JPS6352986B2 - - Google Patents

Info

Publication number
JPS6352986B2
JPS6352986B2 JP53064011A JP6401178A JPS6352986B2 JP S6352986 B2 JPS6352986 B2 JP S6352986B2 JP 53064011 A JP53064011 A JP 53064011A JP 6401178 A JP6401178 A JP 6401178A JP S6352986 B2 JPS6352986 B2 JP S6352986B2
Authority
JP
Japan
Prior art keywords
amount
graphite
zirconia
nozzle
zircon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53064011A
Other languages
Japanese (ja)
Other versions
JPS54155124A (en
Inventor
Kazumi Arakawa
Yoshinobu Tanada
Shigeo Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP6401178A priority Critical patent/JPS54155124A/en
Publication of JPS54155124A publication Critical patent/JPS54155124A/en
Publication of JPS6352986B2 publication Critical patent/JPS6352986B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼の連続鋳造用浸漬ノズルの改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a submerged nozzle for continuous casting of steel.

〔従来の技術〕[Conventional technology]

周知の如く、鋼の連続鋳造用浸漬ノズルはタン
デイツシユ等の容器から溶鋼を酸化させることな
く鋳造鋳型内に鋳込んだり、溶鋼を飛散させるこ
となく鋳込む場合に用いられる。
As is well known, a submerged nozzle for continuous steel casting is used to pour molten steel from a container such as a tundish into a casting mold without oxidizing it, or to pour molten steel without scattering it.

ところで、上記浸漬ノズルは鋳込時、常に鋳型
内の溶鋼に浸漬される部分(高温度に加熱される
部分)と、溶鋼の流れに曝される部分と、外気に
接する部分(冷却部分)とがあり、顕著な温度勾
配を生じるのが通例である。このため、従来の浸
漬ノズルは熱伝導率の低い溶融シリカ質のものが
用いられていたが、この溶融シリカ質浸漬ノズル
は高マンガン質の溶鋼を鋳込むと溶損速度が急激
に速くなり、短時間で使用不可能となる欠点があ
つた。
By the way, during casting, the above-mentioned immersion nozzle has a part that is always immersed in the molten steel in the mold (a part that is heated to a high temperature), a part that is exposed to the flow of molten steel, and a part that is in contact with the outside air (a cooling part). This typically results in significant temperature gradients. For this reason, conventional immersion nozzles have been made of fused silica, which has low thermal conductivity, but when molten steel containing high manganese is poured into molten silica immersion nozzles, the rate of erosion rapidly increases. It had the disadvantage that it became unusable in a short period of time.

このようなことから、最近、溶鋼に対する耐蝕
性の強いアルミナ−黒鉛質浸漬ノズルが多く用い
られ、連続鋳造鋼種の拡大がなされている。しか
しながら、このアルミナ−黒鉛質浸漬ノズルは鋳
型内の溶鋼上面に浮遊する酸化防止のためのスラ
グパウダー(主に弗化カルシウム、酸化珪素、酸
化アルミニウム及びアルカリ物質等からなる)に
対する耐蝕性が劣るため、そのスラグパウダーと
接触する部分が激しく浸蝕されて局部的な損傷を
生じる問題があつた。
For these reasons, recently, alumina-graphite immersion nozzles, which have strong corrosion resistance against molten steel, are often used, and the types of continuous casting steels are being expanded. However, this alumina-graphite immersion nozzle has poor corrosion resistance against oxidation-preventing slag powder (mainly composed of calcium fluoride, silicon oxide, aluminum oxide, alkali substances, etc.) floating on the top surface of molten steel in the mold. However, there was a problem in that the parts that came into contact with the slag powder were severely eroded, causing local damage.

