JPS6352465B2 - - Google Patents

Info

Publication number
JPS6352465B2
JPS6352465B2 JP54103166A JP10316679A JPS6352465B2 JP S6352465 B2 JPS6352465 B2 JP S6352465B2 JP 54103166 A JP54103166 A JP 54103166A JP 10316679 A JP10316679 A JP 10316679A JP S6352465 B2 JPS6352465 B2 JP S6352465B2
Authority
JP
Japan
Prior art keywords
semiconductor region
conductivity type
type semiconductor
opposite conductivity
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54103166A
Other languages
Japanese (ja)
Other versions
JPS5627942A (en
Inventor
Yoshitaka Sugawara
Yoshikazu Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10316679A priority Critical patent/JPS5627942A/en
Publication of JPS5627942A publication Critical patent/JPS5627942A/en
Publication of JPS6352465B2 publication Critical patent/JPS6352465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Description

【発明の詳細な説明】 本発明はラテラル型半導体装置に係り、特に集
積回路に好適な高耐圧・高電流増巾率のラテラル
型トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lateral type semiconductor device, and more particularly to a lateral type transistor with high breakdown voltage and high current amplification rate suitable for integrated circuits.

従来の集積回路素子(以下ICと記す)に於て
は、npnトランジスタとしてはプレーナ構造が広
く採用されている。一方pnpトランジスタにはラ
テラル構造が広く用いられている。これはもつぱ
ら、プレーナ構造と製作プロセスがコンパチブル
にできる理由に因る。すなわち、npnトランジス
タのpベースを形成する拡散プロセスを用いて形
成できるため、プロセスを複雑にしなくてすむこ
とによる。
In conventional integrated circuit devices (hereinafter referred to as ICs), planar structures are widely used as npn transistors. On the other hand, lateral structures are widely used for PNP transistors. This is due in part to the fact that the planar structure and fabrication process are compatible. That is, since it can be formed using a diffusion process for forming the p base of an npn transistor, there is no need to complicate the process.

しかし、第1図に示すような従来のpn接合分
離構造のラテラル型pnpトランジスタは電流増巾
率が小さい点で不満足であつた。これは次の理由
によるものである。
However, the conventional lateral type pnp transistor having a pn junction isolation structure as shown in FIG. 1 is unsatisfactory in that the current amplification rate is small. This is due to the following reason.

pエミツタ4とnベース10及びp基板11
でもつて寄生pnpトランジスタが形成されるた
め、pエミツタ4からnベースに注入された少
数キヤリア、すなわち正孔の全てがpコレクタ
5方向に拡散もしくはドリフトされるわけでは
なく、一部が図中の点線(a)のごとくp基板11
に流出する。
p emitter 4, n base 10 and p substrate 11
As a result, a parasitic pnp transistor is formed, so not all of the minority carriers, that is, holes, injected from the p emitter 4 to the n base are diffused or drifted toward the p collector 5, and some of them are shown in the figure. P substrate 11 as shown by dotted line (a)
leaks to.

pコレクタ5の方向に拡散した正孔も、その
全てがpコレクタ5に捕集されず、一部がpコ
レクタ5とn+埋込み層6の間のnベースを拡
散して、図中の点線bのごとくp基板11に流
出する。
Not all of the holes diffused in the direction of the p-collector 5 are collected by the p-collector 5, but some of them diffuse through the n-base between the p-collector 5 and the n + buried layer 6, and the dotted line in the figure It flows out to the p-substrate 11 as shown in b.

