JPS6253211B2 - - Google Patents

Info

Publication number
JPS6253211B2
JPS6253211B2 JP57226691A JP22669182A JPS6253211B2 JP S6253211 B2 JPS6253211 B2 JP S6253211B2 JP 57226691 A JP57226691 A JP 57226691A JP 22669182 A JP22669182 A JP 22669182A JP S6253211 B2 JPS6253211 B2 JP S6253211B2
Authority
JP
Japan
Prior art keywords
carbon atoms
organic group
polycarbonate
bis
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57226691A
Other languages
Japanese (ja)
Other versions
JPS59120206A (en
Inventor
Yasuo Kato
Hifumi Takahashi
Hiroshi Kawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP22669182A priority Critical patent/JPS59120206A/en
Publication of JPS59120206A publication Critical patent/JPS59120206A/en
Publication of JPS6253211B2 publication Critical patent/JPS6253211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/50Polycarbonates

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は選択性分離膜に関する。更にくわしく
は、適度な分離能とすぐれた透過量を有するガス
分離用分離膜に関する。 近年省エネルギー対策として各種物質の混合物
を分離膜を用いて、分離精製する技術が注目され
ている。例えば酢酸セルロースの非対称膜を用い
た海水の淡水化、シリコーン系ポリマーをコート
層に用いた複合膜による水素や酸素の濃縮等が知
られている。該複合膜に用いられているシリコー
ン系ポリマーは、ガスの透過量が大きく、分離膜
用素材としてすぐれた性質を有している。しかし
ながら強度が低く製膜性が悪いため極薄膜の作製
が困難である欠点を有する。一方製膜性が良く、
更には耐熱性にすぐれた材料としてポリカーボネ
ートやポリスルホンが知られている。例えば、
2・2−ビス(4−ヒドロキシフエニル)プロパ
ンをモノマーとしたポリカーボネートやポリスル
ホンは高いガラス転移点と良好な成形性を有して
いることは知られている。しかしながらこれらの
ポリマーは分離能および透過量共に悪く実用的に
は使用できない。 本発明者らは、上記の成形性の良いポリマーの
ガス分離性能、特に透過量を向上させるべく鋭意
検討した結果、本発明に到つたものである。 すなわち、下記一般式()で示されるビスフ
エノールおよび下記一般式()で示される化合
物から選ばれた1種又は2種以上のビスフエノー
ルから成り、一般式()で示されるビスフエノ
ールがポリマーを構成する全ビスフエノールに対
して30〜80モル%であるポリカーボネートから得
られた膜のガス透過量が著しく向上することを見
出したものである。 (但しAは−O−、−S−、−SO−、−SO2−、−
CO−、又は炭素原子数1〜12の2価の有機基を
示す。) (但しR1、R2は炭素原子数1〜6の1価の有機基
から選ばれた同じか又は相異なる基を示し、R1
が炭素原子数3以上の1価の有機基の場合、R2
は水素原子又は炭素原子数2以下の1価の有機基
である。R3、R4は水素原子又はメチル基から選
ばれた同じか又は相異なる基を示す。Bは−O
−、−S−、−SO−、−SO2−、−CO−又は炭素原
子数1〜12の2価の有機基を示す。) 特に該共重合ポリカーボネートは、実施例にも
示すように有機性のガスと無機性のガスを分離す
る場合、分離能および透過量が共に向上する。こ
れは、化合物()が有している有機性の置換基
によるものと考えられるが、明確ではない。 該共重合ポリカーボネートを無機又は有機材料
から得られた対称性又は非対称性の多孔膜と複合
化した場合、分離層をより薄膜化できる故、更に
すぐれた分離膜を得ることができる。 本発明における共重合ポリカーボネートに用い
られるビスフエノール化合物としては、前記一般
式()および()で示される化合物が用いら
れる。式中AおよびBは、炭素原子数1〜12の2
価の有機基である方が、モノマー同志の相溶性も
良く、良好な膜材料になるポリマーを得ることが
できる。 一般式()で示される化合物の好ましい具体
例としては、4・4′−ジヒドロキシジフエニルメ
タン、1・1−ビス(4−ヒドロキシフエニル)
エタン、2・2−ビス(4−ヒドロキシフエニ
ル)プロパン、1・1−ビス(4−ヒドロキシフ
エニル)ブタン、1・1−ビス(4−ヒドロキシ
フエニル)シクロヘキサン等を挙げることができ
る。 一般式()で示される化合物の好ましい具体
例としては、2・2−ビス(4−ヒドロキシ−
3・5−ジメチルフエニル)プロパン、1・1−
ビス(4−ヒドロキシ−3・5−ジメチルフエニ
ル)ブタン、1・1−ビス(4−ヒドロキシ−
3・5−ジメチルフエニル)シクロヘキサン、ビ
ス(4−ヒドロキシ−3・5−ジメチルフエニ
ル)メタン、2・2−ビス(4−ヒドロキシ−2
−メチル−5−tert−ブチルフエニル)プロパ
ン、1・1−ビス(4−ヒドロキシ−2−メチル
−5−tert−ブチルフエニル)ブタン、1・1−
ビス(4−ヒドロキシ−3−tert−ブチルフエニ
ル)ブタン、ビス(4−ヒドロキシ−2−メチル
−5−tert−ブチルフエニル)メタン、2・2−
ビス(4−ヒドロキシ−3・5−ジエチルフエニ
ル)プロパン、1・1−ビス(4−ヒドロキシ−
3−tertブチルフエニル)シクロヘキサン、ビス
(4−ヒドロキシ−3−iso−プロピルフエニル)
メタン等を挙げることができる。 該ビスフエノール類は2種以上の混合体として
用いても良い。該ビスフエノール類の使用量は、
共重合ポリカーボネートに使用されている全ビス
フエノール類に対し、30〜80モル%である。特に
好ましい使用量は35〜70モル%である。 本発明のポリカーボネートの合成方法は特別な
工夫は必要でない。例えばほゞ等モルのジフエニ
ルカーボネートとビスフエノール類とを適当な触
媒の存在下で加熱溶融重縮合を行う方法、ホスゲ
ンとビスフエノール類とを界面重縮合する方法、
ホスゲンとビスフエノール類とを溶液中で反応、
重縮合を行う方法等が挙げられる。得られた共重
合ポリカーボネートは均質膜又は非対称性膜に加
工される。膜の製造方法は、従来から用いられる
方法が採用される。例えば、該共重合ポリカーボ
ネートの可溶性溶剤に適当量溶解した溶液から乾
式法で均質膜を作製する方法、該溶液に適当な添
加剤を混合した後エアギヤツプ式製膜法により非
対称性膜を作製する方法、溶融法により均質膜を
作製する方法等が挙げられる。膜の形態は中空
糸、平膜等特に限定されない。膜の厚さは、均質
膜の場合0.1〜300μ程度、又非対称性膜の場合
は、均質層が0.005〜10μ程度が好ましい。有機
又は無機材料から得られた対称性又は非対称性多
孔質膜とを複合化する方法としては、例えば、共
重合ポリカーボネートの希薄溶液を多孔質膜表面
