JPS6352354A - Thermomagnetic recording method - Google Patents
Thermomagnetic recording methodInfo
- Publication number
- JPS6352354A JPS6352354A JP61194961A JP19496186A JPS6352354A JP S6352354 A JPS6352354 A JP S6352354A JP 61194961 A JP61194961 A JP 61194961A JP 19496186 A JP19496186 A JP 19496186A JP S6352354 A JPS6352354 A JP S6352354A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- state
- magnetization
- temperature
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000005291 magnetic effect Effects 0.000 claims abstract description 167
- 230000005415 magnetization Effects 0.000 claims abstract description 104
- 239000010408 film Substances 0.000 claims abstract description 77
- 239000010409 thin film Substances 0.000 claims abstract description 71
- 238000010438 heat treatment Methods 0.000 claims abstract description 37
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 54
- 229910052761 rare earth metal Inorganic materials 0.000 description 21
- 150000002910 rare earth metals Chemical class 0.000 description 21
- 230000007704 transition Effects 0.000 description 17
- 229910052723 transition metal Inorganic materials 0.000 description 10
- 150000003624 transition metals Chemical class 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000005293 ferrimagnetic effect Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000005374 Kerr effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 101150071246 Hexb gene Proteins 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 101150081099 OGA gene Proteins 0.000 description 1
- 101150070475 SIT1 gene Proteins 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10502—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
- G11B11/10504—Recording
- G11B11/10506—Recording by modulating only the light beam of the transducer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10502—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
- G11B11/10515—Reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10502—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
- G11B11/10517—Overwriting or erasing
- G11B11/10519—Direct overwriting, i.e. performing erasing and recording using the same transducing means
- G11B11/10521—Direct overwriting, i.e. performing erasing and recording using the same transducing means using a single light spot
Landscapes
- Recording Or Reproducing By Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】 以下の順序で本発明を説明する。[Detailed description of the invention] The present invention will be explained in the following order.
A、産業上の利用分野
B1発明の概要
C0従来の技術
り0発明が解決しようとする問題点
E1問題点を解決するための手段
F1作用
G、実施例
G−1,熱磁気記録媒体の構成
G−2,磁化状態の遷移
G−3,温度に応じた磁化状態の変化
G−4.オーバーライド条件
G−5,再生・保存のための磁化状嘘
G−6.熱磁気記録媒体の具体例
G−7,他の実梅例
H8発明の効果
A、産業上の利用分野
本発明は、光磁気記録方法あるいは熱磁気記録方法に関
するものであり、特に、磁性二層膜を有する払磁気記録
媒体を用いて執(H気記録を行う方法に関する。A. Field of industrial application B1 Overview of the invention C0 Prior art 0 Problems to be solved by the invention E1 Means for solving the problems F1 Effect G. Example G-1. Structure of thermomagnetic recording medium G-2, transition of magnetization state G-3, change of magnetization state according to temperature G-4. Override condition G-5, magnetized lie for reproduction/storage G-6. Specific example G-7 of thermomagnetic recording medium, Other practical examples H8 Effect of the invention A, Industrial application field The present invention relates to a magneto-optical recording method or a thermomagnetic recording method. The present invention relates to a method for performing high-pressure recording using a magnetically expelling recording medium having a film.
B9発明の概要
本発明は、磁気的に結合された第1、第2の磁性薄膜を
積層して得られるCH磁性二層膜有する熱磁気記録媒体
に対して執磁気記録を行う方法において、少な(とも記
録に先立ち、磁性二層膜の第2の磁性薄膜の磁気モーメ
ントの向きを一方向に揃えておき、第1の磁性薄膜の略
々キュリー温度T、;以上でかつ第2の磁性薄膜の磁気
モーメントの反転の生じない温度T1と、この温度T1
以上でかつ第2の磁性薄膜の磁気モーメントを反転させ
るに充分な温度T2とのいずれかの状態に加熱されるよ
うに、記録しようとする信号に応して加iへ状態を切換
変調し、これらの各温度T、あるいはTzから冷却され
る過程で少なくとも第1の磁性gt膜に信号磁化を記録
形成することにより、媒体の加熱温度変調という筒車な
方法でオーバーライドを可能とするものである。B9 Summary of the Invention The present invention provides a method for performing magnetomagnetic recording on a thermomagnetic recording medium having a CH magnetic double layer film obtained by stacking magnetically coupled first and second magnetic thin films. (Before recording, the direction of the magnetic moment of the second magnetic thin film of the magnetic double-layer film is aligned in one direction, and the temperature of the second magnetic thin film is approximately equal to or higher than the Curie temperature T of the first magnetic thin film; The temperature T1 at which no reversal of the magnetic moment occurs, and this temperature T1
Switching and modulating the state to i in accordance with the signal to be recorded so that the second magnetic thin film is heated to a temperature T2 which is sufficient to reverse the magnetic moment of the second magnetic thin film. By recording and forming signal magnetization in at least the first magnetic gt film during the cooling process from each of these temperatures T or Tz, overriding is possible using a convenient method of modulating the heating temperature of the medium. .
C0従来の技術
光磁気記録方法あるいは熱磁気記録方法においては、垂
直るn化膜等の磁性gt膜を有する記録媒体に対し、磁
化の方向を面に垂直な一方向に予め揃えて所謂初期化を
施しておき、このCJ化力方向反対向きの垂直磁化を有
するビットをレーザ光照射等の局部加熱により形成する
ことによって、2値化された情報を記録している。C0 Conventional technology In a magneto-optical recording method or a thermomagnetic recording method, a recording medium having a magnetic GT film such as a perpendicular n-oxide film is so-called initialized by aligning the magnetization direction in advance in one direction perpendicular to the plane. is applied, and by forming bits having perpendicular magnetization opposite to the CJ-forming force direction by local heating such as laser beam irradiation, binarized information is recorded.
この先El気記録あるいは熱磁気記録方法においては、
情報の書き換えに先立って記録された情報の消去の過程
(上記初期化に相当)を要し、高転送レートでの記録を
実現できない。これに対し、このような独立の消去過程
が不要の記録方式としての所謂オーバーライドの方式が
幾つか提案されている。このオーバーライド方式の熱磁
気記録方法の中で有望視されている方法としては、例え
ば媒体に対する外部磁場の極性を情報信号に応して切換
反転する外部磁場変調法と、記録用のヘッドの他に消去
用のヘッドを設ける2ヘツド法とが知られている。外部
磁場変調法とは、例えば特開昭60−48806号公報
等に開示されているように、膜面に垂直なfn化容易軸
を有する非晶質フェリ磁性薄膜記録媒体に対する昇温用
ビームの照射領域に入力デジタル信号の状態に対応する
極性の磁場を印加することにより記録を行うものである
。In the future, in El air recording or thermomagnetic recording methods,
Prior to rewriting information, a process of erasing recorded information (corresponding to the above-mentioned initialization) is required, and recording at a high transfer rate cannot be realized. In contrast, several so-called override methods have been proposed as recording methods that do not require such an independent erasing process. Among the override type thermomagnetic recording methods, methods that are considered promising include, for example, an external magnetic field modulation method in which the polarity of an external magnetic field to the medium is switched and reversed according to an information signal, and A two-head method is known in which an erasing head is provided. The external magnetic field modulation method is, for example, as disclosed in Japanese Patent Laid-Open No. 60-48806, etc., in which a heating beam is applied to an amorphous ferrimagnetic thin film recording medium having an easy fn axis perpendicular to the film surface. Recording is performed by applying a magnetic field with a polarity corresponding to the state of the input digital signal to the irradiation area.