このように電流増巾率が小さいという問題はラ
テラル型pnpトランジスタを高耐圧化する場合に
さらに深刻である。すなわち第1に、高耐圧化に
当つては、高電圧印加時にパンチスルーするのを
防ぐために、pコレクタ5とpエミツタ4間の距
離すなわちnベース巾を大きくする必要がある。
しかしながら、nベース巾を大きくすると電流増
巾率が一層低下する。また第2には、高電圧印加
時に空乏層がn+埋込み層6に達すると、空乏層
の延びが抑えられ、この結果、コレクタ接合(逆
バイアス時にはエミツタ接合)付近の電界強度が
増大し耐圧低下を招く。
The problem of a small current amplification factor becomes even more serious when a lateral type PNP transistor is made to have a high breakdown voltage. Firstly, in order to increase the breakdown voltage, it is necessary to increase the distance between the p collector 5 and the p emitter 4, that is, the n base width, in order to prevent punch-through when a high voltage is applied.
However, increasing the n-base width further reduces the current amplification rate. Secondly, when the depletion layer reaches the n + buried layer 6 when a high voltage is applied, the extension of the depletion layer is suppressed, and as a result, the electric field strength near the collector junction (emitter junction when reverse biased) increases and the withstand voltage increases. causing a decline.

従つて、pコレクタ5(及びpエミツタ4)と
n+埋込み層6との間の距離を降伏電圧印加時に
空乏層がn+埋込み層6に達しない程度に大きく
する必要がある。このため、上記及びに述べ
たp基板に流出する正孔が増大して電流増巾率を
更に低下させる傾向が生ずる。
Therefore, p collector 5 (and p emitter 4)
It is necessary to make the distance between the n + buried layer 6 and the depletion layer large enough to prevent the depletion layer from reaching the n + buried layer 6 when a breakdown voltage is applied. For this reason, there is a tendency that the number of holes flowing into the p-substrate increases as described above and further reduces the current amplification rate.

本発明の目的はかかる従来技術の問題点を解決
し、IC化に好適な高耐圧・高電流増巾率のラテ
ラル型半導体装置を提供することにある。
An object of the present invention is to solve the problems of the prior art and to provide a lateral type semiconductor device with high breakdown voltage and high current amplification rate suitable for IC implementation.

かかる目的は、IC構成素子の分離に誘電体分
離技術を用いて、ラテラル型トランジスタを形成
した単結晶島と誘電体膜との間全体にベースと同
じ導電型の高濃度半導体領域を設け、エミツタと
高濃度半導体領域の距離をコレクタと高濃度半導
体領域の距離よりも小さくし、コレクタ及びエミ
ツタにコンタクトする電極の一方がパツシベーシ
ヨン用膜を介して高濃度半導体領域上に延在し、
この延在した電極の下方に電界緩和手段を設ける
ことにより達成される。
This purpose uses dielectric isolation technology to separate IC components, and creates a highly concentrated semiconductor region of the same conductivity type as the base between the single crystal island forming the lateral transistor and the dielectric film. and the high-concentration semiconductor region are made smaller than the distance between the collector and the high-concentration semiconductor region, and one of the electrodes in contact with the collector and the emitter extends over the high-concentration semiconductor region via a passivation film,
This is achieved by providing electric field relaxation means below this extended electrode.

すなわち、コレクタと高濃度半導体領域の間の
間隔を、所定の高耐圧を得る上で必要な距離すな
わち降伏電圧印加時にnベース内に延びる空乏層
巾程度の距離にすることにより、高耐圧を実現で
きる。
In other words, high breakdown voltage is achieved by setting the distance between the collector and the highly doped semiconductor region to the distance necessary to obtain a predetermined high breakdown voltage, that is, the distance equivalent to the width of the depletion layer extending within the n-base when a breakdown voltage is applied. can.

