JPH09239504A - Submerged nozzle for continuous casting of steel containing high oxygen - Google Patents

Submerged nozzle for continuous casting of steel containing high oxygen

Info

Publication number
JPH09239504A
JPH09239504A JP8046183A JP4618396A JPH09239504A JP H09239504 A JPH09239504 A JP H09239504A JP 8046183 A JP8046183 A JP 8046183A JP 4618396 A JP4618396 A JP 4618396A JP H09239504 A JPH09239504 A JP H09239504A
Authority
JP
Japan
Prior art keywords
continuous casting
nozzle
molten steel
porous refractory
high oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8046183A
Other languages
Japanese (ja)
Inventor
Takashi Yamamura
隆 山村
Osamu Nomura
修 野村
I Hayashi
▲韋▼ 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP8046183A priority Critical patent/JPH09239504A/en
Publication of JPH09239504A publication Critical patent/JPH09239504A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the spalling resistance by using a porous refractory not containing carbon at a part of a submerged nozzle in contact with the molten steel to suppress oxidation of carbon in the refractory to constitute a nozzle body by the oxygen in the molten steel during the casting. SOLUTION: A surface of a part of a submerged nozzle in contact with the molten steel is covered with the porous refractory made of carbide and/or non-oxide. The porous refractory is 20-60% in apparent porosity, 0.02-0.5mm in mean diameter of pores, and 2-10mm in covering thickness. The conventional method such as the mechanical forming method, the rubber press method, and the slip cast method can be used as the manufacturing method of the submerged nozzle. The binder to be added which is required during the manufacture is not specially limited, and the binder such as the sodium silicate, aluminum phosphate, phenol resin, and CMC may be accepted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高酸素含有鋼の連
続鋳造用浸漬ノズルに関するものである。
TECHNICAL FIELD The present invention relates to a dipping nozzle for continuous casting of high oxygen content steel.

【0002】[0002]

【従来の技術】高酸素含有鋼は、ホーロー用の素地金属
材料等として広く使用されている。この鋼種は、普通炭
素鋼に比べて、次の2つの特徴がある: 普通炭素鋼の酸素含有量は約20ppmであるが、高
酸素含有鋼のそれは200〜600ppmにも達し、顕
著に高い。 普通炭素鋼の酸素は大部分がAl23等の酸化物介在
物の形態で存在するが、高酸素含有鋼の酸素はほとんと
が溶解状態で存在し、酸化物介在物は非常に少ない。
2. Description of the Related Art High oxygen content steel is widely used as a base metal material for enamel. Compared to plain carbon steel, this grade has the following two characteristics: The oxygen content of plain carbon steel is about 20 ppm, whereas that of high oxygen content steel is as high as 200-600 ppm, which is significantly higher. Most of the oxygen in ordinary carbon steel exists in the form of oxide inclusions such as Al 2 O 3 , but most of the oxygen in high oxygen content steel exists in a dissolved state, and the oxide inclusions are very small. .

【0003】高酸素含有鋼の連続鋳造において、溶鋼を
タンディッシュからモールドに導入するのに用いられる
浸漬ノズルとして、従来、20〜30重量%の炭素を含
有するアルミナ系耐火物が一般的に使用されている。炭
素含有耐火物を使用する目的は、耐火物の熱伝導率を大
きくして耐スポーリング性を向上させることにある。し
かし、溶鋼を鋳造する際に、ノズル中の炭素(C)は、
ノズル内管と溶鋼との界面で次の反応が起こることによ
って溶鋼中の溶解酸素()に酸化される:
In continuous casting of high oxygen content steel, an alumina refractory material containing 20 to 30% by weight of carbon is generally used as a dipping nozzle used for introducing molten steel from a tundish into a mold. Has been done. The purpose of using the carbon-containing refractory is to increase the thermal conductivity of the refractory and improve the spalling resistance. However, when casting molten steel, carbon (C) in the nozzle is
Oxidation to dissolved oxygen ( O 2 ) in the molten steel occurs by the following reaction occurring at the interface between the nozzle inner tube and the molten steel:

【化1】C+=CO(g) その結果、ノズル表面の組織が脆化し、溶鋼流に洗い流
されてしまうので、ノズルの損傷が起こって耐用性が低
下する。
## STR1 ## C + O 2 = CO (g) As a result, the structure of the nozzle surface becomes brittle and is washed away by the molten steel flow, which damages the nozzle and reduces the durability.