D1発明が解決しようとする問題点
ところで、上述のような外部磁場変調法によって情報転
送レートの高い高速記録を行おうとすると、例えばM)
lzオーダで動作する電磁石が必要となり、このような
電磁石の作製は困難であり、作製できたとしても消費電
力及び発地が大きく実用的でない。また、上記2ヘツド
法は、余分なヘッドを必要とし、2つのヘッドを離して
設置しなければならず、ドライブシステムへの負担が太
き(、経済性が悪く、量産にも向がない等の欠点を有し
ている。D1 Problems to be Solved by the Invention By the way, when trying to perform high-speed recording with a high information transfer rate using the external magnetic field modulation method as described above, for example, M)
An electromagnet that operates on the lz order is required, and it is difficult to manufacture such an electromagnet, and even if it could be manufactured, it would be impractical due to the large amount of power consumption and power consumption. In addition, the two-head method described above requires an extra head, and the two heads must be installed apart, placing a heavy burden on the drive system. It has the following disadvantages.
本発明は、このような実情に鑑みてなされたものであり
、レーザ光等による媒体の加pQ度を切換制御するのみ
で容易に書き換え(オーバーライド記録)が可能な熱磁
気記録方法の提供を目的とする。The present invention has been made in view of the above circumstances, and aims to provide a thermomagnetic recording method that allows easy rewriting (override recording) by simply controlling the addition of pQ to the medium by laser light or the like. shall be.
E1問題点を解決するための手段
本発明に係る熱磁気記録方法は、上述の問題点を解決す
るために、第1、第2の磁性薄膜が磁気的に結合されて
積層され、これらの第1、第2の磁性薄膜の各磁気モー
メントが互いに逆向きに結合されている部分を有する積
層膜を含む熱磁気記録媒体を用い、上記第1の磁性3膜
の略々キュリー温度TC1以上でかつ上記第2のcd磁
性薄膜磁気モーメントの反転の生しない温度T1に加熱
する第1の加熱状態と、上記温度TC1以上でかつ上記
第2の磁性薄膜の磁気モーメントを反転させるに充分な
温度T2に加熱する第2の加熱状態とを、記録しようと
する情報信号に応じて変調して上記熱るn気記録媒体を
加熱し、上記それぞれのノ1口熱状態かみ冷却すること
により2値情報を記録することを特徴としている。Means for Solving the E1 Problem In order to solve the above-mentioned problems, the thermomagnetic recording method according to the present invention is such that the first and second magnetic thin films are magnetically coupled and laminated, 1. Using a thermomagnetic recording medium including a laminated film having a portion in which the magnetic moments of the second magnetic thin films are coupled in opposite directions to each other, the temperature of the first three magnetic films is approximately equal to or higher than the Curie temperature TC1, and A first heating state in which the second CD magnetic thin film is heated to a temperature T1 at which reversal of the magnetic moment does not occur, and a temperature T2 which is equal to or higher than the temperature TC1 and sufficient to reverse the magnetic moment of the second magnetic thin film. Binary information is recorded by heating the heating n-air recording medium by modulating the second heating state according to the information signal to be recorded, and cooling it in each of the above heating states. It is characterized by recording.
F1作用
レーザ光等の加熱ビームの強度や照射時間等を記録しよ
うとする情報信号に応して変調してやることにより、容
易に記録の書き1桑え所謂オーバーライドが行える。By modulating the intensity, irradiation time, etc. of the heating beam such as the F1 action laser beam in accordance with the information signal to be recorded, so-called override of recording can be easily performed.
G、実施例
第1図は本発明の一実施例を説明するための温度変化に
伴う磁化状態の変化を示し、第2図は該実施例に用いら
れる記録媒体の断面構造を概略的に示している。第1図
においては、第2図の記録媒体内の磁性二層膜の各τ磁
化を筒略化して示しており、温度及び外部磁場に応して
これらの磁化の状態が変化する。G. Example FIG. 1 shows a change in magnetization state due to temperature change to explain an example of the present invention, and FIG. 2 schematically shows a cross-sectional structure of a recording medium used in the example. ing. In FIG. 1, each τ magnetization of the magnetic double-layer film in the recording medium of FIG. 2 is shown in a simplified manner, and the states of these magnetizations change depending on the temperature and external magnetic field.
すなわち、第1図において、第1、第2の磁性薄膜3.
4の互いに磁気的に結合されている各磁気モーメントが
互いに同じ向き(磁化状態A)の記録部分と、互いに逆
向き(磁化状aC>の記録部分とを有する積層膜<”J
l性二層膜5)に対し、第1の石n性薄膜3の略々キュ
リー温度Tc3以上でかつ第2の磁性薄膜4の磁化反転
の生しない温度T1に加熱する第1の加熱状態と、上記
温度T e 1以上でかつ第2の磁性薄膜4の磁化を反
転させるに充分な温度T2に加熱する第2の加熱状態と
を、記録しようとする情報信号に応じて変調し、上記そ
れぞれの加熱状態から冷却することにより熱磁気記録媒
体に記録磁化を形成する。That is, in FIG. 1, the first and second magnetic thin films 3.
A laminated film <"
A first heating state in which the l-type bilayer film 5) is heated to a temperature T1 that is approximately equal to or higher than the Curie temperature Tc3 of the first magnetic thin film 3 and at which magnetization reversal does not occur in the second magnetic thin film 4; , a second heating state in which the temperature T e 1 or more is heated to a temperature T2 sufficient to reverse the magnetization of the second magnetic thin film 4, in accordance with the information signal to be recorded. By cooling the thermomagnetic recording medium from the heated state, recorded magnetization is formed in the thermomagnetic recording medium.
G−1,熱磁気記録媒体の構成
先ず、本発明実施例に用いられる熱磁気記録媒体(ある
いは光磁気記録媒体)の構造について、第2図を参照し
ながら簡単に説明する。ガラス板やアクリル板等の透明
基板1の一方の面(図中下方の面)に、保護膜又は干渉
膜となる透明誘電体Pi2を介して、第1、第2の磁性
薄膜3.4より成る磁性二層膜5を積層形成している。G-1. Structure of thermomagnetic recording medium First, the structure of the thermomagnetic recording medium (or magneto-optical recording medium) used in the embodiment of the present invention will be briefly explained with reference to FIG. First and second magnetic thin films 3.4 are applied to one surface (lower surface in the figure) of a transparent substrate 1 such as a glass plate or an acrylic plate via a transparent dielectric material Pi2 that serves as a protective film or an interference film. A magnetic double-layer film 5 consisting of the following is formed in a laminated manner.
この磁性二層膜5の表面(図中下面)には、保護膜とじ
ての誘電体膜6が被着形成されている。なお、上記誘電
体膜2や誘電体膜6は無くともよく、また、誘電体膜6
は金属膜でもよい。A dielectric film 6 serving as a protective film is deposited on the surface (lower surface in the figure) of the magnetic two-layer film 5. Note that the dielectric film 2 and the dielectric film 6 may be omitted, or the dielectric film 6 may be omitted.
may be a metal film.