一方エミツタと高濃度半導体領域の距離は、エ
ミツタ接合を高耐圧にする必要がないので、エミ
ツタからの注入を防げない程度まで小さくでき
る。従つて、エミツタからベースに注入され、単
結晶島底部及び側壁に向つて拡散する少数キヤリ
アは、高濃度半導体領域からベースに向う拡散電
界により反射され、コレクタ方向に進む。そし
て、その際エミツタと高濃度半導体領域間に介在
するベースを少数キヤリアの拡散長以下の厚さに
狭くできるために、この領域で再結合して消滅す
るキヤリア数を著しく低減できる。この結果電流
増巾率を増大できる。
On the other hand, the distance between the emitter and the high-concentration semiconductor region can be reduced to the extent that injection from the emitter cannot be prevented, since there is no need to make the emitter junction high withstand voltage. Therefore, the minority carriers injected from the emitter into the base and diffused toward the bottom and sidewalls of the single crystal island are reflected by the diffused electric field from the heavily doped semiconductor region toward the base and proceed toward the collector. In this case, since the thickness of the base interposed between the emitter and the high-concentration semiconductor region can be made narrower than the diffusion length of minority carriers, the number of carriers that recombine and disappear in this region can be significantly reduced. As a result, the current amplification rate can be increased.

更に、ICにおいては単結晶島上にバツシベー
シヨン用膜を介して配線が形成され、その配線に
付与される電位によつて単結晶島内に形成される
空乏層の拡がり状態が変わり、異常な電界集中を
招き耐圧の低下を来すおそれがある。しかしなが
ら本発明では配線下に電界緩和手段を設けたので
異常な電界集中を除去でき高耐圧化を確実にでき
る。この電界緩和手段としては、例えば配線下の
パツシベーシヨン膜に段差部を設けるのが最も簡
便な方法である。
Furthermore, in ICs, interconnections are formed on single-crystal islands via a buffering film, and the potential applied to the interconnects changes the spread of the depletion layer formed within the single-crystal islands, causing abnormal electric field concentration. This may lead to a drop in withstand pressure. However, in the present invention, since an electric field relaxation means is provided under the wiring, abnormal electric field concentration can be removed and high breakdown voltage can be ensured. The simplest way to alleviate this electric field is, for example, to provide a stepped portion in the passivation film under the wiring.

以下、具体的実施例に基づき、本発明の内容と
効果を詳細に説明する。
Hereinafter, the contents and effects of the present invention will be explained in detail based on specific examples.

第2図は本発明の1実施例であり、高耐圧・高
電流増巾率のラテラルpnpトランジスタである。
SiO2膜1により多結晶Si2から絶縁分離された
単結晶島3の中央付近にpエミツタ4が、またそ
の周辺にpコレクタ5が形成されている。絶縁用
SiO2膜1に沿つた単結晶島部にはn+高濃度拡散
領域6を形成してある。pエミツタ下の多結晶Si
2及びn+領域6は、pコレクタ下に比べて単結
晶内に突出させており、pエミツタとn+領域と
の間の距離は他の部分よりも小さくなつている。
この結果前述したメカニズムにより耐圧を損ねる
ことなく電流増巾率を増大できるものである。
FIG. 2 shows one embodiment of the present invention, which is a lateral PNP transistor with high breakdown voltage and high current amplification rate.
A p emitter 4 is formed near the center of a single crystal island 3 insulated from a polycrystalline Si 2 by a SiO 2 film 1, and a p collector 5 is formed around it. For insulation
An n + high concentration diffusion region 6 is formed in the single crystal island portion along the SiO 2 film 1 . Polycrystalline Si under p emitter
2 and n + region 6 are made to protrude into the single crystal compared to the area below the p collector, and the distance between the p emitter and the n + region is smaller than other parts.
As a result, the current amplification rate can be increased without impairing the withstand voltage due to the above-described mechanism.