一方、上述の問題点の改善のために、耐蝕性の
優れたジルコニアの配合量を増大させたジルコニ
ア−黒鉛質浸漬ノズルが提案されている。しか
し、この浸漬ノズルではジルコニアの配合量の増
大に伴ない黒鉛配合量が減少し、熱伝導率が低下
して耐熱衝撃性が著しく損なわれる問題がある。
On the other hand, in order to improve the above-mentioned problems, a zirconia-graphite immersion nozzle has been proposed in which the content of zirconia, which has excellent corrosion resistance, is increased. However, with this immersion nozzle, there is a problem in that as the amount of zirconia added increases, the amount of graphite added decreases, resulting in a decrease in thermal conductivity and a significant loss of thermal shock resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記種々の問題点を解消するためにな
されたもので、スラグパウダーに対して優れた耐
蝕性を有すると共に十分な耐熱衝撃性を保有する
鋼の連続鋳造用浸漬ノズルを提供しようとするも
のである。
The present invention has been made to solve the various problems mentioned above, and aims to provide an immersion nozzle for continuous casting of steel that has excellent corrosion resistance against slag powder and sufficient thermal shock resistance. It is something.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明の鋼の連続鋳造用浸漬ノズルは、ジルコ
ニア及び/又はジルコンを骨材とし、これに黒
鉛、炭化珪素、金属珪素を配合してなる耐火材組
成物で、少なくともスラグパウダーと接触する部
分を構成したものである。
The immersion nozzle for continuous casting of steel of the present invention is a refractory material composition made of zirconia and/or zircon as an aggregate, mixed with graphite, silicon carbide, and metallic silicon, and at least the part that comes into contact with slag powder is It is composed of

すなわち、本発明は従来のジルコニア−黒鉛質
浸漬ノズルのジルコニア量と比較して、配合量の
上限を若干抑えたジルコニア及び/又はジルコン
を骨材とすることによつて、その優れた耐蝕性、
その他濡れ難さを利用してスラグパウダーに対す
る耐蝕性を向上できるものである。
That is, the present invention uses zirconia and/or zircon as an aggregate, which has a slightly lower upper limit than the amount of zirconia in conventional zirconia-graphite immersion nozzles, thereby achieving excellent corrosion resistance,
In addition, the corrosion resistance against slag powder can be improved by utilizing the difficulty of wetting.

また、本発明は熱伝導性を損なわない程度に黒
鉛配合量の上限を規制することにより、スラグパ
ウダー接触部の溶損に関与する黒鉛量を最小限に
抑えて酸化消失度合を軽減し、浸漬ノズルの耐蝕
性を改善するものである。
Furthermore, by regulating the upper limit of the amount of graphite blended to an extent that does not impair thermal conductivity, the amount of graphite involved in erosion of the slag powder contact area is minimized, the degree of oxidation loss is reduced, and immersion This improves the corrosion resistance of the nozzle.

しかも、上記ジルコニア及び/又はジルコンの
配合量と黒鉛の配合量の上限を低く規制すること
に伴ない、ジルコニア及び/又はジルコンによつ
て付与されるべきスラグパウダー接触部の耐蝕性
が不十分となり、黒鉛によつて付与されるべき熱
伝導性が不十分となるが、それらの代替として炭
化珪素を配合することによつて、その炭化珪素の
もつ優れた耐蝕性と熱伝導率を付与でき、上記耐
蝕性、熱伝導性の不十分さを補償してスラグパウ
ダーによる局部浸蝕及び熱衝撃による亀裂、剥離
発生を効果的に抑制できる。
Moreover, as the upper limits of the amount of zirconia and/or zircon and the amount of graphite are set low, the corrosion resistance that should be provided by zirconia and/or zircon to the slag powder contact area becomes insufficient. However, by incorporating silicon carbide as a substitute for graphite, the excellent corrosion resistance and thermal conductivity of silicon carbide can be imparted. By compensating for the insufficient corrosion resistance and thermal conductivity, it is possible to effectively suppress local corrosion caused by slag powder and cracking and peeling caused by thermal shock.

さらに、上述のジルコニア及び/又はジルコ
ン、黒鉛、炭化珪素のみならず金属珪素を配合す
ることにより、金属珪素が結合力の弱いジルコニ
ア及び/又はジルコン、炭化珪素の粒界に介在し
て該粒界を補強し、粒界へ溶鋼が侵入するのを阻
止して耐蝕性を改善すると共に、浸漬ノズル自体
の強度の向上効果を発揮できるものである。
Furthermore, by blending not only the above-mentioned zirconia and/or zircon, graphite, and silicon carbide but also metallic silicon, metallic silicon is interposed in the grain boundaries of zirconia and/or zircon and silicon carbide, which have weak bonding strength, and the grain boundaries By reinforcing the immersion nozzle and preventing molten steel from penetrating into the grain boundaries, the corrosion resistance is improved, and the strength of the immersion nozzle itself can be improved.