ここで、上記磁性二層膜5を構成する第1、第2の(1
性コ膜3.4としては、種々の磁性材料が考えられるが
、本実梅り11こおいては、Nd、 Sm、 Gd、T
b、 Dy、 Ho等の希土類金属(RE)の1種類あ
るいは2種類以上がX = 10−40 atm%と、
Cr、Mn、 Fe、 Co、 Ni、 Cu等の遷移
金属(TM)の1種類あるいは2種類以上が1−x=9
0〜60 atm%とで構成される非晶質合金RE、T
M、−,をセ定している。これ以外の元素を少量添加し
てもよい。このRE−T〜1非晶質合金Eft性材料に
おいては、REが\d、Smの場合を除いてはREの磁
気モーメントとT〜1のミ玉気モーメントは反平行に結
合し、その結果所謂フェリ磁性を示すとともに、正味の
磁化(よこれ;)RE及びTMの各副格子磁化の差(磁
化の向きに応した正負を考慮するときには各副格子磁化
の和)となる。希土類金磨(RE)がNd、Smのいず
れか、あるいはこれらの混合により構成される場合は、
REの磁気モーメントとT〜1の磁気モーメントは互い
に平行に結合し、所謂フェロ磁性を示す。この場合、正
味の磁化はRE及びTMの各副格子磁化の和となる。本
実施例ではREがGd、、、Tb、 Dy又はHoの場
合についての説明を行う。Here, the first and second (1
Various magnetic materials can be considered as the magnetic film 3.4, but in Honji Umeri 11, Nd, Sm, Gd, T
one or more rare earth metals (RE) such as b, Dy, and Ho in an amount of X = 10-40 atm%;
One or more types of transition metals (TM) such as Cr, Mn, Fe, Co, Ni, Cu, etc. 1-x=9
Amorphous alloy RE, T composed of 0 to 60 atm%
M,−, is set. Small amounts of other elements may be added. In this RE-T~1 amorphous alloy Eft material, except when RE is \d, Sm, the magnetic moment of RE and the magnetic moment of T~1 are coupled antiparallelly, and as a result In addition to exhibiting so-called ferrimagnetism, the net magnetization is the difference between the sublattice magnetizations of RE and TM (the sum of the sublattice magnetizations when considering the positive and negative depending on the direction of magnetization). When rare earth gold polishing (RE) is composed of either Nd or Sm, or a mixture of these,
The magnetic moment of RE and the magnetic moment of T~1 are coupled in parallel to each other and exhibit so-called ferromagnetism. In this case, the net magnetization is the sum of the RE and TM sublattice magnetizations. In this embodiment, a case where RE is Gd, ..., Tb, Dy, or Ho will be explained.
このような積層構造の熱磁気記録媒体10に対して、例
えば第3図に示すように、記録あるいは再生のためのレ
ーザ光Rが、第2図の透明基板l側から入射され、また
、保護膜となる上記誘電体膜6側、あるいは透明基板l
側から、第3図の11石11.12等による磁場H,、
H,が印加される。第3図において、磁石11とiff
石12は互いに^1れて配されているが、後述のように
隣i妾して配されてもあるいは同一の磁石であってもか
まわない。この第3図の例は、ディスク状の261気記
録媒体10を示しており、駆動モータ15のスピンドル
16によりディスク状記録媒体10が回転駆動されるよ
うになっている。また同図において、磁石11.12の
磁極が異なった例を示しであるが、後述のように同極性
の場合もあり得る。For example, as shown in FIG. 3, a laser beam R for recording or reproducing is incident on the thermomagnetic recording medium 10 having such a laminated structure from the side of the transparent substrate L shown in FIG. The side of the dielectric film 6 that will become a film, or the transparent substrate l
From the side, the magnetic field H due to the 11 stones 11, 12 etc. in Fig. 3.
H, is applied. In FIG. 3, magnet 11 and if
Although the stones 12 are placed spaced apart from each other, they may be placed next to each other as will be described later, or may be the same magnet. The example shown in FIG. 3 shows a disk-shaped 261-degree recording medium 10, and the disk-shaped recording medium 10 is rotationally driven by a spindle 16 of a drive motor 15. Although the figure shows an example in which the magnets 11 and 12 have different magnetic poles, they may have the same polarity as described later.
このようなRE−7M合金材料の磁性a膜3.4が積層
されて得られる磁性二層膜5の磁化状態は、各3膜3.
4のキュリー温度T、いTC2以下の温度領域において
は、第4図に示すような4つの状GA−Dを採ることが
可能である。なお、両薄膜3.4の磁化容易軸はいずれ
も面に垂直方向(所謂垂直Ml化膜)であるものとする
が、少なくとも一方のみが垂直磁化膜であってもよい。The magnetization state of the magnetic double-layer film 5 obtained by stacking the magnetic a-films 3.4 made of the RE-7M alloy material is as follows for each of the three films 3.4.
In the temperature range below the Curie temperature T, TC2 of 4, it is possible to take four shapes GA-D as shown in FIG. It is assumed that the easy magnetization axes of both thin films 3.4 are perpendicular to the plane (so-called perpendicular Ml film), but at least one of them may be a perpendicular magnetization film.
第4図において、状態A及び状態Bは、第1層の磁性)
1膜3と第2層の磁性薄膜4の各T〜1の磁気モーメン
トの方向(図中実線の矢印)が同一であり、また各RE
の磁気モーメントの方向く図中破線の矢印)が同一であ
る。これに対し、第4図の状態C及び状態りでは、第1
層薄膜3と第2層3膜4の各TMの磁気モーメント(図
中実線の矢印)、及び各REの磁気モーメント(破線の
矢印)がそれぞれ互いに反対方向を向いており、眉間の
界面近傍において、TMの磁気モーメント、及びREの
磁気モーメントの各方向が180°変化する領域(所謂
磁壁)が存在する。この領域あるいは磁壁を界面磁壁7
といい、この部分に界面(J壁エネルギ(単位面積当た
りσw erg/cmz)が蓄えられる。In Figure 4, state A and state B are the magnetic properties of the first layer)
The directions of the magnetic moments (solid arrows in the figure) of each T to 1 of the first film 3 and the second layer magnetic thin film 4 are the same, and each RE
The directions of the magnetic moments (dashed arrows in the figure) are the same. On the other hand, in state C and state 3 in FIG.
The magnetic moment of each TM of the layer thin film 3 and the second layer 3 film 4 (solid line arrow in the figure) and the magnetic moment of each RE (broken line arrow) are directed in opposite directions, and near the interface between the eyebrows. There is a region (so-called domain wall) in which the directions of the magnetic moments of , TM, and RE change by 180°. This region or domain wall is the interface domain wall 7
The interface (J-wall energy (σw erg/cmz per unit area) is stored in this part.
G−2,モn化状、止の遷移
ここで、外部磁場H(Oe)が印加された場合の第4図
の各状態A−Dの単位面積当たりの磁気的エネルギEA
SE3、EC及びE、は、所謂ゼーマンエネルギ及び上
記界面磁壁エネルギ密度σ5により近似的に記述するこ
とができる。G-2, Monization-like, stop transition Here, the magnetic energy EA per unit area of each state A-D in Fig. 4 when an external magnetic field H (Oe) is applied.
SE3, EC, and E can be approximately described by the so-called Zeeman energy and the above-mentioned interfacial domain wall energy density σ5.
E a −M s + h + HM s z h 2
HE m = M s lh lH+ M S Z
h z HEC= MS、h、H−〜13□h、H
+a。E a −M s + h + HM s z h 2
HE m = M s lh lH + M S Z
h z HEC= MS, h, H-~13□h, H
+a.
E o = M s + h + H= M s z
h t H十σ1いずれも単位は(erg/cm2)
これらの式において、〜1.い〜1,2はそれぞれ各磁
性′3膜3.4の飽和磁化Ms (emu/cm’)を
示し、h、、 htは各薄膜3.4のH厚(cm)を示
す。飽和磁化M、は、RE(希土類金属)副格子磁化M
I EからTM(遷移金属)副格子磁化MTMを差し
引いた値で、次式で定義される量である。すなわち、一
般には
MS=1〜1.□−M1.!
と定義されるが、本発明では、
M3=M*i−Myx
と定義する。従って、M1≧MTHの場合にはM。E o = M s + h + H = M s z
h t H + σ1 Both units are (erg/cm2) In these formulas, ~1. 1 and 2 respectively indicate the saturation magnetization Ms (emu/cm') of each magnetic film 3.4, and h, , and ht indicate the H thickness (cm) of each thin film 3.4. Saturation magnetization M is RE (rare earth metal) sublattice magnetization M
It is the value obtained by subtracting the TM (transition metal) sublattice magnetization MTM from IE, and is the amount defined by the following formula. That is, generally MS=1 to 1. □-M1. ! However, in the present invention, it is defined as M3=M*i-Myx. Therefore, when M1≧MTH, M.
≧0となり、M RE < M 714の場合は〜1.
〈0となる。≧0, and if M RE < M 714, ~1.
<Becomes 0.
