JPS6251130B2 - - Google Patents

Info

Publication number
JPS6251130B2
JPS6251130B2 JP55074860A JP7486080A JPS6251130B2 JP S6251130 B2 JPS6251130 B2 JP S6251130B2 JP 55074860 A JP55074860 A JP 55074860A JP 7486080 A JP7486080 A JP 7486080A JP S6251130 B2 JPS6251130 B2 JP S6251130B2
Authority
JP
Japan
Prior art keywords
group
copolymer
carbon atoms
present
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074860A
Other languages
Japanese (ja)
Other versions
JPS572314A (en
Inventor
Kyoshi Sugie
Kenko Yamada
Teizo Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7486080A priority Critical patent/JPS572314A/en
Priority to US06/270,128 priority patent/US4393113A/en
Priority to EP81302493A priority patent/EP0041839B1/en
Priority to DE8181302493T priority patent/DE3172123D1/en
Publication of JPS572314A publication Critical patent/JPS572314A/en
Publication of JPS6251130B2 publication Critical patent/JPS6251130B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体分離用膜に関する。 或る気体混合物から特定の気体を富化乃至分離
することは工業的にしばしば必要となる。例えば
燃焼用、医療用、廃水処理用などの用途における
酸素富化空気の製造、天然ガスその他からのヘリ
ウムの分離又は回収、石炭熱分解法における混合
ガスからの水素の分離などが挙げられる。 従来、既に合成ポリマーからなる膜によるガス
分離の試みは多くなされている。しかしながらこ
れらの合成ポリマーからなる膜はガス透過率、及
び選択性において充分ではなく、あるいはまた機
械的強度が不充分なために実用に供し得なかつ
た。 例えば、特公昭47−51715号公報にはポリビニ
ルトリメチルシランからなる膜によるガス混合物
の分離技術が開示されている。このようにポリビ
ニルトリメチルシランのような珪素含有炭素鎖重
合体は種々の気体混合物に対して選択透過性を示
すことが知られている。しかしながらポリビニル
トリメチルシランの薄膜は比較的もろく、実用上
充分な透過量が得られるような極めて薄い膜を製
造することがむずかしい。さらに例えばビニルト
リメチルシラン(A)と共役ジエン(B)のABA型ブロ
ツク共重合は機械的な応力に弱くまた膜形成能が
不充分である。 本発明者らはこれらの問題点を解決すべく、鋭
意研究の結果、アリルトリアルキルシランとオレ
フインとの共重合体が、気体分離膜として連続的
使用に耐える機械的強度を持ち、気体混合物に対
する良好な選択的透過性を有することを見出し本
発明に到達した。 本発明の要旨は、 少なくとも1種の下記式で表わされる繰返し単
位()、 〔但し式中R1、R2、R3は同一もしくは異なる炭素
数1〜10のアルキル基を示す。〕 および、 少なくとも1種の下記式で表わされる繰返し単
位()、 〔但し式中R4に水素原子または炭素数3以下のア
ルキル基、R5は水素原子または炭素数20以下の
アルキル基もしくはアルケニルアルキル基を示
す。〕 を()()単位比が5:95〜95:5の割合
で、共重合繰返し単位が80モル%以上の共重合体
から形成された気体分離用膜にある。 本発明の共重合体を構成する前記繰返し単位
()において、R1、R2、R3は同一もしくは異な
る炭素数1〜10のアルキル基であり、その例とし
ては、メチル基、エチル基、n−プロピル基、
iso−プロピル基、n−ブチル基、tert−ブチル
基、n−ペンチル基、ネオペンチル基、n−ヘキ
シル基、n−オクチル基、n−デシル基などが挙
げられる。これらの内で特に好ましいのは炭素数
1〜5の直鎖又は分岐アルキル基である。 一方前記繰返し単位()においてR4は水素
原子または炭素数3以下のアルキル基である。か
かるR4の例としては、水素原子、メチル基、エ
チル基、プロピル基、イソプロピル基が挙げられ
る。さらにR5は水素原子または炭素数20以下の
アルキル基もしくはアルケニルアルキル基であ
る。R5の好適な例としては、水素原子、メチル
基、エチル基、ブチル基、オクチル基、テトラデ
シル基、イソプロピル基、2−メチルプロピル
基、3−メチルペンチル基、3−ブテニル基、4
−ペンテニル基、2・5−ヘキサジエニル基等が
挙げられる。 本発明のアリルトリメチルシラン共重合体中の
繰返し単位()及び()の割合は広い範囲に
渡つて量比を変えて共重合が可能であるが、気体
分離膜として連続的使用に耐える機械的強度を持
ち、気体混合物に対する良好な選択的透過性を有
する膜素材を提供するという本発明の目的を達成
するためには、前記繰返し単位():()の
割合が5:95〜95:5の範囲、好ましくは20:80
〜80:20の範囲であることが望ましい。単位
()が5%未満では得られた共重合体が結晶性
となるために溶媒に対する溶解性がわるく、製膜
上の障害が生じ、得られた膜の強度もよわく実用
に供し得ない。さらに単位()が95%を越える
と良好な気体の選択透過性が得られない。 本発明の共重合体は前記繰返し単位()およ
び()で表わされる繰返し単位の合計が全繰返
し単位に対して80モル%以上、好ましくは90モル
%以上であるのが有利である。該共重合体の粘度
は25℃にて0.5g/100c.c.のクロロホルム溶液とし
てオストワルド粘度計を用いて測定した固有粘度
で0.2〜3.0、好ましくは0.3〜2.5であることが望
ましく、0.2未満では製膜した場合に膜がもろ
く、実用に供し得ない。3.0より大きくなると溶
液の流動性が悪くなり、製膜が困難となる。 本発明の新規な共重合体は、前記繰返し単位
()に対応するモノマーと、前記繰返し単位
()に対応するモノマーとを、例えば通常のα
−オレフインの重合触媒と共に10〜120℃、好ま
しくは20〜100℃の温度で重合することにより製
造することができる。10℃より低い温度では重合
速度が遅く、経済的に不利である。一方、120℃
を越える温度では触媒活性が低下する傾向がある
ので好ましくない。 本発明の共重合体を製造するに採用される触媒
としては、α−オレフインの重合に一般に使用す
ることができる触媒であればよく、好ましい例と
しては、Ziegler−Natta触媒が挙げられる。かよ
うなZiegler−Natta触媒としては遷移金属のハロ
ゲン化物と金属アルキルとの組合せからなり、遷
移金属の例としてはa族、a族、a族、