【0004】一方、特開昭62−212284号公報には、融点
が300℃〜1500℃に調整された炭化珪素と低融点
ガラスを主成分とする酸化防止剤100重量部にジルコ
ニア微粉を2〜50重量部を添加し、該混合物に無機、
あるいは有機溶液を加えてスラリーあるいはペースト状
態のコーティング剤を得このコーティング剤をジルコニ
ア−炭素材質耐火物の表面に塗布することを特徴とする
ジルコニア−炭素材質の酸化防止方法が提案されている
が、次のような問題点がある: 酸化防止層は乾燥中に亀裂、剥離し易く、均一なガラ
ス被覆膜ができにくい。 低融点ガラスの相が高温の溶鋼に接触すると、溶解、
流下して酸化を防止する機能を果たさなくなる。
On the other hand, in Japanese Patent Laid-Open No. 62-212284, 100 parts by weight of an antioxidant mainly composed of silicon carbide whose melting point is adjusted to 300 ° C. to 1500 ° C. and low melting point glass is mixed with 2 parts of zirconia fine powder. 50 parts by weight was added to the mixture to make inorganic,
Alternatively, a method for preventing oxidation of a zirconia-carbon material, which is characterized in that a coating agent in the form of a slurry or a paste is obtained by adding an organic solution to the surface of the zirconia-carbon material refractory, is proposed, There are the following problems: The antioxidant layer easily cracks and peels off during drying, and it is difficult to form a uniform glass coating film. When the phase of the low melting point glass comes into contact with hot molten steel, it melts,
It will not flow down and will not function to prevent oxidation.

【0005】また、実開平2−38153号公報には、ノズ
ルの溶鋼と接する部分とノズル本体の耐火物を張り分け
る技術が開示されている。更に、実公昭63−3732号公報
には、浸漬ノズルの本体のパウダーライン部に保護スリ
ーブを設けた技術(耐火物を張り分ける)が開示されてい
る。しかし、これらのノズルは高酸素含有鋼の連続鋳造
用浸漬ノズルを対象としたものではなく、溶鋼中の酸素
による炭素の酸化に起因するノズルの損傷を防止するに
は充分なものではなかった。
Further, Japanese Utility Model Application Laid-Open No. 2-38153 discloses a technique in which a portion of a nozzle which is in contact with molten steel and a refractory material of a nozzle body are separated. Further, Japanese Utility Model Publication No. 63-3732 discloses a technique (a refractory material is divided) in which a powder sleeve portion of a main body of an immersion nozzle is provided with a protective sleeve. However, these nozzles are not intended for immersion nozzles for continuous casting of high oxygen content steel, and are not sufficient for preventing nozzle damage due to oxidation of carbon by oxygen in molten steel.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、溶鋼中の酸素による炭素の酸化に起因する損傷を防
止する高酸素含有鋼の連続鋳造用浸漬ノズルを提供する
ことにある。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a submerged nozzle for continuous casting of high oxygen content steel which prevents damage caused by oxidation of carbon by oxygen in molten steel.

【0007】[0007]

【課題を解決するための手段】即ち、本発明は、タンデ
ィッシュからモールド内へ溶鋼を注入する際に用いられ
る連続鋳造用浸漬ノズルにおいて、該浸漬ノズルの溶鋼
と接する部分に、多孔質耐火物を使用することを特徴と
する高酸素含有鋼の連続鋳造用浸漬ノズルを提供するこ
とにある。
That is, the present invention relates to a continuous casting immersion nozzle used for injecting molten steel from a tundish into a mold, and a porous refractory material is provided at a portion of the immersion nozzle which is in contact with the molten steel. The present invention provides a submerged nozzle for continuous casting of high oxygen content steel, characterized in that

【0008】[0008]

【発明の実施の形態】通常、耐火物の耐スポーリング性
は、耐火物自体の気孔率によって異なる。実験、測定し
た種々の材料の耐スポーリング性指数と気孔率との関係
を図1に示す。まず、所定配合比率で各原料を配合し、
混練後、1800kg/cm2の圧力で230×114
×65mmの寸法に加圧成形し、更に、この成形体を3
00℃で10時間ベーキングすることにより試料を作製
した。テストは1000℃で予備焼成した40×40×
230mmの試料を1650℃の溶鋼に浸漬した時に発
生する亀裂の本数を一定の規則に従って数値化する方法
「参考文献:耐火物44[2]75(1992)」で実施
した。図1は数値化した結果である。
DETAILED DESCRIPTION OF THE INVENTION Generally, the spalling resistance of a refractory material depends on the porosity of the refractory material itself. FIG. 1 shows the relationship between the porosity and the spalling resistance index of various materials measured and tested. First, mix each raw material in a predetermined mixing ratio,
After kneading, 230 × 114 at 1800 kg / cm 2 pressure
It is pressed into a size of × 65mm, and this molded body is
A sample was prepared by baking at 00 ° C. for 10 hours. Test is 40x40x pre-fired at 1000 ° C
It was carried out by the method "reference: refractory material 44 [2] 75 (1992)" for quantifying the number of cracks generated when a 230 mm sample was immersed in molten steel at 1650 ° C according to a certain rule. Figure 1 shows the numerical results.

