w(重合平均分子量)14×104、n(数平均分子量)
6.9×104であつた。また、当該ポリマーの赤外線吸収ス
ペクトルを第2図に示す。
The molecular weight of the produced polymer was determined by GPC (gel permeation chromatography: chloroform solvent).
w (polymerization average molecular weight) 14 × 10 4 , n (number average molecular weight)
It was 6.9 × 10 4 . The infrared absorption spectrum of the polymer is shown in FIG.

実施例11〜17 重合触媒として実施例2〜8で使用されたもの(触媒
量も同じ)を夫々使用する以外は、実施例10と同様にし
て本発明ポリマーを得た。結果を第2表に示す。
Examples 11 to 17 Polymers of the present invention were obtained in the same manner as in Example 10 except that the polymerization catalysts used in Examples 2 to 8 (the same catalyst amount) were used. The results are shown in Table 2.

実施例18 モノマーとしてペンタフルオロフエニルアセチレンに
代えてp−(n−ブチル)テトラフルオロフエニルアセ
チレン4.7g(20.6mmol)を使用する以外は、実施例9と
同様にしてこげ茶色固体の本発明ポリマー4.3g(収率91
%)を得た。
Example 18 The present invention as a dark brown solid in the same manner as in Example 9 except that 4.7 g (20.6 mmol) of p- (n-butyl) tetrafluorophenylacetylene was used in place of pentafluorophenylacetylene as a monomer. 4.3 g of polymer (yield 91
%) Was obtained.

生成ポリマーの、w(重合平均分子量)は90×1
04、n(数平均分子量)は57×104であつた。
The produced polymer has a w (polymerization average molecular weight) of 90 x 1
0 4 and n (number average molecular weight) were 57 × 10 4 .

実施例19 実施例10で得られたポリ〔p−(n−ブチル)テトラ
フルオロフエニルアセチレン〕をトルエンに濃度が10重
量%になるように溶解した、この溶解液をガラス板上に
ドクターブレードで塗布し、室温で24時間放置した。そ
の後、塗布物をガラス板から剥がし、気体分離膜を得
た。膜厚は、11μmであつた。
Example 19 The poly [p- (n-butyl) tetrafluorophenylacetylene] obtained in Example 10 was dissolved in toluene to a concentration of 10% by weight, and this solution was doctor bladed onto a glass plate. And then left for 24 hours at room temperature. Then, the coated material was peeled off from the glass plate to obtain a gas separation membrane. The film thickness was 11 μm.

得られた膜について、酸素の透過係数(KO2)と酸素
の窒素に対する分離係数 をASTM 1434 V法に準じ、下記条件で測定した。
Regarding the obtained membrane, the permeability coefficient of oxygen (KO 2 ) and the separation coefficient of oxygen with respect to nitrogen Was measured under the following conditions according to the ASTM 1434 V method.

使用気体:窒素79容量%および酸素21容量%の標準混合
ガス 試験圧力:一次圧4kg/cm2 二次圧1kg/cm2 (いずれも絶対圧) 気体透過量:4cc 試験時間:上記気体透過に要した時間(秒) 気体分離膜試料の膜厚:ポリマー重量をポリマー面積と
ポリマー比重で除した値 気体の組成分析は、ガスクロマトグラフイーで行つ
た。結果を下記に示す。
Gas used: Standard mixed gas of 79% by volume of nitrogen and 21% by volume of oxygen Test pressure: Primary pressure 4 kg / cm 2 Secondary pressure 1 kg / cm 2 (Absolute pressure) Gas permeation amount: 4 cc Test time: For the above gas permeation Time required (seconds) Film thickness of gas separation membrane sample: value obtained by dividing polymer weight by polymer area and polymer specific gravity Gas composition analysis was performed by gas chromatography. The results are shown below.

KO2:1.8×10-8cc(STP)・cm/cm2・sec・cmHg α:3.5KO 2 : 1.8 × 10 -8 cc (STP) ・ cm / cm 2・ sec ・ cmHg α: 3.5