本実施例に於ける単結晶島n領域3の比抵抗は
20Ω・cm、p層4,5及びn+層6の拡散深さは
いずれも15μm、pエミツタ4とpコレクタ5の
間隔は40μm、pコレクタ5とn+層6間距離は
35μm、pエミツタ4とn+層6間距離は約10μm
である。
The specific resistance of the single crystal island n region 3 in this example is
20Ω・cm, the diffusion depth of p layers 4, 5 and n + layer 6 are all 15 μm, the distance between p emitter 4 and p collector 5 is 40 μm, and the distance between p collector 5 and n + layer 6 is
35μm, distance between p emitter 4 and n + layer 6 is approximately 10μm
It is.

pコレクタ5の電極7はパツシベーヨン用
SiO2膜8を介して各々接合を超えて延在させて
いる。これは周知のごとく、いわゆるフイールド
プレートといわれるものであり、電界効果により
コレクタ接合のSi表面付近に於ける電界集中を緩
和し、耐圧向上を計る手段である。pエミツタ4
の電極9も同様にしてあるが、これはコレクタ・
エミツタ間のSi表面に発生するチヤンネルを電界
効果により阻止し、エミツタ電極下には発生させ
ぬようにする手段であり、さらに耐圧向上が計れ
る。又コレクタの配線7は、n+領域の表面に於
ける露出部上をSiO2膜8を介して延在し、他の
IC構成素子と連結されている。通常電極下のSi表
面には電界効果によりチヤンネルが発生する。
Electrode 7 of p collector 5 is for passivation
Each of them extends beyond the junction via a SiO 2 film 8. As is well known, this is what is called a field plate, and is a means of reducing electric field concentration in the vicinity of the Si surface of the collector junction due to the electric field effect, thereby improving the withstand voltage. p emitsuta 4
The electrode 9 is also similar, but this is the collector
This is a means of blocking channels that occur on the Si surface between the emitters using an electric field effect and preventing them from forming under the emitter electrodes, which can further improve the breakdown voltage. In addition, the collector wiring 7 extends over the exposed portion on the surface of the n + region via the SiO 2 film 8 and connects other
Connected to IC components. Normally, a channel is generated on the Si surface under the electrode due to the electric field effect.

又単結晶島3の側壁にn+領域がない場合は、
絶縁用SiO2膜1と単結晶Si島3との界面付近で
の結晶性が悪くなるため、多結晶Si2の電位が単
結晶Si島3の電位より低くなつた際に反転層が形
成されていることが多い。従つてこの場合は上記
チヤンネルと連結してリーク電流の増大をもたら
す。本実施例でn+領域を単結晶側壁にも形成し
たのは反転層の発生を押え、且つチヤンネルの体
積すなわちリーク電流を最小限にして耐圧向上を
計るためである。
Also, if there is no n + region on the side wall of single crystal island 3,
Since the crystallinity near the interface between the insulating SiO 2 film 1 and the single crystal Si island 3 deteriorates, an inversion layer is formed when the potential of the polycrystalline Si 2 becomes lower than the potential of the single crystal Si island 3. There are often Therefore, in this case, the leakage current increases due to the connection with the channel. In this example, the n + region was also formed on the sidewall of the single crystal in order to suppress the generation of an inversion layer and to minimize the volume of the channel, that is, the leakage current, to improve the breakdown voltage.