【0009】図1から、Al23とMgOのいずれの場
合でも、気孔率が50%まで増加するにつれて耐スポー
リング性が大幅に向上し、気孔率がさらに増加すると耐
スポーリング性が減少することがわかる。また、図1か
ら、気孔率が20〜60%の範囲内では、Al23ある
いはMgOの耐スポーリング性は、25重量%の炭素を
含有するAl23質耐火物の耐スポーリング性とほぼ同
じ程度であることがわかる。
From FIG. 1, in both cases of Al 2 O 3 and MgO, the spalling resistance is significantly improved as the porosity increases up to 50%, and the spalling resistance decreases as the porosity further increases. I understand that Further, from FIG. 1, in the porosity range of 20 to 60%, the spalling resistance of Al 2 O 3 or MgO is the spalling resistance of the Al 2 O 3 refractory containing 25% by weight of carbon. It turns out that it is about the same as sex.

【0010】本発明は、以上の知見から、炭素含有耐火
物よりなる連続鋳造用浸漬ノズルの溶鋼側に多孔質耐火
物を使用する場合に、多孔質耐火物の気孔率を適当に制
御すれば、その耐スポーリング性は問題にならないと考
えられる。なお、高酸素含有鋼中には、上述のように普
通炭素鋼中に存在するAl23介在物が非常に少ないの
で、溶鋼が浸漬ノズルを通過する際、介在物が浸漬ノズ
ル内管に付着してノズルの閉塞を起こす恐れは存在しな
い。
Based on the above findings, the present invention provides that when a porous refractory material is used on the molten steel side of a continuous casting immersion nozzle made of a carbon-containing refractory material, the porosity of the porous refractory material should be controlled appropriately. , Its spalling resistance is not considered to be a problem. In the high oxygen content steel, since Al 2 O 3 inclusions existing in ordinary carbon steel are very small as described above, when molten steel passes through the immersion nozzle, the inclusions are formed in the immersion nozzle inner pipe. There is no risk of adhesion and blockage of the nozzle.

【0011】多孔質耐火物は、Al23、MgO、Zr
2、SiO2等の酸化物、及びAlN、SiC等の非酸
化物の1種またはこれらの混合物から構成することがで
きる。
The porous refractory materials are Al 2 O 3 , MgO, Zr.
It may be composed of an oxide such as O 2 or SiO 2 and a non-oxide such as AlN or SiC, or a mixture thereof.

【0012】また、溶鋼と耐火物との濡れ性が非常に悪
いので、多孔質耐火物中の気孔の大きさがある程度小さ
ければ、静圧力により溶鋼が気孔に浸透してノズル本体
の炭素を酸化する可能性もない。実機テストの結果によ
ると、気孔平均直径を0.02〜0.5mmの範囲とする
ことが望ましい。気孔平均直径が0.02mm未満であ
ると、多孔質耐火物の耐スポーリング性が悪くなるため
に好ましくなく、また、気孔平均直径が0.5mmを超
えると表面強度が弱くなって耐用性が低下するために好
ましくない。
Further, since the wettability between the molten steel and the refractory is very poor, if the size of the pores in the porous refractory is small to some extent, the molten steel penetrates into the pores due to static pressure and oxidizes carbon in the nozzle body. There is no possibility of doing it. According to the result of the actual machine test, it is desirable that the average pore diameter is in the range of 0.02 to 0.5 mm. If the average pore diameter is less than 0.02 mm, the sponge resistance of the porous refractory material is deteriorated, which is not preferable, and if the average pore diameter exceeds 0.5 mm, the surface strength becomes weak and the durability is poor. It is not preferable because it decreases.