すなわち、本発明の鋼の連続鋳造用浸漬ノズル
は、少なくともスラグパウダーと接触する部分
を、重量割合にてジルコニア及び/又はジルコン
40〜80%、黒鉛9〜30%、炭化珪素10〜40%、及
び金属珪素1〜10%からなる耐火材組成物で構成
せしめたことを特徴とするものである。
That is, in the immersion nozzle for continuous casting of steel of the present invention, at least the portion that comes into contact with the slag powder is made of zirconia and/or zircon in a weight proportion.
40-80% graphite, 9-30% graphite, 10-40% silicon carbide, and 1-10% silicon metal.

本発明における連続鋳造用浸漬ノズルは、ノズ
ル全体を上記耐火材組成物で形成しても、スラグ
パウダー接触部分のみ或いはその周辺を上記耐火
材組成物で形成し、他のノズル部をアルミナ単
体、或いはアルミナとシヤモツト、黒鉛、溶融シ
リカなどから選ばれる1種以上の耐火材との混合
耐火材等で形成してもよい。この場合、上述の耐
火材組成物でスラグパウダー接触部分及びその周
辺を形成し、他はアルミナ、混合耐火材で形成す
れば、高価な耐火材組成物の使用量を軽減でき、
ノズルのコストを低下できる。
In the immersion nozzle for continuous casting according to the present invention, even if the entire nozzle is formed of the above-mentioned refractory material composition, only the slag powder contacting part or its surroundings is formed of the above-mentioned refractory material composition, and the other nozzle parts are formed of alumina alone, Alternatively, it may be formed of a mixed refractory material such as alumina and one or more refractory materials selected from silica, graphite, fused silica, and the like. In this case, by forming the slag powder contact area and its surroundings with the above-mentioned refractory composition, and forming the rest with alumina and mixed refractory material, the amount of expensive refractory composition used can be reduced.
Nozzle cost can be reduced.

本発明における耐火材組成物中のジルコニア及
び/又はジルコンの配合量を上記範囲に限定した
理由は、その量を40重量%未満にすると、スラグ
パウダーに対する耐蝕性や溶鋼に対する濡れ難い
性質を十分付与できず、かといつてその量が80重
量%を超えると、ジルコニア及び/又はジルコン
の量が多くなり過ぎ結合強度が低下するばかり
か、他の耐火材の配合量が規制され耐熱衝撃性の
低下等を招くからである。
The reason why the amount of zirconia and/or zircon in the refractory composition of the present invention is limited to the above range is that when the amount is less than 40% by weight, it provides sufficient corrosion resistance to slag powder and properties that are difficult to wet with molten steel. However, if the amount exceeds 80% by weight, the amount of zirconia and/or zircon will be too large, which will not only reduce the bond strength, but also restrict the amount of other refractory materials, resulting in a decrease in thermal shock resistance. This is because it invites such things.

本発明における耐火材組成物中の黒鉛の配合量
を上記範囲に限定した理由は、黒鉛量を9重量%
未満にすると、耐熱衝撃性の改善、及び剥離防止
の効果が十分期待できない。かといつて、黒鉛量
が30重量%を超えると、酸化消失劣化が顕在化し
て耐蝕性の低下を招くからである。
The reason why the blending amount of graphite in the fireproof material composition in the present invention is limited to the above range is that the amount of graphite is 9% by weight.
If the amount is less than that, the effect of improving thermal shock resistance and preventing peeling cannot be sufficiently expected. On the other hand, if the amount of graphite exceeds 30% by weight, oxidation loss and deterioration become apparent, leading to a decrease in corrosion resistance.