この場合電極7の下側のn+領域に於けるチヤ
ンネル端部で電界集中が生じ耐圧低下を招くの
で、n+領域6上のパツシベーシヨンSiO2膜8を
pコレクタ5上及びその近傍より厚くして電界集
中を緩和し、耐圧の向上を計つている。このよう
にパツシベーシヨン用SiO2膜8をpコレクタ5
上及びその近傍で薄く、n+領域6上及びその近
傍で厚くし、pコレクタ5とn+領域6との中間
に位置して段差部を設けることにより、この部分
にも電界集中が生じpコレクタ5側及びn+領域
6側の電界集中が緩和できるのである。n+領域
の濃度はチヤンネル端部の電界強度を小さくする
ためには低い方が良いが、nベースとの界面の拡
散電界を大きくしエミツタから注入された正孔を
効率よく反射させるためには濃度が大きい方が良
い。両方の効果をコンパチブルに実現するため本
実施例ではn+拡散領域の表面における不純物濃
度(絶縁用SiO2との界面付近の濃度)を5×1016
〜5×1018個/cm3にしている。
In this case, electric field concentration occurs at the end of the channel in the n + region below the electrode 7, leading to a drop in breakdown voltage, so the passivation SiO 2 film 8 on the n + region 6 is made thicker than on and near the p collector 5. This is intended to alleviate electric field concentration and improve breakdown voltage. In this way, the SiO 2 film 8 for passivation is applied to the p collector 5.
By making it thinner on and near the n + region 6 and thicker on and near the n + region 6, and providing a stepped portion located between the p collector 5 and the n+ region 6, electric field concentration occurs in this region as well. Electric field concentration on the collector 5 side and the n + region 6 side can be alleviated. It is better to lower the concentration of the n + region in order to reduce the electric field strength at the end of the channel, but in order to increase the diffusion electric field at the interface with the n base and efficiently reflect the holes injected from the emitter. The higher the concentration, the better. In order to achieve both effects in a compatible manner, in this example, the impurity concentration at the surface of the n + diffusion region (concentration near the interface with insulating SiO 2 ) is set to 5×10 16
~5×10 18 pieces/ cm3 .

本実施例のpnpトランジスタは、耐圧が400〜
450v、電流増巾率が8〜12であつた。第2図に
おいて、pエミツタ4の下側の多結晶Si2を突出
させない従来構造のトランジスタでは、耐圧を同
等にした場合の電流増巾率は4〜6であり、本発
明の効果が明らかである。なお、第2図に於て、
n+領域6もその突出部も設けない従来の誘電体
分離型ラテラルトランジスタの電流増巾率は1.5
〜2.5と著しく小さい。
The pnp transistor in this example has a breakdown voltage of 400~
450v, current amplification rate was 8-12. In FIG. 2, in a transistor with a conventional structure in which the polycrystalline Si2 on the lower side of the p emitter 4 does not protrude, the current amplification factor is 4 to 6 when the breakdown voltage is the same, which clearly shows the effect of the present invention. . In addition, in Figure 2,
The current amplification factor of a conventional dielectrically isolated lateral transistor without the n + region 6 or its protrusion is 1.5.
It is significantly smaller at ~2.5.

第3図は本発明の第2の実施例である。多結晶
領域の突出部を増大せしめている点を除けば第1
の実施例と同じである。pコレクタ5とn+領域
6の最短距離を約30μmにした場合、耐圧は若干
低下して380〜420vになるが、電流増巾率は15〜
18に増大できた。
FIG. 3 shows a second embodiment of the invention. The first difference is that the protrusion of the polycrystalline region is increased.
This is the same as the embodiment. If the shortest distance between the p collector 5 and the n + region 6 is set to about 30 μm, the withstand voltage will decrease slightly to 380 to 420 v, but the current amplification rate will be 15 to 420 v.
I was able to increase it to 18.

第4図は本発明になる第3の実施例である。第
3図との比較から明らかなように、pエミツタ接
合深さをpコレクタ5のそれより浅い5μmにし、
表面濃度を3×1019個cm-3にしてエミツタからの
注入効率の増大を計つた点を除けば実施例2とほ
とんど同じである。本実施例の場合、耐圧は380
〜410vと同等であるが、電流増巾率は18〜23と
さらに増大できた。
FIG. 4 shows a third embodiment of the present invention. As is clear from the comparison with Fig. 3, the p-emitter junction depth is made 5 μm shallower than that of the p-collector 5,
This is almost the same as Example 2 except that the surface concentration was set to 3×10 19 cm -3 to increase the injection efficiency from the emitter. In the case of this example, the withstand voltage is 380
It is equivalent to ~410v, but the current amplification rate could be further increased to 18-23.