また、両薄膜3.4共に、その角形比を1とし、外部磁
場Hについては第4図中の磁場H方向を正として計算し
ている。ただし、実際には角形比が1であることは必ず
しも要求されない。なお、上記各状態A−Dの磁気的エ
ネルギは、ゼーマンエふルギ及び上記σ、を用いて近似
的に求めており、より厳密には、隣接する磁区(ビット
)からの浮遊磁場を考J↓する必要があるが、本明t′
8書中では省略している。Further, the squareness ratio of both thin films 3.4 is assumed to be 1, and the external magnetic field H is calculated assuming that the direction of the magnetic field H in FIG. 4 is positive. However, in reality, the squareness ratio is not necessarily required to be 1. The magnetic energy of each of the above states A to D is approximately determined using the Zeeman Efurgi and the above σ, and more precisely, considering the stray magnetic field from adjacent magnetic domains (bits) J↓ Although it is necessary to do so, the present invention t'
It is omitted in the 8th book.
次に、第1層薄膜3の保磁力あるいは磁化反転(R場を
Hc + (Oe)とし、第2層薄膜4の磁化反転磁場
をHcz(Oe)とするとき、先ず第1層の(n性3
M9゜3かfil化反転するために必要なエネルギ、す
なわち保磁力エネルギE + (erg/cm”)は、
E+= 2 l Ms+ : h+Hc+また同様
に、第2層の磁性薄膜4が磁化反転するために必要なエ
ネルギE z (erg/cm”)は、E2″′2 l
Msz : hzHC2と表される。Next, when the coercive force or magnetization reversal (R field of the first layer thin film 3 is Hc + (Oe) and the magnetization reversal magnetic field of the second layer thin film 4 is Hcz (Oe), first the (n sex 3
The energy required to invert M9゜3 into filtration, that is, the coercive force energy E + (erg/cm") is:
E+=2 l Ms+ : h+Hc+ Similarly, the energy E z (erg/cm") required for the second layer magnetic thin film 4 to reverse magnetization is E2"'2 l
Msz: expressed as hzHC2.
磁化状態が1(=A−D)からj(=A−D、l≠」)
へ遷移するためには、E、−E、(これをE3.と表す
)が上記磁化反転工フルギ(E、、E2又はEl +
Eりよりも大きいことが条件となる。例えば、状EAか
ら状態Bへ遷移するための必要条件は、
E□= E A E B > E l + E2従っ
て、
一2M5+t++H−2MsJzH>21M511 h
l”CI ”2 IM司り、H,2と与えられる。The magnetization state is from 1 (=A-D) to j (=A-D, l≠")
In order to transition to
The condition is that it is larger than E. For example, the necessary conditions for transitioning from state EA to state B are: E
l"CI"2 IM control, given as H,2.
G−3,温度に応した磁化状態の変化
衣に、第1図を参照しながら、レーザ光照射等による温
度変化に応した磁性二層膜5の各層の(■化状態の変化
について説明する。G-3. Changes in magnetization state in response to temperature With reference to FIG. .
先ず、上記記録媒体10内の磁性二層膜5のうち、記録
しようとする部位が室温T、において第1図の状GAに
あるとする。この状GAにある磁性二層膜5の部位に対
してレーザ光を照射して記録を行うわけであるが、この
ときのレーザ光の強度あるいは照射時間を記録信号に応
じて変調制御することによって、二層膜5の加熱温度T
が第1の温度T1と第2の温度Tよとのいずれかに選択
的に切換制御されるようにする。ここで、第1の温度T
1は、第1の磁性3膜3の略々キュリー温度TC1以上
でかつ後述する外部磁場H1により第2の磁性3膜4の
磁化反転の生しない温度であり、第2の温度T2は、上
記温度T3以上でかつ第2の磁性1膜4の磁化を上記外
部磁場H1により反転させるに充分な温度である。すな
わち、このレーザ光等により加熱が行われる位1の近傍
には、上記第3図の磁石11による外部磁場H1が印加
されており、この外部61場H3は、上記温度T2で第
2の磁性薄膜4の磁化を反転させるに充分なHA場とな
っているわけである。First, it is assumed that a portion of the magnetic double-layer film 5 in the recording medium 10 to be recorded is at room temperature T and in a state GA in FIG. 1. Recording is performed by irradiating a laser beam onto a portion of the magnetic double-layer film 5 in this state GA, and by modulating and controlling the intensity or irradiation time of the laser beam at this time according to the recording signal. , heating temperature T of the two-layer film 5
is selectively controlled to be switched to either the first temperature T1 or the second temperature T. Here, the first temperature T
1 is a temperature that is approximately equal to or higher than the Curie temperature TC1 of the first three-magnetic film 3 and at which magnetization reversal of the second three-magnetic film 4 does not occur due to an external magnetic field H1, which will be described later. The temperature is higher than the temperature T3 and is sufficient to reverse the magnetization of the second magnetic film 4 by the external magnetic field H1. That is, an external magnetic field H1 by the magnet 11 shown in FIG. The HA field is sufficient to reverse the magnetization of the thin film 4.
このような加熱が終了した後には、二層膜5の温度Tが
TClとなったときに第1の磁性薄膜3に磁化が現れる
が、その方向の決定に関しては、ゼーマンエネルギでは
なく二層間の所謂交換結合力が支配的となるようにする
。すなわち、第1の磁性薄膜3の自発磁化が現れる温度
T(Tc+近傍)において、
σw > 21M s 、1h l H+の条件を満足
するように、外部磁場H+及び眉間の界面磁壁エネルギ
σ、に対する第1の磁性薄膜3の飽和磁化M S +及
び膜厚h1を選定する。従って、媒体温度TがTc1と
なるときの磁化状態としては、磁性二層膜5の各、層の
磁化の向きの)nった状%Aあるいは状、6Bのいずれ
かとなり、上記加熱時の温度がT1のとき状態Aに、ま
1こ加熱時の温度がT、のとき状jGBになる。After such heating is completed, magnetization appears in the first magnetic thin film 3 when the temperature T of the two-layer film 5 becomes TCl, but the direction of magnetization is determined not by the Zeeman energy but by the difference between the two layers. So-called exchange coupling force becomes dominant. That is, at the temperature T (near Tc+) at which the spontaneous magnetization of the first magnetic thin film 3 appears, the external magnetic field H+ and the interfacial domain wall energy σ between the eyebrows are The saturation magnetization M S + and film thickness h1 of the magnetic thin film 3 of No. 1 are selected. Therefore, when the medium temperature T becomes Tc1, the magnetization state is either %A or 6B, which is the direction of magnetization of each layer of the magnetic double-layer film 5. When the temperature is T1, the state is A, and when the temperature during heating is T, the state is jGB.
さらに媒体の上記記録部分が冷却されて例えば室?W
Tえ程度となったときには、状、OAの部分は元の初期
状態と同し磁化状、t3 Aに、また状IBの部分は元
の初期状態と磁化の向きが逆の状、GBになるが、第3
図に示すように、磁石12によって室温T8近傍で、本
明細書のG−4の項で詳述する条件を満足する外部磁場
H2が記録媒体10に印加されることにより、第2の(
j性薄膜4のrl化の向きが反転し、磁性二層膜5の磁
化状態は前記第4図の状9Cとなる。Further, the recording portion of the medium is cooled, for example in a chamber? W
When it reaches about T, the part of shape OA becomes t3A, the same magnetization state as the original initial state, and the part of shape IB becomes GB, the direction of magnetization is opposite to the original initial state. But the third
As shown in the figure, by applying an external magnetic field H2 to the recording medium 10 near room temperature T8 by the magnet 12, which satisfies the conditions detailed in section G-4 of this specification, the second (
The direction of rl of the J-type thin film 4 is reversed, and the magnetization state of the magnetic double-layer film 5 becomes the state 9C in FIG. 4.