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、本発明ポリマーの赤外線吸収スペ
クトルである。
1 and 2 are infrared absorption spectra of the polymer of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥原 邦夫 愛知県犬山市大字羽黒字西五反田14−13 (72)発明者 大森 晃 大阪府茨木市山手台16−13 審査官 中島 庸子 (56)参考文献 特開 昭54−41989(JP,A) 特開 昭53−65384(JP,A) 特開 昭49−48778(JP,A) 特開 昭51−30892(JP,A) 特開 昭60−166309(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kunio Okuhara 14-13 Nishigotanda, Haguro, Inuyama City, Aichi Prefecture (72) Inventor Akira Omori 16-13 Yamatedai, Ibaraki City Osaka Prefecture Examiner: Yoko Nakajima (56) Reference References JP-A-54-41989 (JP, A) JP-A-53-65384 (JP, A) JP-A-49-48778 (JP, A) JP-A-51-30892 (JP, A) JP-A-60- 166309 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 〔式中、Rはフツ素原子又は炭素数1〜10のアルキル基
を示し、nは2以上の整数を示す。〕 で表わされる含フツ素ポリフエニルアセチレン類からな
る気体分離膜。
1. A general formula [In the formula, R represents a fluorine atom or an alkyl group having 1 to 10 carbon atoms, and n represents an integer of 2 or more. ] A gas separation membrane comprising a fluorine-containing polyphenylacetylene represented by the formula:
JP62108360A 1987-04-30 1987-04-30 Gas separation membrane Expired - Lifetime JP2559588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108360A JP2559588B2 (en) 1987-04-30 1987-04-30 Gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108360A JP2559588B2 (en) 1987-04-30 1987-04-30 Gas separation membrane

Publications (2)

Publication Number Publication Date
JPS63273610A JPS63273610A (en) 1988-11-10
JP2559588B2 true JP2559588B2 (en) 1996-12-04

Family

ID=14482761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108360A Expired - Lifetime JP2559588B2 (en) 1987-04-30 1987-04-30 Gas separation membrane

Country Status (1)

Country Link
JP (1) JP2559588B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527737B2 (en) * 1987-05-07 1996-08-28 昌祥 田畑 Process for producing para-substituted phenylacetylene polymers
US7847043B2 (en) 2004-12-10 2010-12-07 Otsuka Chemical Co., Ltd. Organic bismuth compound, method for producing same, living radical polymerization initiator, method for producing polymer using same, and polymer
JP6355058B2 (en) * 2014-09-22 2018-07-11 富士フイルム株式会社 Gas separation membrane, gas separation module, gas separation device, and gas separation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442036B2 (en) * 1972-09-11 1979-12-12
JPS5130892A (en) * 1974-09-10 1976-03-16 Mitsubishi Chem Ind Fueniruasechiren no jugohoho
JPS5365384A (en) * 1976-11-24 1978-06-10 Toshinobu Higashimura Polymerization process of phenyl acetylenes
JPS5441989A (en) * 1977-09-09 1979-04-03 Toshinobu Higashimura Method of polymerizing phenylacetylenes
JPS60166309A (en) * 1984-02-09 1985-08-29 Agency Of Ind Science & Technol Polyphenylacetylene compound having fluorine or trifluoromethyl group

Also Published As

Publication number Publication date
JPS63273610A (en) 1988-11-10

Similar Documents

Publication Publication Date Title
EP0243006B1 (en) Block-graft copolymers and process for producing the same
Feast et al. Tailored copolymers via coupled anionic and ring opening metathesis polymerization. Synthesis and polymerization of bicyclo [2.2. 1] hept-5-ene-2, 3-trans-bis (polystyrylcarboxylate) s
JP4295096B2 (en) Ring-opening metathesis polymerization of bridged bicyclic and polycyclic olefins containing two or more heteroatoms
EP1364973B1 (en) Functional substances derived from oligoolefins having functional groups at the ends
JP2559588B2 (en) Gas separation membrane
Bredeweg et al. Studies on dilithium initiators. 2. The bimodal molecular weight distribution in polyisoprene
JP2844785B2 (en) Chloroprene block copolymer
CN1347427A (en) Processes for making polymers contg. pendant cyclic anhydride groups
JPS5996112A (en) Production of high-purity cyclized isoprene polymer
JPH0610216B2 (en) 0- (trialkylsilyl) phenylacetylene polymer and process for producing the same
JPS60212414A (en) Acetylenic polymer and separating membrane consisting thereof
JPS61115911A (en) Diethynylsilane compound polymer and its production
JPH0617414B2 (en) Phenylacetylene polymer having a substituent at the ortho position
JPH0224284B2 (en)
JPS61113605A (en) Polymer of substituted diethynyl benzene compound and production thereof
JPH0255100B2 (en)
JPH0221856B2 (en)
Liaw et al. Polymerization of o-trimethylsilylphenylacetylene initiated by a tungsten carbene complex
JP2900042B2 (en) Copolymers of substituted acetylenes and norbornene
JP2727642B2 (en) Method for producing divinylsilane polymer
JPS62260804A (en) Production of fluorine-containing polyphenylacetylene
JPS61247714A (en) Silyl group-containing polymer and its production
JPS61209434A (en) Polymer for resist
JPH022882B2 (en)
JPH05140299A (en) Preparation of modified amorphous poly(2,6-dimethyl- p-oxyphenylene)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term