第5図は第1〜第3実施例に用いた本発明にな
る誘電体分離基板の製作方法の一例を示す工程順
の断面図である。
FIG. 5 is a cross-sectional view showing an example of a method for manufacturing a dielectric isolation substrate according to the present invention used in the first to third embodiments in the order of steps.

n型Si基板3を酸化してSiO2膜13を形成し、
その上に第1レジスト膜14を被覆してホツトエ
ツチングを施し、窓イ,ロを形成してaの形状に
加工する。ついで第1レジスト膜14を除去し、
さらに第2のレジスト膜15を設け、第2のホト
エツチングを施すことにより窓イのみを残し、b
の形状に加工する。開口部イは絶縁分離用溝を形
成する部分であるが、その大きさが第1のホトエ
ツチングで形成した開口部よりも大きくなるよう
にする。
oxidizing the n-type Si substrate 3 to form a SiO 2 film 13;
A first resist film 14 is coated thereon and hot-etched to form windows A and B to form windows A and A. Then, the first resist film 14 is removed,
Further, a second resist film 15 is provided, and a second photoetching is performed to leave only the window 1, and b
Process it into the shape of. The opening A is a portion where an insulation isolation groove is to be formed, and its size is made to be larger than the opening formed by the first photoetching.

ついでSiの選択エツチングを行い、分離用溝を
途中まで形成してcの形状に加工する。この場合
SiO2膜13がSiエツチングのマスクとして用い
られる。その後、第2レジスト15を除去し、さ
らに選択エツチングを施して分離用溝Aと多結晶
Siの突出部となるべき溝Bを形成し、dの形状に
する。その後酸化膜15を除去してn+層6を形
成し、ついでその上に酸化膜1を形成する。つぎ
に、多結晶Si2を成長せしめ、ついで単結晶側の
面を研磨してeの形状にし、誘電体分離基板を完
成する。その後の素子形成プロセスは公知の方法
と同じなので説明は省略する。
Next, selective etching of Si is performed to form a separation groove halfway and process it into the shape of c. in this case
The SiO 2 film 13 is used as a mask for Si etching. After that, the second resist 15 is removed, and selective etching is performed to form the isolation groove A and the polycrystal.
A groove B, which is to become a protrusion of Si, is formed into a shape of d. Thereafter, oxide film 15 is removed to form n + layer 6, and then oxide film 1 is formed thereon. Next, polycrystalline Si2 is grown, and then the surface on the single crystal side is polished into the shape of e to complete the dielectric isolation substrate. The subsequent device formation process is the same as a known method, so a description thereof will be omitted.

第5図に説明した製作方法では、深さの異なる
溝を第1のホトエツチングにより同時に開口した
SiO2膜をマスクにして形成できるので、溝間の
距離や関係位置を高精度に形成できる。これらの
点は従来技術にはみられない特徴でもある。なお
第5図aに於て開口部ロを小にすると第2図のも
のが、又大にすると第3図の実施例を実現できる
ものである。
In the manufacturing method explained in Fig. 5, grooves of different depths are simultaneously opened by the first photoetching process.
Since it can be formed using the SiO 2 film as a mask, the distance between the grooves and their relative positions can be formed with high precision. These points are also features not seen in the prior art. In addition, if the opening B in FIG. 5a is made smaller, the embodiment shown in FIG. 2 can be realized, and if it is made larger, the embodiment shown in FIG. 3 can be realized.

本発明は上記の実施例に限定されるものでな
く、各種の応用変形ができることは当業者には容
易に考えられることであろう。又pコリクタ5の
中にn層を形成したラテラル・サイリスタにも本
発明を適用でき、この結果電流増巾率の増大に起
因する点弧電流の低減やFVDの低減をもたらし
得る。
The present invention is not limited to the above-described embodiments, and those skilled in the art will readily recognize that various modifications can be made. The present invention can also be applied to a lateral thyristor in which an n-layer is formed in the p-collector 5, and as a result, the ignition current and FVD can be reduced due to an increase in the current amplification factor.