に均一に塗布、乾燥させる方法あるいは前述した
方法で作成された共重合ポリカーボネートの均質
薄膜を多孔質膜に圧着する方法、更には、多孔質
膜上でホスゲンとビスフエノール類とを反応重縮
合させることにより薄膜を形成させる方法等が挙
げられる。支持体となる多孔質膜の材料としては
特に限定されない。例えば酢酸セルロース等セル
ロース類、ポリパラフエニレンテレフタラミドや
ポリメタフエニレンイソフタラミド等芳香族ポリ
アミドやポリイミド類、ポリスルホン、ポリカー
ボネート、ポリテトラフルオロエチレン等の有機
材料、ガラス等の無機材料が挙げられる。支持体
となる多孔質膜の形態は中空糸又は平膜等特に制
限されない。しかし、共重合ポリカーボネートと
の接着性によつては適当な表面処理が必要であ
る。複合膜における共重合ポリカーボネート層の
厚さは、0.005〜10μ程度が好ましい。 本発明の特徴は、ポリカーボネートに特定のビ
スフエノール類を特定の量共重合することにより
ガスの透過量が改良されることを見出したもので
あり、更に有機性のガスと無機性のガスを分離す
る場合は、分離能と透過量が共に改良されること
を見出したものである。以下に実施例でもつて、
このような効果を具体的に示すが、これらでもつ
て本発明が限定されるものではない。 実施例 1 撹拌機、チツ素ガス導入管および留出フエノー
ル受器付重合用容器にジフエニルカーボネート
12.73g(0.0595モル)、2・2−ビス(4−ヒド
ロキシフエニル)プロパン5.42g(0.0238モ
ル)、1・1−ビス(4−ヒドロキシ−2−メチ
ル−5−tert−ブチルフエニル)ブタン13.64g
(0.0357モル)および酢酸リチウム0.03gをと
り、チツ素置換を3回くりかえす。その後250℃
の油浴中に挿入しチツ素気流下で10分間撹拌する
ことによりモノマーを均一に溶融させる。その後
徐々に減圧にし、120分間で1mmHg以下とする。
この間油浴温度は、30分間で280℃とする。1mm
Hg以下の圧力で30分間重合をつづけた後、チツ
素ガスにより常圧にもどし、ポリマーをとり出
す。得られたポリマーは淡カツ色の固体で、還元
比粘度は0.18であつた。当ポリマーをポリマーA
とする。但し還元比粘度の測定条件は溶媒フエノ
ール/1・1・2・2−テトラクロルエタン614
(重量比)、濃度125mg/25ml、温度30℃である。 比較例 1 実施例1と同様にして、第1表に示すポリマー
a、b、cを得た。
The present invention relates to selective separation membranes. More specifically, the present invention relates to a separation membrane for gas separation that has an appropriate separation ability and an excellent permeation amount. BACKGROUND ART In recent years, technology for separating and purifying mixtures of various substances using separation membranes has been attracting attention as an energy-saving measure. For example, desalination of seawater using asymmetric cellulose acetate membranes, and hydrogen and oxygen concentration using composite membranes using silicone-based polymers as a coating layer are known. The silicone polymer used in the composite membrane has a large gas permeation rate and has excellent properties as a material for separation membranes. However, it has the disadvantage that it has low strength and poor film-forming properties, making it difficult to produce extremely thin films. On the other hand, it has good film forming properties,
Further, polycarbonate and polysulfone are known as materials with excellent heat resistance. for example,
It is known that polycarbonate and polysulfone containing 2,2-bis(4-hydroxyphenyl)propane as a monomer have a high glass transition temperature and good moldability. However, these polymers have poor separation performance and permeation rate, and cannot be used practically. The present inventors have arrived at the present invention as a result of intensive studies aimed at improving the gas separation performance, particularly the permeation amount, of the above-mentioned polymer with good moldability. That is, it consists of bisphenol represented by the following general formula () and one or more types of bisphenols selected from the compounds represented by the following general formula (), and the bisphenol represented by the general formula () forms a polymer. It has been found that the gas permeation rate of a membrane obtained from polycarbonate containing 30 to 80 mol % of the total bisphenol contained therein is significantly improved. (However, A is -O-, -S-, -SO-, -SO 2 -, -
It represents CO- or a divalent organic group having 1 to 12 carbon atoms. ) (However, R 1 and R 2 are the same or different groups selected from monovalent organic groups having 1 to 6 carbon atoms, and R 1