次に、熱(f気記録媒体lOの磁性二層膜5のうち、4
ffi化状態が上記状態Cの記録部分に対して加熱が施
される場合には、該部分が上記温度TClを越えた時点
で第1のτn性薄v3の磁化が消失し、上述した状態へ
から加熱された場合と同様の(n化状態となる。従って
、上記温度T1にまで加熱されて冷却された部分は上記
状9 Aとなり、上記温度T2にまで加りヘされて冷却
された部分は上記状態Bとなるから、これらの加熱温度
T I、 T 2に応じた記録磁化状態が得られる。な
お、状6Bの記録部分は、少なくとも次の書き換え(オ
ーバーライド)動作に先立って状、d (に遷移され、
第2の磁性3膜4の(磁化の向きが秋山Aと同じ向きう
ニ揃えられる。Next, heat (heating) is applied to 4 of the magnetic double layer film 5 of the recording medium
When heating is applied to the recorded portion in the ffi state C, the magnetization of the first τn thin film v3 disappears when the portion exceeds the temperature TCl, and the state returns to the above state. It becomes the same (n state) as when heated from becomes the above-mentioned state B, so a recording magnetization state corresponding to these heating temperatures T I and T 2 is obtained.The recording portion of the shape 6B is at least in the state d before the next rewriting (override) operation. (transitioned to
The direction of magnetization of the second magnetic three-layer film 4 is aligned in the same direction as Akiyama A.
このようにして、磁性二層膜5の第1、第2の磁性薄膜
3.4の互いにCn気的に結合される磁気モーメントが
互いに同じ向きの記録部分(状g Aの部分に相当)と
、磁気モーメントが互いに逆向きの記録部分(状態Cの
部分に相当)とに対して、上記各加熱温度T、、T、に
まで情報信号に応して変調して加熱することにより、も
との磁化状態にかかわりなく新たな磁化状態を記録形成
でき、所謂オーバーライドが実現できる。In this way, the magnetic moments of the first and second magnetic thin films 3.4 of the magnetic double-layer film 5, which are coupled to each other by Cn gas, are arranged in the recording portion (corresponding to the portion of shape g A) in the same direction. , the recording portions whose magnetic moments are in opposite directions (corresponding to the portion in state C) are modulated and heated to the respective heating temperatures T, , T according to the information signal, thereby producing the original state. A new magnetization state can be recorded regardless of the magnetization state of the magnetization state, and so-called override can be realized.
G−4,オーバーライド条件
次に、上述のようなオーバーライドを実現するための条
件について説明する。G-4. Override Conditions Next, conditions for realizing the above-mentioned override will be explained.
第1図に示すような外部磁場H2が印加された状態で、
媒体の磁性二層膜5の温度Tが変化するとき、先ず、室
温TIから上記第1の磁性薄膜3のキュリー温度TCl
までの温度範囲(TR≦T〈Tc1)において、磁化状
態Aが他の磁化状態に遷移しない条件は、
−2M5+b+H+−2M5zhJ+ <21Ms+l
h+)Ic+〒21M szl hJcz2Ms+h
+L−σw <21M511 h+Hc+−2M5zh
z旧−σ、< 2 IM szl hJczまた、磁化
状6Cが他の磁化状態に遷移しない条件は、
2Ms+h+H++σw <21M5lh+Hc+−2
M5zhJ++σw < 21M 321 hz)Ic
zとなる。次に、磁性二層膜5の温度Tが上記温度TC
lから上記第2の加熱温度T2までの温度範囲(Tc、
<T<T2 )において、第2の磁性薄膜4の磁化が反
転しない条件は、
IHll<Hcz
さらに、磁性二層膜5の温度Tが上記温度T2を越えた
とき(T > ”rz )に、第2の磁性薄膜4の副格
子磁化が反転するための条件は、
1”l>Hcz
となるや
次に、上記加熱状態からの冷却過程において、熱磁気記
録媒体10の磁性二層膜5の記録部分の温度Tが略々上
記キュリー温度’rc、 (第1の磁性FJvJ、3
)−t−ユ’) ?Wff) ニaL;’j (T
= Tc+) トき、第1の磁性薄膜3の磁化の向きが
、第2層のcn性3膜4の(U化と所謂交(負結合力に
より決定される条件は、
σ□ >21M5暑h+lo+1
また、上記温度TC1を下回って室温Tえまでの温度範
囲(TRS T < TC+)においてEra化状、d
Aが他の磁化状態に遷移しない条件は、上述−た加熱
過程の場合と同様であり、磁化状態Bが池の磁化状態に
遷移しない条件は、
2Ms+b+H++2M5zhzlL <21M511
11+Hc+−21〜1司h2Hc22Ms+htL−
σw <21M5tl h+Hc+2M3zhJ+
dv <21M5zl hxHczである。With an external magnetic field H2 applied as shown in Figure 1,
When the temperature T of the magnetic double layer film 5 of the medium changes, first, the Curie temperature TCl of the first magnetic thin film 3 changes from room temperature TI.
In the temperature range up to (TR≦T<Tc1), the condition that magnetization state A does not transition to another magnetization state is -2M5+b+H+-2M5zhJ+ <21Ms+l
h+)Ic+〒21M szl hJcz2Ms+h
+L-σw <21M511 h+Hc+-2M5zh
z old - σ, < 2 IM szl hJcz Also, the condition that the magnetization state 6C does not transition to another magnetization state is 2Ms+h+H++σw <21M5lh+Hc+-2
M5zhJ++σw < 21M 321 hz) Ic
It becomes z. Next, the temperature T of the magnetic double layer film 5 is set to the above temperature TC.
1 to the second heating temperature T2 (Tc,
<T<T2), the conditions under which the magnetization of the second magnetic thin film 4 is not reversed are IHll<Hcz.Furthermore, when the temperature T of the magnetic double-layer film 5 exceeds the temperature T2 (T>''rz), The conditions for reversing the sublattice magnetization of the second magnetic thin film 4 are as follows: As soon as 1"l>Hcz, the magnetic double layer film 5 of the thermomagnetic recording medium 10 is reversed in the cooling process from the heating state. The temperature T of the recording portion is approximately the Curie temperature 'rc, (first magnetic FJvJ, 3
)-t-yu')? Wff) niaL;'j (T
= Tc+), and the direction of magnetization of the first magnetic thin film 3 intersects with the so-called U conversion (the condition determined by the negative bonding force is σ□ >21M5 heat). h+lo+1 In addition, in the temperature range from below the above temperature TC1 to room temperature T (TRS T < TC+), the Era state, d
The conditions under which A does not transition to another magnetization state are the same as those in the heating process mentioned above, and the conditions under which magnetization state B does not transition to the pond magnetization state are: 2Ms+b+H++2M5zhzlL <21M511
11+Hc+-21~1jih2Hc22Ms+htL-
σw <21M5tl h+Hc+2M3zhJ+
dv <21M5zl hxHcz.
次に、室温において、上記磁石12による外部磁場H,
(ただL Hzの極性は第1図で示される矢印の方向を
正とする。)が卯月Uされた時、磁化状態Aが他の磁化
状態に遷移しない条件は、−2M5+b+Hz−2Ms
zhzHz<21M911 b+Hc+°+ 2 IM
szl hzHcz−2j、山H2−σw <21M
s+l b+)lc+2M5zhzHz 6w <2
jMszlhJczとなり、磁化状、6Bが磁化状態C
に遷移するための条件は、
2Ms+l’l+L+2M5zhzHz〈2 IM司h
+)Ic+ +21M5ZI hzl(cz2′1s+
t++)Iz−σw <21M、、l t++L+21
5□h山−σb >21M−1hzHczとなる。Next, at room temperature, the external magnetic field H generated by the magnet 12,
(However, the polarity of L Hz is positive in the direction of the arrow shown in Figure 1.) When Uzuki U is applied, the condition that magnetization state A does not transition to another magnetization state is -2M5+b+Hz-2Ms
zhzHz<21M911 b+Hc+°+ 2 IM
szl hzHcz-2j, mountain H2-σw <21M
s+l b+)lc+2M5zhzHz 6w <2
jMszlhJcz, magnetization state, 6B is magnetization state C
The conditions for transitioning to are: 2Ms+l'l+L+2M5zhzHz<2 IM>
+)Ic+ +21M5ZI hzl(cz2'1s+
t++)Iz-σw <21M,,l t++L+21
5□h mountain-σb>21M-1hzHcz.