a族、族の遷移金属が挙げられる。好適な遷移
金属の例としては例えばTi、Zr、V、Cr、Mo、
W、Mn、Fe等である。これらの内、活性が高い
ことからTi、Vなどのハロゲン化物が特に好ま
しい。金属アルキルの例としては族、族の金
属が挙げられる。好適な金属の例としてはBe、
Al、Mg、Zn等が挙げられる。触媒活性が高いこ
とからAl、Zn等のアルキル化物が好んで用いら
れる。遷移金属のハロゲン化物と金属アルキルと
からなる触媒の量比は重合速度、転化率を大きく
左右する。例えばその1例を示すとある実験によ
ればTiCl4−(C5H53Al系についてAl/Ti比が3
付近で活性が大きいので好ましく用いられる。 本発明の共重合体は種々の気体混合物成分に対
して高い選択性を示し、例えばアリルトリメチル
シラン−4−メチル−1−ペンテン共重合体から
なる膜は例えば酸素−窒素の分離能が高く、空気
からの酸素富化空気の製造という工業上有用なプ
ロセスへの応用が可能である。 本発明の共重合体は、各種の溶媒、例えばハロ
ゲン系溶媒、炭化水素系溶媒等に可溶であり、
種々の製膜法を選択でき、膜素材としての有用性
は極めて高い。好ましい溶媒の例としてはクロロ
ホルム、1・2・3−トリクロロプロパン等のハ
ロゲン系溶媒、キシレン、シクロヘキセン等の炭
化水素系の溶媒が挙げられる。 本発明の共重合体を分離膜として利用する場
合、透過量は該膜の膜層に反比例するため、固有
の選択透過性を実質的に損わず、分離膜として連
続使用に耐え得る強度をもつ限り、高い透過量を
得るために、できるだけ薄いほうが望ましい。 例えば好ましく膜厚としては0.01〜500μが適
当である。膜の形態としては中空糸膜、平膜、非
対称膜あるいは相分離法、抽出法、延伸法等々の
方法で得られる多孔質支持体に担持させた複合膜
等が挙げられ、利用形態に応じた膜厚が選択され
る。 以下、実施例によつて本発明を詳述する。 実施例 1〜4 表2に示した量のアリルトリメチルシラン、オ
レフイン類及び触媒、溶媒をガラスアンプルに仕
込み窒素雰囲気下で溶封した。この封管を80℃の
オイルバス中で60時間振盪しながら重合を行つ
た。 得られた粘稠なポリマー溶液をトルエンで希釈
し1NHCl、水の順で充分洗浄し、メタノール中へ
再沈した。更にこれらのポリマーは分別沈澱法に
より精製した。 重合結果を表1に示す。
The present invention relates to membranes for gas separation. It is often industrially necessary to enrich or separate a particular gas from a gas mixture. Examples include the production of oxygen-enriched air for combustion, medical, and wastewater treatment applications, the separation or recovery of helium from natural gas and other sources, and the separation of hydrogen from mixed gases in coal pyrolysis processes. Conventionally, many attempts have already been made to separate gases using membranes made of synthetic polymers. However, membranes made of these synthetic polymers are not suitable for practical use because they do not have sufficient gas permeability and selectivity, or have insufficient mechanical strength. For example, Japanese Patent Publication No. 47-51715 discloses a technique for separating gas mixtures using a membrane made of polyvinyltrimethylsilane. It is known that silicon-containing carbon chain polymers such as polyvinyltrimethylsilane exhibit selective permselectivity for various gas mixtures. However, thin films of polyvinyltrimethylsilane are relatively fragile, and it is difficult to manufacture extremely thin films that can provide a practically sufficient amount of permeation. Furthermore, for example, ABA type block copolymerization of vinyltrimethylsilane (A) and conjugated diene (B) is susceptible to mechanical stress and has insufficient film-forming ability. In order to solve these problems, the present inventors conducted extensive research and found that a copolymer of allyltrialkylsilane and olefin has mechanical strength that can withstand continuous use as a gas separation membrane, and that it has the ability to withstand gas mixtures. The present invention was achieved by discovering that it has good selective permeability. The gist of the present invention is to provide at least one repeating unit () represented by the following formula; [However, in the formula, R 1 , R 2 , and R 3 represent the same or different alkyl groups having 1 to 10 carbon atoms. ] And, at least one repeating unit ( ) represented by the following formula, [However, in the formula, R 4 represents a hydrogen atom or an alkyl group having 3 or less carbon atoms, and R 5 represents a hydrogen atom or an alkyl group or alkenyl alkyl group having 20 or less carbon atoms. ] The gas separation membrane is formed from a copolymer having a unit ratio of 5:95 to 95:5 and a copolymerization repeating unit of 80 mol % or more. In the repeating units () constituting the copolymer of the present invention, R 1 , R 2 , and R 3 are the same or different alkyl groups having 1 to 10 carbon atoms, examples of which include methyl group, ethyl group, n-propyl group,