【0013】更に、実機テストにより、多孔質耐火物の
使用厚みと鋳造時間との関係を調べた結果、使用厚みを
2〜10mm程度とすることがよいことがわかった。使
用厚みが2mm未満であれば、鋳造可能な時間が短くな
るために好ましくなく、10mmを超えても、鋳造可能
な時間が大幅に増加せず、また、浸透ノズルの製造コス
トが高くなるために好ましくない。
Further, as a result of examining the relationship between the used thickness of the porous refractory and the casting time by an actual machine test, it was found that the used thickness should be about 2 to 10 mm. If the thickness used is less than 2 mm, the castable time becomes short, which is not preferable, and if it exceeds 10 mm, the castable time does not significantly increase, and the manufacturing cost of the permeation nozzle increases. Not preferable.

【0014】本発明の連続鋳造用浸漬ノズルの製造方法
としては、機械成形法、ラバープレス法、スリップキャ
スト法等の慣用の方法を使用することができ、また、製
造時に必要な結合剤は特に限定されるものではなく、珪
酸ソーダ、燐酸アルミニウム、フェノール樹脂、CMC
等の慣用の結合剤を使用することができる。
As a method for producing the immersion nozzle for continuous casting of the present invention, a conventional method such as a mechanical molding method, a rubber pressing method, a slip casting method or the like can be used, and a binder required at the time of production is Without limitation, sodium silicate, aluminum phosphate, phenolic resin, CMC
Conventional binders such as can be used.

【0015】[0015]

【実施例】以下に実施例を挙げて本発明の高酸素含有鋼
の連続鋳造用浸漬ノズルを更に説明する。 実施例1 図2に示す構成の本発明品の連続鋳造用浸漬ノズルを作
製した。ここで、本体の材質は、Al2350重量%、
SiO225重量%及びC25重量%よりなる耐火物で
あり、多孔質耐火物は、Al2380重量%及びSiO
220重量%よりなり、気孔率35%、気孔平均直径0.
3mmのものを使用し、使用厚みを7mmとした。な
お、浸漬ノズルは、ラバープレス法により図2に示す構
成のものとした(ノズル内管の内径は100mm、ノズ
ル外径は160mm、高さは700mmであった)。
EXAMPLES The immersion nozzle for continuous casting of high oxygen content steel of the present invention will be further described below with reference to examples. Example 1 An immersion nozzle for continuous casting of the product of the present invention having the structure shown in FIG. 2 was produced. Here, the material of the main body is 50% by weight of Al 2 O 3 ,
A refractory material composed of 25% by weight of SiO 2 and 25% by weight of C, and the porous refractory material is 80% by weight of Al 2 O 3 and SiO 2.
It consists 2 20 wt%, a porosity of 35%, the pore average diameter 0.
The thickness used was 3 mm, and the thickness used was 7 mm. The immersion nozzle had the structure shown in FIG. 2 by the rubber press method (the inner diameter of the nozzle inner tube was 100 mm, the outer diameter of the nozzle was 160 mm, and the height was 700 mm).

【0016】実施例2 多孔質耐火物として、Al2395重量%及びSiO2
5重量%よりなり、気孔率45%、気孔平均直径0.1
mmのものを使用し、使用厚みを7mmとした以外は、
実施例1と同様の方法により本発明品の連続鋳造用浸漬
ノズルを作製した。
Example 2 95% by weight of Al 2 O 3 and SiO 2 were used as the porous refractory material.
5% by weight, porosity 45%, average pore diameter 0.1
mm, except that the thickness used is 7 mm,
A dipping nozzle for continuous casting of the product of the present invention was produced by the same method as in Example 1.

【0017】実施例3 多孔質耐火物として。Al2370重量%及びMgO3
0重量%よりなり、気孔率50%、気孔平均直径0.0
8mmのものを使用し、使用厚みを7mmとした以外
は、実施例1と同様の方法により本発明品の連続鋳造用
浸漬ノズルを作製した。
Example 3 As a porous refractory material. 70% by weight of Al 2 O 3 and MgO 3
0% by weight, porosity 50%, average pore diameter 0.0
An immersion nozzle for continuous casting of the product of the present invention was produced in the same manner as in Example 1 except that the thickness was 8 mm and the thickness used was 7 mm.

【0018】比較例1 浸漬ノズルを構成する材質として、Al2350重量
%、SiO225重量%、C25重量%のものを使用し
て図3に示す構成の比較品の連続鋳造用浸漬ノズルを作
製した。
Comparative Example 1 As a material for the immersion nozzle, 50% by weight of Al 2 O 3 , 25% by weight of SiO 2 and 25% by weight of C were used, and a comparative product having the configuration shown in FIG. 3 was immersed for continuous casting. A nozzle was produced.