When is a monovalent organic group having 3 or more carbon atoms, R 2
is a hydrogen atom or a monovalent organic group having 2 or less carbon atoms. R 3 and R 4 represent the same or different groups selected from a hydrogen atom or a methyl group. B is -O
-, -S-, -SO-, -SO2- , -CO-, or a divalent organic group having 1 to 12 carbon atoms. ) In particular, when the copolymerized polycarbonate separates an organic gas and an inorganic gas, as shown in the examples, both the separation ability and the permeation amount are improved. This is thought to be due to the organic substituent that compound () has, but it is not clear. When the copolymerized polycarbonate is combined with a symmetrical or asymmetric porous membrane obtained from an inorganic or organic material, the separation layer can be made thinner, and an even better separation membrane can be obtained. As the bisphenol compound used in the copolymerized polycarbonate in the present invention, compounds represented by the general formulas () and () are used. In the formula, A and B are 2 having 1 to 12 carbon atoms.
The higher the valence organic group, the better the compatibility between the monomers and the better the polymer that can be used as a membrane material. Preferred specific examples of the compound represented by the general formula () include 4,4'-dihydroxydiphenylmethane, 1,1-bis(4-hydroxyphenyl)
Examples include ethane, 2,2-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)butane, and 1,1-bis(4-hydroxyphenyl)cyclohexane. Preferred specific examples of the compound represented by the general formula () include 2,2-bis(4-hydroxy-
3,5-dimethylphenyl)propane, 1,1-
Bis(4-hydroxy-3,5-dimethylphenyl)butane, 1,1-bis(4-hydroxy-
3,5-dimethylphenyl)cyclohexane, bis(4-hydroxy-3,5-dimethylphenyl)methane, 2,2-bis(4-hydroxy-2
-Methyl-5-tert-butylphenyl)propane, 1,1-bis(4-hydroxy-2-methyl-5-tert-butylphenyl)butane, 1,1-
Bis(4-hydroxy-3-tert-butylphenyl)butane, bis(4-hydroxy-2-methyl-5-tert-butylphenyl)methane, 2,2-
Bis(4-hydroxy-3,5-diethylphenyl)propane, 1,1-bis(4-hydroxy-
3-tertbutylphenyl)cyclohexane, bis(4-hydroxy-3-iso-propylphenyl)
Examples include methane. The bisphenols may be used as a mixture of two or more. The amount of bisphenols used is
It accounts for 30 to 80 mol% of the total bisphenols used in the copolymerized polycarbonate. A particularly preferred usage amount is 35 to 70 mol%. The method for synthesizing polycarbonate of the present invention does not require any special measures. For example, a method in which approximately equimolar amounts of diphenyl carbonate and bisphenols are subjected to heat melt polycondensation in the presence of a suitable catalyst, a method in which phosgene and bisphenols are subjected to interfacial polycondensation,
Reacting phosgene and bisphenols in solution,
Examples include a method of performing polycondensation. The resulting copolycarbonate is processed into homogeneous or asymmetric membranes. As a method for manufacturing the membrane, a conventional method is employed. For example, a method in which a homogeneous membrane is produced by a dry method from a solution of the copolymerized polycarbonate dissolved in an appropriate amount in a soluble solvent, and a method in which an asymmetric membrane is produced by an air gap film forming method after mixing appropriate additives with the solution. , a