本発明における耐火材組成物中の炭化珪素の配
合量を上記範囲に限定した理由は、炭化珪素量を
10重量%未満にすると、ジルコニア及び/又はジ
ルコンによる耐蝕性、及び黒鉛による熱伝導性が
これらの上限が規制されたことによつて不十分に
なるのを効果的に補償できず、一方炭化珪素量が
40重量%を超えると熱伝導性が高くなり過ぎノズ
ル閉塞を生じ易くなるからである。
The reason why the amount of silicon carbide in the fireproof material composition of the present invention is limited to the above range is that the amount of silicon carbide is
If it is less than 10% by weight, it will not be possible to effectively compensate for the corrosion resistance due to zirconia and/or zircon and the thermal conductivity due to graphite being insufficient due to these upper limits, while silicon carbide The amount
This is because if it exceeds 40% by weight, thermal conductivity becomes too high and nozzle clogging is likely to occur.

本発明における耐火材組成物中の金属珪素の配
合量を上記範囲に限定した理由は、金属珪素量を
1重量%未満にすると、ジルコニア及び/又はジ
ルコン、炭化珪素の粒界の結合性を十分高められ
ず、その結果粒界の耐蝕性及び機械的強度の向上
が達成できない。一方、金属珪素量が10重量%を
超えると、金属珪素自体の欠点である浸蝕され易
い性質が顕在化するからである。
The reason why the amount of metallic silicon in the fireproof material composition of the present invention is limited to the above range is that when the amount of metallic silicon is less than 1% by weight, the bonding properties of the grain boundaries of zirconia and/or zircon and silicon carbide are sufficiently improved. As a result, the corrosion resistance and mechanical strength of the grain boundaries cannot be improved. On the other hand, if the amount of metallic silicon exceeds 10% by weight, the disadvantage of metallic silicon itself, which is its tendency to corrode, becomes apparent.

〔実施例〕 次に、本発明の実施例を説明する。〔Example〕 Next, examples of the present invention will be described.

なお、以下の実施例において使用した原料の成
分は下記のようなものである。
The ingredients of the raw materials used in the following examples are as follows.

ジルコニア粉;ZrO2:96%、CaO:4% ジルコン粉;ZrO2:65%、SiO2:35% 天然黒鉛粉;C:90%、SiO2:4%、Al2C3:3
% 炭化珪素粉;SiC:96%、C:3%、SiO2:1% 金属珪素;Si:100% フエノールレジンは焼成時の62%が揮発し、38
%がレジンコークスとして残留する。
Zirconia powder; ZrO 2 : 96%, CaO: 4% Zircon powder; ZrO 2 : 65%, SiO 2 : 35% Natural graphite powder; C: 90%, SiO 2 : 4%, Al 2 C 3 : 3
% Silicon carbide powder; SiC: 96%, C: 3%, SiO 2 : 1% Metallic silicon; Si: 100% 62% of phenol resin evaporates during firing, 38
% remains as resin coke.

また、焼成された製品について、C、SiC及び
Siについては以下のようにして組成を決定した。
In addition, regarding fired products, C, SiC and
The composition of Si was determined as follows.

試料を1350℃で燃焼させ、発生するCO2量を
測定し、逆算して全カーボン量を決定した。試
料を850℃で燃焼させ(この温度ではSiCは酸化
されない)、発生するCO2量を測定し、逆算して
フリーカーボン量を決定した。全カーボン量か
らフリーカーボン量を差引いて、計算によりSiC
の量を決定した。
The sample was burned at 1350°C, the amount of CO 2 generated was measured, and the total amount of carbon was determined by back calculation. The sample was burned at 850°C (SiC is not oxidized at this temperature), the amount of CO 2 generated was measured, and the amount of free carbon was determined by back calculation. SiC is calculated by subtracting the free carbon amount from the total carbon amount.
determined the amount of

Si+HF+HNO3+KClの反応により珪弗化
カリを生成させ、NaOHで中和してSiの量を決
定した。
Potassium silicofluoride was produced by the reaction of Si + HF + HNO 3 + KCl, and the amount of Si was determined by neutralizing it with NaOH.