【0019】以上のようにして作製された本発明品1、
2及び3、及び比較品の浸漬ノズルのノズル内管損傷を
調べることによってノズルの耐用性を評価した。なお、
試験は、C:0.02重量%、Mn:0.31重量%、
P:0.008重量%、S:0.017重量%、O:57
9ppmの組成を有する高酸素含有鋼を用い、溶鋼温度
1562℃で行った。得られた鋳造時間と内管の溶損量
の関係を図4に示す。
The product 1 of the present invention produced as described above
Nozzle durability was evaluated by examining the inner tube damage of Nos. 2 and 3, and Comparative Immersion Nozzles. In addition,
The test was C: 0.02% by weight, Mn: 0.31% by weight,
P: 0.008% by weight, S: 0.017% by weight, O: 57
A high oxygen content steel having a composition of 9 ppm was used and the molten steel temperature was 1562 ° C. The relationship between the obtained casting time and the melting loss of the inner pipe is shown in FIG.

【0020】図4からわかるように、比較品の溶損速度
は4mm/時間で、鋳造可能時間は1.5時間であるの
に対して、本発明品1の溶損速度は1.5mm/時間
で、鋳造可能時間は4時間であり、また、本発明品2の
溶損速度は1.2mm/時間で、鋳造可能時間は5時間
となった。更に、本発明品3の溶損速度は1.0mm/
時間で、鋳造可能時間は6時間となった。即ち、本発明
品を使用することによって、連続鋳造用浸漬ノズルの耐
用性が大幅に向上することが認められた。
As can be seen from FIG. 4, the melt loss rate of the comparative product is 4 mm / hour and the casting time is 1.5 hours, whereas the melt loss rate of the product 1 of the present invention is 1.5 mm / hour. In terms of time, the castable time was 4 hours, the melt loss rate of the product 2 of the present invention was 1.2 mm / hour, and the castable time was 5 hours. Further, the erosion rate of the product 3 of the present invention is 1.0 mm /
In terms of time, the castable time was 6 hours. That is, it was confirmed that the durability of the immersion nozzle for continuous casting was significantly improved by using the product of the present invention.

【0021】[0021]

【発明の効果】本発明の高酸素含有鋼の連続鋳造用浸漬
ノズルにおいては、浸漬ノズルの溶鋼と接する部分に炭
素を含まない多孔質耐火物を使用することにより、鋳造
時に溶鋼中の酸素による浸漬ノズル本体を構成する耐火
物中の炭素の酸化に起因する耐火物の損傷を大幅に抑制
することができ、それによって長時間にわたる連続鋳造
が可能となる。
INDUSTRIAL APPLICABILITY In the immersion nozzle for continuous casting of high oxygen content steel according to the present invention, by using a carbon-free porous refractory material in the portion of the immersion nozzle that is in contact with molten steel, oxygen in the molten steel during casting Damage to the refractory material due to oxidation of carbon in the refractory material forming the immersion nozzle body can be significantly suppressed, which enables continuous casting for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al23質耐火物並びにMgO質耐火物の気孔
率と耐スポーリング性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between porosity and spalling resistance of Al 2 O 3 -based refractory materials and MgO-based refractory materials.

【図2】本発明の連続鋳造用浸漬ノズルの構成を示す図
である。
FIG. 2 is a diagram showing a configuration of a continuous casting immersion nozzle of the present invention.

【図3】従来の連続鋳造用浸漬ノズルの構成を示す図で
ある。
FIG. 3 is a view showing a configuration of a conventional continuous casting immersion nozzle.

【図4】実施例で得られた本発明品1及び2、並びに比
較例で得られた比較品の浸漬ノズルのノズル内管の損傷
量と鋳造時間の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the damage amount of the nozzle inner tube of the immersion nozzle and the casting time of the products 1 and 2 of the present invention obtained in Examples and the comparative product obtained in Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 38/00 303 C04B 35/10 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 38/00 303 C04B 35/10 F