以上のごとく、本発明によれば、IC化に適し
た高耐圧・高電流増巾率のラテラル型半導体装置
を実現できる。
As described above, according to the present invention, it is possible to realize a lateral type semiconductor device with high breakdown voltage and high current amplification rate suitable for IC implementation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のラテラル型トランジスタの1例
を示す断面図、第2図〜第4図はそれぞれ本発明
の実施例の断面図、第5図は本発明トランジスタ
の製造方法の1例を示す図である。 1……絶縁用SiO2膜、2……多結晶Si、3…
…単結晶Si島、4……nエミツタ、5……pコレ
クタ、6……n+高濃度領域、13……SiO2膜、
14……第1のレジスタ膜、15……第2のレジ
スト膜。
FIG. 1 is a cross-sectional view showing an example of a conventional lateral type transistor, FIGS. 2 to 4 are cross-sectional views of an embodiment of the present invention, and FIG. 5 is a cross-sectional view showing an example of a method for manufacturing the transistor of the present invention. It is a diagram. 1...SiO 2 film for insulation, 2...Polycrystalline Si, 3...
...Single crystal Si island, 4...n emitter, 5...p collector, 6...n + high concentration region, 13...SiO 2 film,
14...first resist film, 15...second resist film.

Claims (1)

【特許請求の範囲】 1 ベースとして機能する一導電型単結晶島が誘
電体膜を介して多結晶中に埋設され、かつ一対の
主表面を有し、一方の主表面には多結晶領域が、
また他方の主表面には少なくとも単結晶島と誘電
体膜が露出し、単結晶島における主表面と平行な
断面積が、主表面から底面に向けて順次小さくな
り、単結晶島内には少なくとも、エミツタとして
機能する第1の反対導電型半導体領域およびコレ
クタとして機能する第2の反対導電型半導体領域
が、他方の主表面に露出するように設けられた半
導体装置において、キヤリア反射機能を有する一
導電型の高濃度半導体領域が、他方の主表面に露
出するように、単結晶島と誘電体膜との総ての間
に設けられ、第1の反対導電型半導体領域から高
濃度半導体領域までの距離が第2の反対導電型半
導体領域から高濃度半導体領域までの距離よりも
短かく選ばれ、かつ反対導電型半導体領域の少な
くとも一方の引き出し電極の一部が他方の主表面
上に形成したパツシベーシヨン用膜を介して高濃
度半導体領域上に延在し、一方の引き出し電極下
方のパツシベーシヨン用膜の膜厚を高濃度半導体
領域側が一方の引き出し電極が接触している反対
導電型半導体領域側より大きくし、かつ両領域の
中間に段差部を有することを特徴とするラテラル
型半導体装置。 2 第1の反対導電型半導体領域の深さが第2の
反対導電型半導体領域の深さよりも小であること
を特徴とする第1項記載のラテラル型半導体装
置。 3 第1の反対導電型半導体領域の下の多結晶領
域高濃度半導体領域が、第2の反対導電型半導体
領域の下の多結晶領域及び高濃度半導体領域に比
べて、単結晶島内に突出していることを特徴とす
る第1項または第2項記載のラテラル型半導体装
置。
[Claims] 1. A monocrystalline island of one conductivity type functioning as a base is embedded in a polycrystal through a dielectric film, and has a pair of main surfaces, one of which has a polycrystalline region. ,
In addition, at least a single crystal island and a dielectric film are exposed on the other main surface, and the cross-sectional area of the single crystal island parallel to the main surface gradually decreases from the main surface to the bottom surface. In a semiconductor device in which a first opposite conductivity type semiconductor region functioning as an emitter and a second opposite conductivity type semiconductor region functioning as a collector are provided so as to be exposed on the other main surface, one conductivity type having a carrier reflection function A high concentration semiconductor region of the type is provided between the single crystal island and the dielectric film so as to be exposed on the other main surface, and a semiconductor region of the first opposite conductivity type to the high concentration semiconductor region is provided between the single crystal island and the dielectric film so as to be exposed on the other main surface. A passivation in which the distance is selected to be shorter than the distance from the second opposite conductivity type semiconductor region to the high concentration semiconductor region, and a part of the extraction electrode of at least one of the opposite conductivity type semiconductor regions is formed on the main surface of the other semiconductor region. The passivation film extends over the high concentration semiconductor region through the passivation film, and the thickness of the passivation film below one extraction electrode is made larger on the high concentration semiconductor region side than on the opposite conductivity type semiconductor region side with which one extraction electrode is in contact. What is claimed is: 1. A lateral type semiconductor device, further comprising a stepped portion between both regions. 2. The lateral type semiconductor device according to item 1, wherein the depth of the first opposite conductivity type semiconductor region is smaller than the depth of the second opposite conductivity type semiconductor region. 3. The polycrystalline high concentration semiconductor region under the first opposite conductivity type semiconductor region protrudes into the single crystal island compared to the polycrystalline region and the high concentration semiconductor region under the second opposite conductivity type semiconductor region. 3. The lateral type semiconductor device according to claim 1 or 2, characterized in that:
JP10316679A 1979-08-15 1979-08-15 Semiconductor device and its manufacturing method Granted JPS5627942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10316679A JPS5627942A (en) 1979-08-15 1979-08-15 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10316679A JPS5627942A (en) 1979-08-15 1979-08-15 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5627942A JPS5627942A (en) 1981-03-18
JPS6352465B2 true JPS6352465B2 (en) 1988-10-19