以上の全てのオーバーライド条件を満足する磁性二層W
25を用いることにより、前述したようなオーバーライ
ドが可能になる。Magnetic double layer W that satisfies all the above override conditions
By using 25, overriding as described above becomes possible.
ここで、上述の説明においては、状BA、B及び状1c
を用いて磁化状態の変化を説明しているが、初期状態の
第2の磁性薄膜4の磁化の向きを上記と逆に揃える場合
には、状GA、s及び状態りを用いても同様なオーバー
ライドが可能である。Here, in the above explanation, conditions BA, B and conditions 1c
Although the change in the magnetization state is explained using GA, s and state GA, if the magnetization direction of the second magnetic thin film 4 in the initial state is to be aligned in the opposite direction to the above, the same result can be obtained using GA, s and state GA. Can be overridden.
すなわちこの場合には、状6Bを上述の実施例の状、G
Aに対応させ、同様に、状態Aを已に、状態りをCに、
さらに状、6CをDに、それぞれ対応させるとともに、
飽和(n化Msの定義を、M、=Sit1.l−Mat
に変更することにより、前述のオーバーライドの各条件
式をそのまま適用することができる。That is, in this case, the shape 6B is the shape of the above-mentioned embodiment, and the shape G
Correspond to A, and similarly, from state A to state C,
Furthermore, while making 6C correspond to D,
By changing the definition of saturation (nization Ms to M,=Sit1.l-Mat), each of the above-mentioned override conditional expressions can be applied as is.
G−5,再生・保存のための磁化状態
ところで、オーバーライドを行うためには、前述したよ
うに信号の記録状態(第1の磁性薄膜3の磁化の向き)
にかかわらず、第2の磁性3膜4の石R化の向きを同一
方向に揃えておくことが必要とされ、磁性二層膜5の各
N(第1、第2の磁性薄膜3.4)の副格子(貧化の向
きが互いに同し向きの記録部分と、互いに逆向きの記録
部分とが存在する。しかしながら、再生時や記録媒体の
保存時等には、このようなEfa性二性膜層膜5層の副
格子磁化の向きが互いに逆となる反平行状態の部分が存
在すると、次のような不都合がある。G-5. Magnetization state for reproduction/storage By the way, in order to perform override, the recording state of the signal (direction of magnetization of the first magnetic thin film 3) is required as described above.
Regardless, it is necessary to align the orientation of the stone R of the second magnetic three-layer film 4 in the same direction, and each N of the magnetic double-layer film 5 (the first and second magnetic thin films 3.4 ) of the sub-lattice (there are recorded portions where the depletion direction is the same and recording portions where the depletion direction is opposite to each other. However, during playback or storage of the recording medium, such Efa dichotomy occurs. If there is an antiparallel portion where the sublattice magnetization directions of the five layers are opposite to each other, the following disadvantages occur.
すなわち、先ず各薄膜3.4の副格子磁化が上記反平行
状態になっていると、再生特性を向上させるためには第
1の薄膜3の膜厚り、を厚(しなければならず、cR化
過程の計算から第2の3膜4の膜厚h2も厚い方がよい
ことから、磁性二層膜5の膜厚はかなり厚くなってしま
い、上記加熱を行うために大出力レーザを必要とするが
、このような大出力レーザの供給は現状では困難である
。That is, first of all, if the sublattice magnetization of each thin film 3.4 is in the above-mentioned antiparallel state, the thickness of the first thin film 3 must be increased in order to improve the reproduction characteristics. From the calculation of the cR process, it is better to have a thicker film thickness h2 of the second three films 4, so the film thickness of the magnetic double layer film 5 becomes considerably thicker, and a high output laser is required to perform the above heating. However, it is currently difficult to supply such a high-output laser.
また、室温等での保存時においても、磁性二層膜5の各
層の副格子磁化が反平行状態では、磁場や熱に対して不
安定である。さらに、この反平行状態は、一方の磁性薄
膜3のみが情報を担っている状態であり、カー効果を利
用して再生する場合、この薄膜3側からしか情報を読み
出せない、特に、上述のように第1の薄膜3のキュリー
温度TCIより第2の薄膜4のキュリー温度TC2の方
が高い(Tc+<TCx)場合には、各3膜3.4のカ
ー回転角θに+、ax2は一般に0.2の方が大きい(
θに1くθに2)ため、第2の薄膜4側から信号続出を
行った方がSN比がよくなるわけであるが、上記反平行
状態のままではこのような読み出しは行えない。このよ
うなことから、再生時や記録媒体の保存時等には、第2
の3膜4の副格子磁化の向きを第1の薄膜3の副格子磁
化の向きと同しにすることが望ましい。Further, even when stored at room temperature or the like, if the sublattice magnetization of each layer of the magnetic double-layer film 5 is in an antiparallel state, it is unstable against magnetic fields and heat. Furthermore, this antiparallel state is a state in which only one magnetic thin film 3 carries information, and when reproducing using the Kerr effect, information can only be read from this thin film 3 side. If the Curie temperature TC2 of the second thin film 4 is higher than the Curie temperature TCI of the first thin film 3 (Tc+<TCx) as shown in FIG. Generally, 0.2 is larger (
Since θ is 1 and θ is 2), the S/N ratio will be better if the signals are successively output from the second thin film 4 side, but such readout cannot be performed if the above-mentioned antiparallel state remains. For this reason, when playing back or saving a recording medium, the second
It is desirable that the sublattice magnetization direction of the three films 4 be the same as the sublattice magnetization direction of the first thin film 3.
このための条件について説明すると、第1図の磁化状G
A及びCの記録部分を有する磁気記録媒体に対して、第
3の外部磁場H,(第1図において外部磁場H1の矢印
の方向を正とする。)を印加し、磁化状Bcを磁化状態
Bへと遷移させるための条件は、
2M!+b+Ht+σw <21M5lh+Hc+2M
Bhz)Is+σw>21M司hJczとなる。なお、
これと同時に、磁化状、GAが他の磁化状fiB、Cあ
るいはDに遷移しないための条件
一2M5+h+Hz−2MszhzHz<21Ms、l
hIHc+ + 21M5zl hzllcz−2M
3.h1H3−σ−< 21M311 h+Hc+2M
5zh山−σw <21M321 hz)fezが必要
であることは勿論である。To explain the conditions for this, the magnetization shape G in Figure 1 is
A third external magnetic field H, (in FIG. 1, the direction of the arrow of the external magnetic field H1 is assumed to be positive) is applied to the magnetic recording medium having the recording portions A and C, and the magnetization state Bc is changed to the magnetization state. The conditions for transitioning to B are 2M! +b+Ht+σw <21M5lh+Hc+2M
Bhz)Is+σw>21MSihJcz. In addition,
At the same time, the condition for the magnetization state GA not to transition to other magnetization states fiB, C or D: 2M5+h+Hz-2MszhzHz<21Ms, l
hIHc+ + 21M5zl hzllcz-2M
3. h1H3-σ-< 21M311 h+Hc+2M
5zh mountain - σw <21M321 hz) fez is of course necessary.