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンディッシュからモールド内へ溶鋼を
注入する際に用いられる連続鋳造用浸漬ノズルにおい
て、該浸漬ノズルの溶鋼と接する部分に、多孔質耐火物
を使用することを特徴とする高酸素含有鋼の連続鋳造用
浸漬ノズル。
1. In a continuous casting immersion nozzle used for injecting molten steel from a tundish into a mold, a porous refractory material is used in a portion of the immersion nozzle which is in contact with molten steel. Immersion nozzle for continuous casting of contained steel.
【請求項2】 多孔質耐火物が、酸化物及び/または非
酸化物から構成される請求項1記載の高酸素含有鋼の連
続鋳造用浸漬ノズル。
2. The immersion nozzle for continuous casting of high oxygen content steel according to claim 1, wherein the porous refractory material is composed of oxide and / or non-oxide.
【請求項3】 多孔質耐火物が、見掛け気孔率20〜6
0%及び気孔平均直径0.02〜0.5mmを有するもの
である請求項1または2記載の高酸素含有鋼の連続鋳造
用浸漬ノズル。
3. A porous refractory material having an apparent porosity of 20 to 6
The immersion nozzle for continuous casting of high oxygen content steel according to claim 1 or 2, which has 0% and an average pore diameter of 0.02 to 0.5 mm.
【請求項4】 多孔質耐火物の厚さが、2〜10mmで
ある請求項1ないし3のいずれか1項記載の高酸素含有
鋼の連続鋳造用浸漬ノズル。
4. The immersion nozzle for continuous casting of high oxygen content steel according to claim 1, wherein the thickness of the porous refractory material is 2 to 10 mm.
JP8046183A 1996-03-04 1996-03-04 Submerged nozzle for continuous casting of steel containing high oxygen Pending JPH09239504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046183A JPH09239504A (en) 1996-03-04 1996-03-04 Submerged nozzle for continuous casting of steel containing high oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046183A JPH09239504A (en) 1996-03-04 1996-03-04 Submerged nozzle for continuous casting of steel containing high oxygen

Publications (1)

Publication Number Publication Date
JPH09239504A true JPH09239504A (en) 1997-09-16

Family

ID=12739932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046183A Pending JPH09239504A (en) 1996-03-04 1996-03-04 Submerged nozzle for continuous casting of steel containing high oxygen

Country Status (1)

Country Link
JP (1) JPH09239504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158882A1 (en) * 2019-01-31 2020-08-06 デンカ株式会社 Ceramic sintered body and method for manufacturing same, and nozzle member
CN112759406A (en) * 2021-03-02 2021-05-07 北京利尔高温材料股份有限公司 Carbon-free submerged nozzle lining material and preparation method thereof
CN113102743A (en) * 2021-04-15 2021-07-13 北京利尔高温材料股份有限公司 High-reliability preheating-free long nozzle for continuous casting and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158882A1 (en) * 2019-01-31 2020-08-06 デンカ株式会社 Ceramic sintered body and method for manufacturing same, and nozzle member
CN113226593A (en) * 2019-01-31 2021-08-06 电化株式会社 Ceramic sintered body, method for producing same, and nozzle member
CN113226593B (en) * 2019-01-31 2023-09-29 电化株式会社 Ceramic sintered body, method for producing same, and nozzle member
CN112759406A (en) * 2021-03-02 2021-05-07 北京利尔高温材料股份有限公司 Carbon-free submerged nozzle lining material and preparation method thereof
CN113102743A (en) * 2021-04-15 2021-07-13 北京利尔高温材料股份有限公司 High-reliability preheating-free long nozzle for continuous casting and manufacturing method thereof
CN113102743B (en) * 2021-04-15 2022-09-13 北京利尔高温材料股份有限公司 High-reliability preheating-free long nozzle for continuous casting and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO1994019131A1 (en) Liner for submerged entry nozzle
JP2000263200A (en) Immersion nozzle for continuous casting
EP0885674A1 (en) Nozzle for the continuous casting of steel
JPH09239504A (en) Submerged nozzle for continuous casting of steel containing high oxygen
JPS6348828B2 (en)
JP3128515B2 (en) Nozzle for continuous casting of steel
JPS6119584B2 (en)
JP3015305B2 (en) Nozzle for continuous casting of steel
JP6726651B2 (en) Continuous casting nozzle manufacturing method
US6637629B2 (en) Immersion nozzle
JP3537642B2 (en) Nozzle for continuous casting
JP2004525772A (en) Fire resistant article with resin bonded liner
US5975382A (en) Continuous casting nozzle for casting molten steel
JP3101650B2 (en) Nozzle for continuous casting
JP2001138017A (en) Nozzle for continuously casting steel
JP3164342B2 (en) Nozzle for continuous casting
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
KR20010098628A (en) Immersion nozzle
JPS6352986B2 (en)
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JPS6115777B2 (en)
JP2005238241A (en) Immersion nozzle and using method therefor
JPS6361106B2 (en)
JP2000094099A (en) Nozzle for continuous casting
JPS5919071B2 (en) Immersion nozzle for continuous steel casting