method of producing a homogeneous film by a melting method, and the like. The form of the membrane is not particularly limited, such as hollow fibers or flat membranes. The thickness of the film is preferably about 0.1 to 300 μm in the case of a homogeneous film, and about 0.005 to 10 μm in the case of an asymmetric film. Examples of methods for compounding a symmetrical or asymmetrical porous membrane obtained from an organic or inorganic material include a method in which a dilute solution of copolymerized polycarbonate is uniformly applied to the surface of the porous membrane and dried, or the method described above. Examples include a method in which a homogeneous thin film of the copolymerized polycarbonate prepared by is pressure-bonded to a porous membrane, and a method in which a thin film is formed by reactive polycondensation of phosgene and bisphenols on the porous membrane. The material of the porous membrane serving as the support is not particularly limited. Examples include cellulose such as cellulose acetate, aromatic polyamides and polyimides such as polyparaphenylene terephthalamide and polymethaphenylene isophthalamide, organic materials such as polysulfone, polycarbonate, and polytetrafluoroethylene, and inorganic materials such as glass. It will be done. The form of the porous membrane serving as the support is not particularly limited, such as hollow fibers or flat membranes. However, appropriate surface treatment is required depending on the adhesion to the copolymerized polycarbonate. The thickness of the copolycarbonate layer in the composite membrane is preferably about 0.005 to 10 μm. The present invention is characterized by the discovery that the amount of gas permeation can be improved by copolymerizing polycarbonate with a specific amount of specific bisphenols, and it is also possible to separate organic gases and inorganic gases. It has been found that both the separation power and the amount of permeation are improved when this is done. In the examples below,
Although such effects are specifically shown, the present invention is not limited thereto. Example 1 Diphenyl carbonate was placed in a polymerization vessel equipped with a stirrer, nitrogen gas inlet pipe, and distilled phenol receiver.
12.73g (0.0595 mol), 2,2-bis(4-hydroxyphenyl)propane 5.42g (0.0238 mol), 1,1-bis(4-hydroxy-2-methyl-5-tert-butylphenyl)butane 13.64g
(0.0357 mol) and 0.03 g of lithium acetate were taken, and the nitrogen substitution was repeated three times. Then 250℃
The monomer is melted uniformly by inserting it into an oil bath and stirring for 10 minutes under a stream of nitrogen. Afterwards, the pressure is gradually reduced to 1 mmHg or less over 120 minutes.
During this time, the oil bath temperature is set to 280°C for 30 minutes. 1mm
After continuing polymerization for 30 minutes at a pressure below Hg, the pressure is returned to normal using nitrogen gas and the polymer is taken out. The obtained polymer was a light brown solid with a reduced specific viscosity of 0.18. This polymer is called Polymer A
shall be. However, the measurement conditions for reduced specific viscosity are solvent phenol/1,1,2,2-tetrachloroethane614
(weight ratio), concentration 125 mg/25 ml, and temperature 30°C. Comparative Example 1 Polymers a, b, and c shown in Table 1 were obtained in the same manner as in Example 1.