これらの条件を、使用温度あるいは再生時の媒体温度に
おいて満足することが必要とされるが、さらに、熱磁気
記録媒体に第3の外部磁場H3の他に外部磁場HIIX
、すなわち前記第1図の外部磁場H2等が印加されてい
る場合は、上記条件の上に、下記条件を満足することが
必要とされる。ここで、外部磁場HIIXの方向は、上
記外部磁場H3の方向と同じ向きを正とし、H,工く0
の場合もあり得るものとする。先ず、磁化状、r3 A
が他の磁化状態に遷移しない条件は、上記条件式のHl
をH98に1き換えることで得られる。次に、上記状態
Cから遷移せられた磁化状態Bが、他の状態に遷移しな
いための条件は、
2−3山H*x+2M5zhz Hax < 21M
sl h+lb+ + 21M 32111zflcz
2Ms+l’11H,、−σw <21M5.l fi
+Hc+2M5zbzH,、−σ−< 21M5zl
bzHctとなる。It is necessary to satisfy these conditions at the operating temperature or the medium temperature during reproduction, but in addition to the third external magnetic field H3, it is also necessary to
That is, when the external magnetic field H2 shown in FIG. 1 is applied, the following conditions must be satisfied in addition to the above conditions. Here, the direction of the external magnetic field HIIX is the same as the direction of the external magnetic field H3, and H,
It is assumed that there may be cases where First, magnetization, r3 A
The condition that does not transition to another magnetization state is Hl in the above conditional expression.
It can be obtained by replacing 1 with H98. Next, the conditions for the magnetization state B that has been transitioned from the above state C to not transition to another state are as follows: 2-3 mountains H*x + 2M5zhz Hax < 21M
sl h+lb+ + 21M 32111zflcz
2Ms+l'11H,, -σw <21M5. l fi
+Hc+2M5zbzH,, -σ-< 21M5zl
bzHct.
この再生・保存のための磁化状態の説明においても、状
HA、B及び状態Cを用いて磁化状態の変化を説明して
いるが、初期状止の第2の磁性薄膜71の磁化の向きを
上記と逆に揃える場合には、状態A 、 3及び状gH
Bpを用いても同様な磁化状態の遷移が可能である。す
なわちこの場合には、状態Bを上述の実施例の状、GA
に対応させ、同様に、状部AをBに、状goをCに、さ
らに状態CをDに、それぞれ対応させ、オーバーライド
終了時の磁化状態りを、再生・保存に適した磁化状BA
に遷1多させるようにするものである。In this explanation of the magnetization state for reproduction/storage, changes in the magnetization state are also explained using states HA, B, and state C. However, the direction of magnetization of the second magnetic thin film 71 in the initial state is When aligning in the opposite way to the above, states A, 3 and state gH
A similar transition of the magnetization state is also possible using Bp. That is, in this case, state B is the state of the above embodiment, GA
Similarly, the shape part A is made to correspond to B, the state go to C, and the state C to D, and the magnetization state at the end of the override is set to the magnetization state BA suitable for reproduction and storage.
This is to increase the number of transitions.
G−6,熱磁気記録媒体の具体例
次に、上記熱磁気記録媒体10内のルコヨ性二層膜5の
各磁性薄膜3.4として用いられる磁性(オ料の具体例
について説明する。G-6. Specific Example of Thermomagnetic Recording Medium Next, a specific example of the magnetic material used as each magnetic thin film 3.4 of the thermomagnetic double layer film 5 in the thermomagnetic recording medium 10 will be described.
所謂DCマグネトロンスパッタリングlを用いて、上記
第2図の透明基板1となるスライドガラス上に、上言己
第1、第2の磁性薄膜3.4となるRE−7Mフェリ磁
性薄膜を(誘電体膜2を介さずに)順次被着形成して磁
性二層膜5を構成する。この場合、RE−TMフェリ磁
性薄nり3.4については、RM(希土類金属)とTM
(遷移金属)とを交互に積層させることにより形成して
おり、これらの磁性薄膜3.4より成る磁性二層膜5の
酸化防止のため、表面側(第2図の下回側)には厚さ8
00人の保護膜6を被着形成している。Using so-called DC magnetron sputtering, a RE-7M ferrimagnetic thin film (dielectric material), which will become the first and second magnetic thin films 3. (without interposing the film 2) to form the magnetic two-layer film 5. In this case, for RE-TM ferrimagnetic thin n 3.4, RM (rare earth metal) and TM
(transition metal), and to prevent oxidation of the magnetic double-layer film 5 consisting of these magnetic thin films 3 and 4, the surface side (lower side in Fig. 2) Thickness 8
A protective film 6 of 0.00 people is deposited.
また、二層膜5と同一条件で各層の単層膜をi′¥袈し
、各層の磁気特性及び上記界面磁壁エネルギ密度σいを
評価した。ここで、各3膜3.4の材料、膜厚及び室温
における特性を第1表に示す。Further, the single layer film of each layer was heated under the same conditions as the two layer film 5, and the magnetic properties of each layer and the above-mentioned interfacial domain wall energy density σ were evaluated. Here, the materials, film thicknesses, and characteristics at room temperature of each of the three films 3.4 are shown in Table 1.
第1表
これらの第1、第2の(d性1収3.4は、いずれも室
温において、その磁化はREの副箔子磁化の方が7M副
格子磁化より太きく(REリッチ)、第1層の薄膜3は
120℃付近に、第2層の薄膜4は170℃付近にそれ
ぞれ磁気補償点を有している。また、室温での界面磁壁
エネルギ密度σ4は、2.0 (erg/co+2)で
ある。Table 1 For these first and second (d characteristics 1 yield 3.4), at room temperature, the RE sub-leaf magnetization is thicker than the 7M sub-lattice magnetization (RE rich), The first layer thin film 3 has a magnetic compensation point near 120°C, and the second layer thin film 4 has a magnetic compensation point near 170°C. Also, the interfacial domain wall energy density σ4 at room temperature is 2.0 (erg /co+2).
このような二層膜5を作製した媒体試料に、外部V!L
場20kOeを印加し、磁化状態が、上記第4図の状、
Q Aとなるように初期化を行った。次に、上記第1図
の外部磁場H1としてQ、3kOeを印加した状態で、
上記試料を温度Tにまで加熱し、その後、室温まで冷却
した。この間、スライドガラス等の上記透明基板1側か
ら波長830nmの直線偏光の光を照射して所謂カー効
果により、磁化状態の観察を行った。このとき、上記加
熱温度Tを150℃とした場合には、加熱・冷却後の磁
化状態は加熱前と変化がなく、上記状、B Aとなって
いた。これに対して、加?A度Tを200℃とした場合
には、加熱・冷却後の磁化状態は、磁化の向きが両薄膜
3.4共に反転した上記状、6Bとなった。External V! L
A field of 20 kOe was applied, and the magnetization state became as shown in Fig. 4 above.
I initialized it so that it would be QA. Next, with Q and 3 kOe applied as the external magnetic field H1 in Fig. 1 above,
The sample was heated to temperature T and then cooled to room temperature. During this time, linearly polarized light with a wavelength of 830 nm was irradiated from the side of the transparent substrate 1 such as a slide glass, and the magnetization state was observed using the so-called Kerr effect. At this time, when the heating temperature T was 150° C., the magnetization state after heating and cooling was unchanged from before heating, and was in the above state, BA. On the other hand, Canada? When A degree T was 200° C., the magnetization state after heating and cooling became the above-mentioned state 6B in which the direction of magnetization was reversed for both thin films 3.4.
次に室温で状態Bとなっている上記試料に、上記第1図
の外部磁場H2としての5kOeの磁場を印加したとき
、二層膜5の磁化状態は、状、6Bから上記状態Cに遷
移することが観察された。また、上記状態Aの試料に上
記外部磁場H2を印加しても、磁化状態の変化は見られ
なかった。Next, when a magnetic field of 5 kOe as the external magnetic field H2 in FIG. 1 is applied to the sample which is in state B at room temperature, the magnetization state of the bilayer film 5 changes from state 6B to state C. It was observed that Further, even when the external magnetic field H2 was applied to the sample in state A, no change in the magnetization state was observed.