Examples include iso-propyl group, n-butyl group, tert-butyl group, n-pentyl group, neopentyl group, n-hexyl group, n-octyl group, and n-decyl group. Among these, particularly preferred are straight chain or branched alkyl groups having 1 to 5 carbon atoms. On the other hand, in the repeating unit (), R 4 is a hydrogen atom or an alkyl group having 3 or less carbon atoms. Examples of such R 4 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, and an isopropyl group. Further, R 5 is a hydrogen atom or an alkyl group or alkenylalkyl group having 20 or less carbon atoms. Suitable examples of R5 include a hydrogen atom, methyl group, ethyl group, butyl group, octyl group, tetradecyl group, isopropyl group, 2-methylpropyl group, 3-methylpentyl group, 3-butenyl group, 4
-pentenyl group, 2,5-hexadienyl group, etc. The ratio of repeating units () and () in the allyltrimethylsilane copolymer of the present invention can be copolymerized by changing the quantitative ratio over a wide range, but it is possible to copolymerize by changing the ratio of repeating units () and () in the allyltrimethylsilane copolymer of the present invention. In order to achieve the object of the present invention of providing a membrane material with strength and good selective permeability to gas mixtures, the ratio of the repeating units ():() is between 5:95 and 95:5. range, preferably 20:80
A range of ~80:20 is desirable. If the content of units ( ) is less than 5%, the resulting copolymer becomes crystalline, resulting in poor solubility in solvents, resulting in problems in film formation, and the strength of the resulting film is so poor that it cannot be put to practical use. Furthermore, if the unit () exceeds 95%, good gas selective permselectivity cannot be obtained. Advantageously, in the copolymer of the present invention, the total of the repeating units () and the repeating units represented by () is 80 mol% or more, preferably 90 mol% or more, based on the total repeating units. The copolymer has an intrinsic viscosity of 0.2 to 3.0, preferably 0.3 to 2.5, preferably less than 0.2, as measured by an Ostwald viscometer as a 0.5 g/100 c.c. chloroform solution at 25°C. However, when a film is formed, the film is brittle and cannot be put to practical use. When it is larger than 3.0, the fluidity of the solution deteriorates, making it difficult to form a film. The novel copolymer of the present invention comprises a monomer corresponding to the repeating unit () and a monomer corresponding to the repeating unit (), for example, a normal α
- It can be produced by polymerizing an olefin with a polymerization catalyst at a temperature of 10 to 120°C, preferably 20 to 100°C. At temperatures lower than 10°C, the polymerization rate is slow and economically disadvantageous. On the other hand, 120℃