【表】 実施例 2 第1表に示したポリマー各々3gを1・1・
2・2−テトラクロリエタン30mlに50℃にて120
分間撹拌して溶解する。溶液を水平に保持したポ
リプロピレン製フイルム上に100μのアプリケー
ターを用いて流延した。17〜20℃にて12時間以上
放置することにより約10μの膜厚の薄膜を得た。
該薄膜の膜厚を測定した後、直径47mmの円形に切
りとり、ガス透過性測定用セルに設置した。セル
をガス圧5Kg/cm2に調整したガス透過性能測定装
置にとりつけ、石ケン膜流量計を用いてガス透過
量を測定し、透過係数および透過速度比を算出し
た。結果を第2表に示す。 なおポリマーCに関しては、得られた膜に可撓
性がなく、ガス透過性能の測定ができなかつた。
[Table] Example 2 3g of each of the polymers shown in Table 1 was mixed in 1.1.
120 in 30ml of 2,2-tetrachlorethane at 50℃
Stir for a minute to dissolve. The solution was cast onto a horizontally held polypropylene film using a 100μ applicator. By leaving the mixture at 17 to 20°C for 12 hours or more, a thin film with a thickness of about 10μ was obtained.
After measuring the thickness of the thin film, it was cut into a circle with a diameter of 47 mm and placed in a gas permeability measurement cell. The cell was attached to a gas permeation performance measurement device adjusted to a gas pressure of 5 Kg/cm 2 , and the amount of gas permeation was measured using a soap membrane flowmeter, and the permeation coefficient and permeation rate ratio were calculated. The results are shown in Table 2. Regarding Polymer C, the obtained membrane had no flexibility, and gas permeation performance could not be measured.