実施例 1 ジルコニア粉40重量%、ジルコン粉25重量%、
天然黒鉛粉10重量%、炭化珪素粉23重量%及び金
属シリコン粉2重量%からなる混合原料粉100重
量部に、フエノールレジン15重量部を添加して充
分ねつ合し、これをラバープレス(圧力1000Kg/
cm2)にてノズル状に成形した後、この成形体を
1000℃の還元雰囲気中で焼成せしめて鋼の連続鋳
造用浸漬ノズルを造つた。
Example 1 Zirconia powder 40% by weight, zircon powder 25% by weight,
To 100 parts by weight of mixed raw material powder consisting of 10% by weight of natural graphite powder, 23% by weight of silicon carbide powder, and 2% by weight of metal silicon powder, 15 parts by weight of phenol resin was added and kneaded thoroughly, and this was mixed using a rubber press ( Pressure 1000Kg/
cm 2 ) into a nozzle shape, this molded body is
A submerged nozzle for continuous steel casting was manufactured by firing in a reducing atmosphere at 1000℃.

この浸漬ノズルの組成はZrO2:52%、C:14
%、SiC:21%、Si:2.0%、SiO2:9.1%、
Al2O3:0.3%、CaO:1.6%であつた。
The composition of this immersion nozzle is ZrO2 : 52%, C: 14
%, SiC: 21%, Si: 2.0%, SiO2 : 9.1%,
Al2O3 : 0.3 %, CaO: 1.6%.

しかして、本実施例1の浸漬ノズル及び溶融石
英質の浸漬ノズル(比較例1)を、夫々容量250
トンのタンデイツシユに連結し、かつ下端を上面
にスラグパウダーが浮遊する鋳造鋳型の溶鋼中に
浸漬し、高マンガン鋼の連続鋳造を行なつた。
Therefore, the immersed nozzle of Example 1 and the fused silica immersed nozzle (Comparative Example 1) each had a capacity of 250
Continuous casting of high manganese steel was carried out by connecting the mold to a tundish with a ton of tundish, and immersing the lower end into molten steel in a casting mold with slag powder floating on the upper surface.

なお、スラグパウダーの組成はAl2O3:12%、
SiO2:35%、CaO:36%、C:6%、MgO:3
%及びNa2O+K2O:8%の成分からなるもので
ある。また、鋳造に用いた高マンガン鋼はC:
0.17%、Mn:0.80%、Si:0.25%、S:0.01%、
P:0.01%、Sol Al:0.02%及び残りがFeの成分
からなるものである。
The composition of the slag powder is Al 2 O 3 : 12%,
SiO2 : 35%, CaO: 36%, C: 6%, MgO: 3
% and Na 2 O + K 2 O: 8%. In addition, the high manganese steel used for casting is C:
0.17%, Mn: 0.80%, Si: 0.25%, S: 0.01%,
It consists of P: 0.01%, Sol Al: 0.02%, and the remainder Fe.