Temperatures exceeding this are not preferred because the catalyst activity tends to decrease. The catalyst employed for producing the copolymer of the present invention may be any catalyst that can generally be used for polymerization of α-olefins, and a preferred example is the Ziegler-Natta catalyst. Such Ziegler-Natta catalysts are composed of a combination of transition metal halides and metal alkyls, and examples of transition metals include a-group, a-group, a-group,
Examples include transition metals of group a and group a. Examples of suitable transition metals include Ti, Zr, V, Cr, Mo,
These include W, Mn, Fe, etc. Among these, halides such as Ti and V are particularly preferred because of their high activity. Examples of metal alkyl include group metals. Examples of suitable metals include Be,
Examples include Al, Mg, Zn, etc. Alkylated products of Al, Zn, etc. are preferably used because of their high catalytic activity. The quantitative ratio of the catalyst consisting of a transition metal halide and a metal alkyl greatly influences the polymerization rate and conversion rate. For example, according to an experiment, for the TiCl 4 -(C 5 H 5 ) 3 Al system, the Al/Ti ratio was 3.
It is preferably used because it has high activity in the vicinity. The copolymer of the present invention exhibits high selectivity for various gas mixture components; for example, a membrane made of allyltrimethylsilane-4-methyl-1-pentene copolymer has a high oxygen-nitrogen separation ability; Application to the industrially useful process of producing oxygen-enriched air from air is possible. The copolymer of the present invention is soluble in various solvents, such as halogen solvents and hydrocarbon solvents,
Various membrane forming methods can be selected, and its usefulness as a membrane material is extremely high. Examples of preferred solvents include halogen solvents such as chloroform and 1,2,3-trichloropropane, and hydrocarbon solvents such as xylene and cyclohexene. When the copolymer of the present invention is used as a separation membrane, the amount of permeation is inversely proportional to the membrane layer of the membrane. In order to obtain as much transmission as possible, it is desirable that the material be as thin as possible. For example, the film thickness is preferably 0.01 to 500μ. Membrane forms include hollow fiber membranes, flat membranes, asymmetric membranes, and composite membranes supported on porous supports obtained by methods such as phase separation, extraction, and stretching. Film thickness is selected. Hereinafter, the present invention will be explained in detail with reference to Examples. Examples 1 to 4 Allyltrimethylsilane, olefins, catalyst, and solvent in the amounts shown in Table 2 were charged into glass ampoules and sealed under a nitrogen atmosphere. Polymerization was carried out while shaking this sealed tube in an oil bath at 80° C. for 60 hours. The obtained viscous polymer solution was diluted with toluene, thoroughly washed with 1NHCl and water in that order, and reprecipitated into methanol. These polymers were further purified by fractional precipitation. The polymerization results are shown in Table 1.