【表】 ポリマーAはポリマーa、bに比較して透過係
数、透過速度比共に向上している。 実施例 3 実施例1と同様にして第3表に示すポリマー
B、Cを得た。 比較例 2 実施例1と同様にして第3表に示すポリマーd
を得た。
[Table] Polymer A has improved permeability coefficient and permeation rate ratio compared to polymers a and b. Example 3 Polymers B and C shown in Table 3 were obtained in the same manner as in Example 1. Comparative Example 2 Polymer d shown in Table 3 in the same manner as Example 1
I got it.

【表】【table】

【表】 実施例 4 実施例2と同様にして第3表に示すポリマーの
膜を作成し、ガス分離性能を測定した。ポリマー
dの膜は可撓性がなく測定時に破壊した。結果を
第4表に示す。
[Table] Example 4 Polymer membranes shown in Table 3 were prepared in the same manner as in Example 2, and their gas separation performance was measured. The film of polymer d was not flexible and broke during the measurement. The results are shown in Table 4.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)で示される化合物の1種のビス
フエノールおよび下記一般式()で示される化
合物から選ばれた1種又は2種以上のビスフエノ
ールから成り、一般式()で示されるビスフエ
ノールが、ポリマーを構成する全ビスフエノール
に対して35〜70モル%であるポリカーボネートか
ら得られた選択性分離膜。 (但しAは−O−、−S−、−SO−、−SO2−、−
CO−又は炭素原子数1〜12の2価の有機基を示
す。) (但しR1、R2は炭素原子数1〜6の1価の有機基
から選ばれた同じか又は相異る基を示し、R1
炭素原子数3以上の1価の有機基の場合、R2
水素原子又は炭素原子数2以上の1価の有機基で
ある。R3、R4は水素原子又はメチル基から選ば
れた同じか又は相異る基を示す。 Bは−O−、−S−、−SO−、−SO2−、−CO−
又は炭素原子数1〜12の2価の有機基を示す。) 2 該ポリカーボネートから得られた薄膜を有機
又は無機材料から得られた対称性又は非対称性多
孔質膜上に設けた複合膜を用いる特許請求の範囲
第1項記載の分離膜。
[Scope of Claims] 1 Consists of one kind of bisphenol of the compound represented by the following general formula (1) and one or more kinds of bisphenols selected from the compounds represented by the following general formula (), A selective separation membrane obtained from a polycarbonate in which bisphenol represented by the formula () accounts for 35 to 70 mol% of the total bisphenols constituting the polymer. (However, A is -O-, -S-, -SO-, -SO 2 -, -
Represents CO- or a divalent organic group having 1 to 12 carbon atoms. ) (However, R 1 and R 2 represent the same or different groups selected from monovalent organic groups having 1 to 6 carbon atoms, and when R 1 is a monovalent organic group having 3 or more carbon atoms, , R 2 is a hydrogen atom or a monovalent organic group having 2 or more carbon atoms. R 3 and R 4 are the same or different groups selected from a hydrogen atom or a methyl group. B is -O −, −S−, −SO−, −SO 2 −, −CO−
Or it represents a divalent organic group having 1 to 12 carbon atoms. 2. The separation membrane according to claim 1, which uses a composite membrane in which a thin film obtained from the polycarbonate is provided on a symmetrical or asymmetrical porous membrane obtained from an organic or inorganic material.
JP22669182A 1982-12-27 1982-12-27 Selective separation membrane Granted JPS59120206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22669182A JPS59120206A (en) 1982-12-27 1982-12-27 Selective separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22669182A JPS59120206A (en) 1982-12-27 1982-12-27 Selective separation membrane

Publications (2)

Publication Number Publication Date
JPS59120206A JPS59120206A (en) 1984-07-11
JPS6253211B2 true JPS6253211B2 (en) 1987-11-09

Family

ID=16849140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22669182A Granted JPS59120206A (en) 1982-12-27 1982-12-27 Selective separation membrane

Country Status (1)