Family

ID=14346915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10316679A Granted JPS5627942A (en) 1979-08-15 1979-08-15 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5627942A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178137A (en) * 1984-09-26 1986-04-21 Oki Electric Ind Co Ltd Semiconductor device
JPS62173758A (en) * 1986-01-27 1987-07-30 Nec Corp Semiconductor integrated circuit device
NL8701251A (en) * 1987-05-26 1988-12-16 Philips Nv SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURE THEREOF
JP2514251B2 (en) * 1989-06-24 1996-07-10 松下電工株式会社 Semiconductor device
US5557125A (en) * 1993-12-08 1996-09-17 Lucent Technologies Inc. Dielectrically isolated semiconductor devices having improved characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029423U (en) * 1973-07-09 1975-04-03
JPS5117682A (en) * 1974-08-05 1976-02-12 Hitachi Ltd HANDOTA ISOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029423U (en) * 1973-07-09 1975-04-03
JPS5117682A (en) * 1974-08-05 1976-02-12 Hitachi Ltd HANDOTA ISOCHI

Also Published As

Publication number Publication date
JPS5627942A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
EP0001300B1 (en) Method of manufacturing a locos semiconductor device
US4051506A (en) Complementary semiconductor device
US4323913A (en) Integrated semiconductor circuit arrangement
US4903109A (en) Semiconductor devices having local oxide isolation
US4320411A (en) Integrated circuit with double dielectric isolation walls
EP0233202A4 (en) Fabricating a semiconductor device with buried oxide.
JPS6352465B2 (en)
EP0592084B1 (en) Process for fabricating a retrograde nwell cathode Schottky transistor and fabrication process
EP0036620B1 (en) Semiconductor device and method for fabricating the same
JPH10335630A (en) Semiconductor device and its manufacture
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JP3334168B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2024046362A (en) semiconductor equipment
JPS61269373A (en) Semiconductor device
JPH02308540A (en) Manufacture of semiconductor device
JPS60233856A (en) Semiconductor device
JPH0157506B2 (en)
JPH0697275A (en) Semiconductor device
JPS6225258B2 (en)
JPS59217338A (en) Semiconductor device
JPS6135704B2 (en)
JPS6118867B2 (en)
JPS5910270A (en) Semiconductor integrated circuit device
JPH05251648A (en) Semiconductor integrated circuit and its manufacture