【表】【table】

【表】 本発明の有用性をさらに明白にするために、本
発明の共重合体からなる膜の気体透過率を測定し
た結果を表2に示す。
[Table] In order to further clarify the usefulness of the present invention, Table 2 shows the results of measuring the gas permeability of a membrane made of the copolymer of the present invention.

【表】【table】

Claims (1)

【特許請求の範囲】 1 少なくとも1種の下記式で表わされる繰返し
単位()、 〔但し式中R1、R2、R3は同一もしくは異なる炭素
数1〜10のアルキル基を示す。〕 および、 少なくとも1種の下記式で表わされる繰返し単
位()、 〔但し式中R4に水素原子または炭素数3以下のア
ルキル基、R5は水素原子または炭素数20以下の
アルキル基もしくはアルケニルアルキル基を示
す。〕 を()()単位比が5:95〜95:5の割合
で、共重合繰返し単位が80モル%以上の共重合体
から形成された気体分離用膜。
[Claims] 1. At least one repeating unit ( ) represented by the following formula, [However, in the formula, R 1 , R 2 , and R 3 represent the same or different alkyl groups having 1 to 10 carbon atoms. ] And, at least one repeating unit () represented by the following formula, [However, in the formula, R 4 represents a hydrogen atom or an alkyl group having 3 or less carbon atoms, and R 5 represents a hydrogen atom or an alkyl group or alkenyl alkyl group having 20 or less carbon atoms. ] A gas separation membrane formed from a copolymer having a unit ratio of 5:95 to 95:5 and containing 80 mol% or more of copolymerized repeating units.
JP7486080A 1980-06-05 1980-06-05 Novel copolymer Granted JPS572314A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7486080A JPS572314A (en) 1980-06-05 1980-06-05 Novel copolymer
US06/270,128 US4393113A (en) 1980-06-05 1981-06-03 Novel silicon-containing copolymer, ultrathin solid membrane composed of said copolymer, use of said solid membrane for concentrating a specified gas in a gaseous mixture, and process for producing said solid membrane
EP81302493A EP0041839B1 (en) 1980-06-05 1981-06-04 Ultrathin solid membrane composed of silicon-containing copolymer, process for producing said membrane and use thereof for concentrating a gas
DE8181302493T DE3172123D1 (en) 1980-06-05 1981-06-04 Ultrathin solid membrane composed of silicon-containing copolymer, process for producing said membrane and use thereof for concentrating a gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7486080A JPS572314A (en) 1980-06-05 1980-06-05 Novel copolymer

Publications (2)

Publication Number Publication Date
JPS572314A JPS572314A (en) 1982-01-07
JPS6251130B2 true JPS6251130B2 (en) 1987-10-28

Family

ID=13559493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7486080A Granted JPS572314A (en) 1980-06-05 1980-06-05 Novel copolymer

Country Status (1)

Country Link
JP (1) JPS572314A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206806A (en) * 1984-03-30 1985-10-18 Japan Synthetic Rubber Co Ltd Production of ethylene copolymer

Also Published As

Publication number Publication date
JPS572314A (en) 1982-01-07

Similar Documents

Publication Publication Date Title
Takada et al. Gas permeability of polyacetylenes carrying substituents
Tsuchihara et al. Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers
US4714481A (en) Gas separation membrane
WO2012103080A1 (en) Process for making a polyolefin-polysiloxane block copolymer
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
EP0237581B1 (en) Poly(di-substituted acetylene)/polyorganosiloxane graft copolymer and gas separation membrane
WO2001030887A1 (en) Method of polymerizing silalkylenesiloxane
JPS6251130B2 (en)
KR101946249B1 (en) Symmetric polyolefin block copolymers and method for manufacturing the same
Isobe et al. Polymerization of 1‐(trimethylsilyl)‐1‐propyne homologs containing two silicon atoms by tantalum‐and niobium‐based catalysts
Ito et al. Synthesis and properties of germanium‐containing poly (diphenylacetylenes)
JPS6353205B2 (en)
JPH0212613B2 (en)
CN108329415B (en) Silicon functionalized polyolefin and preparation method thereof
JPS63100905A (en) Permselective membrane formed with novel copolymer
US4755561A (en) Poly(disubstituted acetylene)/polyorganosiloxane graft copolymer and membrane for gas separation
JP3579535B2 (en) Polypropylene-organopolysiloxane copolymer
CN114920861B (en) Catalyst and preparation method thereof, and preparation method of TPX polymer
JPH05140299A (en) Preparation of modified amorphous poly(2,6-dimethyl- p-oxyphenylene)
JPS6392619A (en) O-(trialkylsilyl)phenylacetylene polymer and its production
JPH0221291B2 (en)
Hu et al. Synthesis and properties of poly (diphenylacetylenes) containing siloxy and halogen/methyl groups and their desilylated membranes
EP0245516A1 (en) Polymer membrane for separating liquid mixture
JPH068330B2 (en) Polymerization method of tri-substituted silylalkyne
JP2974369B2 (en) Diphenylacetylene polymer having a substituent on the aromatic ring