Country Link
JP (1) JPS59120206A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649750B2 (en) * 1984-08-24 1994-06-29 三菱化成株式会社 Injection molding material consisting of polycarbonate
US4818254A (en) * 1986-04-14 1989-04-04 The Dow Chemical Company Semi-permeable membranes consisting predominantly of polycarbonates derived from tetrahalobisphenols
US4840646A (en) * 1986-04-28 1989-06-20 The Dow Chemical Company Tetrabromo bisphenol based polyestercarbonate membranes and method of using
US4822382A (en) * 1987-11-02 1989-04-18 Union Carbide Corporation Composite membranes, their manufacture and their use
US4772392A (en) * 1987-11-06 1988-09-20 The Dow Chemical Company Process for preparing POWADIR membranes from tetrahalobisphenol A polycarbonates
US4962131A (en) * 1987-11-06 1990-10-09 The Dow Chemical Company Composition useful in process for preparing powadir membranes from tetrahalobisphenol a polycarbonates
US4838904A (en) * 1987-12-07 1989-06-13 The Dow Chemical Company Semi-permeable membranes with an internal discriminating region
US4874401A (en) * 1987-11-20 1989-10-17 The Dow Chemical Company Gas separation membranes from bisphenol AF polycarbonates and polyestercarbonates
US4851014A (en) * 1988-07-01 1989-07-25 The Dow Chemical Company Gas separation membranes derived from polycarbonates, polyesters, and polyestercarbonates containing tetrafluorobisphenol F
US4975228A (en) * 1988-07-29 1990-12-04 The Dow Chemical Company Process for preparing membranes from tetrahalobisphenol polycarbonates
EP0364741B1 (en) * 1988-10-01 1993-07-21 Bayer Ag Aromatic polyetherketones
US5000763A (en) * 1989-06-14 1991-03-19 The Dow Chemical Company Process for separating hydrogen from gas mixtures using a semi-permeable membrane consisting predominantly of polycarbonates derived from tetrahalobisphenols
US5141530A (en) * 1991-08-22 1992-08-25 The Dow Chemical Company Polycarbonate, polyester, and polyestercarbonate semi-permeable gas separation membranes possessing improved gas selectivity and recovery, and processes for making and using the same
US5163977A (en) * 1991-08-22 1992-11-17 The Dow Chemical Company Semi-permeable gas separation membranes containing non-ionic surfactants possessing improved resistance to thermal compaction and processes for making and using the same
US5152811A (en) * 1991-12-20 1992-10-06 The Dow Chemical Company Meta, para-bisphenol based polymer gas separation membranes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588511A (en) * 1981-07-09 1983-01-18 Toyobo Co Ltd Selective separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588511A (en) * 1981-07-09 1983-01-18 Toyobo Co Ltd Selective separation membrane

Also Published As

Publication number Publication date
JPS59120206A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
JPS6253211B2 (en)
US4689267A (en) Composite hollow fiber
JPS59154106A (en) Gas-separation membrane
JPH0247931B2 (en)
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS588511A (en) Selective separation membrane
JP2699168B2 (en) Semipermeable membranes mainly composed of polycarbonates derived from tetrahalobisphenol
JPS62269730A (en) Membrane of tetrabromobisphenol type polyester carbonate andits use
JPS6178402A (en) Separation of organic liquid mixture
JPS59225703A (en) Porous membrane and preparation thereof
JPS61129008A (en) Composite membrane for separating gas and its preparation
JPH0112530B2 (en)
JPS61125424A (en) Separating membrane of mixed gas
JP2827212B2 (en) Polyamideimide separation membrane
JPS61192322A (en) Composite membrane for separation
JPS61107922A (en) Composite membrane for gas separation
JPS5814927A (en) Selective gas-permeable membrane
JPH0446172B2 (en)
JPS59183802A (en) Permselective membrane for separation of gas
JPS6097002A (en) Composite separation membrane for pervaporation
JPS5959211A (en) Gas separation membrane
JPH0693981B2 (en) Gas selective permeable membrane
JP2005350573A (en) Gas-permeable polymer composition and gas-separating composite membrane
JPS59166209A (en) Selective permeable membrane for separating gas