その結果、本実施例1の浸漬ノズルは連続6チ
ヤージ行なつても鋳型上面に浮遊するスラグパウ
ダーを接触する部分がほとんど外径浸蝕されず、
かつ亀裂、剥離が発生することなく、さらにノズ
ル孔内面が溶損されたり、マンガン等が析出した
りすることなく、使用に耐えられるものであつ
た。これに対し、比較例1の溶融石英質浸漬ノズ
ルは2チヤージ行なつた時点でスラグパウダーと
接触する部分の外径浸蝕が激しくなると共にノズ
ル孔内面の溶損が進行して使用不可能となつた。
As a result, the immersion nozzle of Example 1 showed almost no erosion in the outer diameter of the part that came into contact with the slag powder floating on the upper surface of the mold even after 6 consecutive charges.
Moreover, it could withstand use without cracking or peeling, nor was the inner surface of the nozzle hole damaged by melting or manganese etc. deposited. On the other hand, the fused silica immersion nozzle of Comparative Example 1 became unusable after two charges as the outer diameter of the part that came into contact with the slag powder became severely eroded and the inner surface of the nozzle hole progressed to melt. Ta.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば、スラグパ
ウダーに対する耐蝕性を向上すると共に耐熱衝撃
性、機械的強度を改善して耐用寿命を著しく延長
でき、もつて鋳造作業の簡便化、鋳造物の生産性
の向上及び生産コストの低減等を図ることができ
る鋼の連続鋳造用浸漬ノズルを提供できるもので
ある。
As described in detail above, according to the present invention, it is possible to improve the corrosion resistance against slag powder, improve thermal shock resistance and mechanical strength, and significantly extend the service life of the cast. It is possible to provide an immersion nozzle for continuous casting of steel, which can improve productivity and reduce production costs.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともスラグパウダーと接触する部分
を、重量割合にてジルコニア及び/又はジルコン
40〜80%、黒鉛9〜30%、炭化珪素10〜40%、及
び金属珪素1〜10%からなる耐火材組成物で構成
せしめたことを特徴とする鋼の連続鋳造用浸漬ノ
ズル。
1 At least the part that comes into contact with the slag powder is made of zirconia and/or zircon in a weight proportion.
1. A submerged nozzle for continuous casting of steel, characterized in that it is made of a refractory material composition consisting of 40-80% graphite, 9-30% graphite, 10-40% silicon carbide, and 1-10% silicon metal.
JP6401178A 1978-05-29 1978-05-29 Immersion nozzle for continuous steel casting Granted JPS54155124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6401178A JPS54155124A (en) 1978-05-29 1978-05-29 Immersion nozzle for continuous steel casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6401178A JPS54155124A (en) 1978-05-29 1978-05-29 Immersion nozzle for continuous steel casting

Publications (2)

Publication Number Publication Date
JPS54155124A JPS54155124A (en) 1979-12-06
JPS6352986B2 true JPS6352986B2 (en) 1988-10-20

Family

ID=13245803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6401178A Granted JPS54155124A (en) 1978-05-29 1978-05-29 Immersion nozzle for continuous steel casting

Country Status (1)

Country Link
JP (1) JPS54155124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072216A1 (en) * 2007-12-05 2009-06-11 Nippon Steel Corporation Immersion nozzle and method of continuous casting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732858A (en) * 1980-08-07 1982-02-22 Nippon Kokan Kk <Nkk> Immersion nozzle for continuous casting of molten steel
JPS57156370A (en) * 1981-03-19 1982-09-27 Kurosaki Refractories Co Continuous casting refractories
JP4956285B2 (en) * 2007-06-01 2012-06-20 マグ インスツルメント インコーポレーテッド Battery with electrode protection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141332A (en) * 1978-04-26 1979-11-02 Akechi Taikarenga Kk Nozzle for use in continuous casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141332A (en) * 1978-04-26 1979-11-02 Akechi Taikarenga Kk Nozzle for use in continuous casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072216A1 (en) * 2007-12-05 2009-06-11 Nippon Steel Corporation Immersion nozzle and method of continuous casting

Also Published As

Publication number Publication date
JPS54155124A (en) 1979-12-06

Similar Documents

Publication Publication Date Title
JPS5919067B2 (en) High durability casting nozzle
JPS591229B2 (en) Immersion nozzle for continuous casting of molten steel
JPS583992B2 (en) Lenzokuchiyuzoyoushinseki nozzle
JPS6352986B2 (en)
US5348203A (en) Molten steel pouring nozzle
JPH082975A (en) Refractory for casting application
CN115108842A (en) Long nozzle for high-oxygen steel continuous casting
JPS6115777B2 (en)
JPS5832554A (en) Nozzle for continuous casting
JPS5919071B2 (en) Immersion nozzle for continuous steel casting
JPH0319183B2 (en)
JPH0952169A (en) Refractory for tuyere of molten steel container
JP3212856B2 (en) Irregular cast refractories and their moldings
JPS605547B2 (en) Immersion nozzle for continuous casting
JPH0631410A (en) Long stopper for continuous casting
JPS608988B2 (en) Immersion nozzle composition for casting
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
JPS607696B2 (en) Refractories for molten steel
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JPS6214510B2 (en)
JPH09239504A (en) Submerged nozzle for continuous casting of steel containing high oxygen
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP2971824B2 (en) High corrosion resistance refractory
GB1564927A (en) Bonds for refractory materials
JPS6033782B2 (en) Refractories for hot metal pretreatment