次に、室温で状態Cとなっている上記試料に、上記外部
(d場H1を印加した状態で、上記温度Tにまで加熱し
、室、!:、まで冷却した。この場合も、上記状、GA
から加熱・冷却を行った場合と同様に、T=150℃の
ときは冷却後の磁化状態が状、9 Aに、またT=20
0℃のときは冷却後に状態Bになることが確認された。Next, the above sample, which is in state C at room temperature, was heated to the above temperature T with the above external (d field H1 applied) and cooled to room temperature, !:. , G.A.
As in the case of heating and cooling from
It was confirmed that when the temperature was 0°C, state B was reached after cooling.
ここで、測定に用いた二層膜試料は、室温、50℃、7
5℃、100°C1125℃及び150℃の各温度にお
いて、前述したG−4の項の各オーバーライド条件式を
満足している。なお、その他の温度においても、Ms、
1/Hc、σ8が連続的に変化するため、略々満足され
ているものと考えられる。また、各温度におけるは化状
態が遷移するために必要とされる外部磁場は、条件式か
ら得ろれる値とよく一致しており、このことかみも、上
記各オーバーライド条件式は、本発明の熱磁気記録方法
を実現するための条件として適切なものであることが明
らかである。Here, the two-layer film sample used for measurement was at room temperature, 50°C, and 7°C.
At each temperature of 5° C., 100° C., 1125° C., and 150° C., each override conditional expression in the above-mentioned section G-4 is satisfied. Furthermore, at other temperatures as well, Ms,
Since 1/Hc and σ8 change continuously, it is considered that they are almost satisfied. In addition, the external magnetic field required for the transition of the amorphous state at each temperature is in good agreement with the value obtained from the conditional expressions. It is clear that these conditions are suitable for realizing the magnetic recording method.
ところで、このような第1表の各磁性薄膜3.4より成
る二層膜5に対して、室温における外部磁場Hを変化さ
せた場合の磁化状態は、第5図のように遷移した。この
第5図において、HOIは状態りかろ状態Aへ(あるい
は状態CからBへ)遷移が生じる外部磁場を表す。同様
に、)(ozは状態Bから状6cへ(あるいは状態Aか
らDへ)&移するときの外部磁場を、またHO2は状6
cから状GAへ(あるいは状態りからBへ)i!i!移
するときの外部磁場を、それぞれ表している。なお、こ
れらの磁化状態遷移外部磁場は、カー効果を用いて測定
したものである。ここで上記外部(盛場HO3、及び上
記第1表の各層から、界面磁壁エネルギ密度σ、が2.
O(erg/cm”) と算出される。またこのエネ
ルギ密度σ8の値を用いた場合のHoいHotの各計算
値と測定値とは、よく一致している。By the way, when the external magnetic field H at room temperature was changed, the magnetization state of the two-layer film 5 made of each of the magnetic thin films 3.4 shown in Table 1 changed as shown in FIG. 5. In FIG. 5, HOI represents an external magnetic field in which a transition from state to state A (or from state C to B) occurs. Similarly, )(oz is the external magnetic field when moving from state B to state 6c (or from state A to D) & HO2 is the state 6c
From c to state GA (or from state to B) i! i! Each represents the external magnetic field when moving. Note that these magnetization state transition external magnetic fields were measured using the Kerr effect. Here, from the above external (Moriba HO3) and each layer in Table 1 above, the interfacial domain wall energy density σ is 2.
It is calculated as O (erg/cm"). Also, the calculated values and measured values of Hot when using this value of energy density σ8 are in good agreement.
第5図において、記録時の磁化状態が状9. A及び状
Bcのいずれか(あるいは状B、 BとDのいずれか)
である場合、再生時に次の条件を満足する外部磁場He
xa (あるいはHex+)を印加すれば、状gAと
状GBとを記録磁化状態とする再生が可能となる。In FIG. 5, the magnetization state during recording is 9. Either A or Bc (or B, B or D)
, the external magnetic field He that satisfies the following conditions during reproduction is
By applying xa (or Hex+), it is possible to perform reproduction in which the states gA and GB are in the recording magnetization state.
Hog< Hexa < −Hot
(あるいは、Hot< Hexa < Hot)このよ
うに、磁性二層膜5の磁化状態が、再生時において状M
Aあるいは状、QBとなっている場合には、状態C(あ
るいは状QD)となっている場合に比べ、磁性二層膜5
の両薄膜3.4を信号読み出しに利用でき、再生信号の
SN比が良くなることは前述のとおりである。Hog<Hexa<-Hot (or Hot<Hexa<Hot) In this way, the magnetization state of the magnetic double layer film 5 changes to the shape M during reproduction.
When the state is A or QB, the magnetic double layer film 5 is lower than when the state is C (or QD).
As described above, both thin films 3.4 can be used for signal readout, and the S/N ratio of the reproduced signal is improved.
これは、オーバーライド終了後の状態がA、Cのいずれ
か(あるいは状BB、Dのいずれか)である場合、上記
の条件を満足する外部磁場Hexa(あるいはHexm
)を印加することで、状態A、Bの磁化状態で保存、
再生が可能となる。ただし、上記外部磁場Hexa印加
時(あるいはHexB印加時)、保存時、あるいは再生
時に、他の外部磁場Hexc (あるいはHexo
)が印加される場合、次の条件をも満足することが必要
である。This means that if the state after the override is either A or C (or BB or D), an external magnetic field Hexa (or Hexm) that satisfies the above conditions is applied.
), it is stored in the magnetized states A and B,
Playback becomes possible. However, when applying the above external magnetic field Hexa (or when applying HexB), during storage, or during playback, other external magnetic field Hexc (or Hexo
) is applied, it is necessary to also satisfy the following conditions.
)(。z < Hex(<Hox
(あるいは、 HOZ < HeXo < Hox)G
−7,他の実施例
第1図に示す実施例において第2の磁性薄!IQ4が室
温と温度T2との間に磁気補償点を有する場合には、第
6図に示すように、外部磁場H2の向きは外部磁場H1
と同し向きとなる。)(.z <Hex(<Hox (or HOZ < HeXo < Hox)G
-7, Other Embodiments In the embodiment shown in FIG. 1, the second magnetic thin film! When IQ4 has a magnetic compensation point between room temperature and temperature T2, as shown in FIG.
It will be facing the same way.
この第6図のように、外部磁場H2の向きが外部磁場H
1の向きと同しであることより、第7図に示すように1
.同一の磁石13を用いて上記各外部磁場H6及びH2
を作り出すことができる。すなわち、熱磁気記録10に
対するレーザ光Rの照射位置を、磁石13の周辺部とす
ることにより、磁石13からの磁場がレーザ照射位置で
最大とならないようにし、この位万での外部磁場H0が
上記第2の外部磁場H2より小さく (Hz >H+
)なるようにしている。As shown in Fig. 6, the direction of the external magnetic field H2 is
Since the direction is the same as that of 1, as shown in Figure 7, 1
.. Each of the external magnetic fields H6 and H2 using the same magnet 13
can be produced. That is, by setting the irradiation position of the laser beam R on the thermomagnetic recording 10 at the periphery of the magnet 13, the magnetic field from the magnet 13 is prevented from reaching the maximum at the laser irradiation position, and the external magnetic field H0 at this point is Smaller than the second external magnetic field H2 (Hz > H+
).
なお、本発明は、上記実施例のみに限定されるものでは
なく、例えば熱磁気記録媒体の磁性二層膜の各層として
は、フェリ磁性薄膜以外にフェロ磁性薄膜も使用できる
。It should be noted that the present invention is not limited to the above embodiments, and for example, ferromagnetic thin films can be used in addition to ferrimagnetic thin films as each layer of the magnetic double-layer film of a thermomagnetic recording medium.
以上、本発明の具体例を二層間の磁気的結合エネルギが
両層の交換結合による例をもって説明したが、この磁気
的結合エネルギは両層の静磁気結合によるものあるいは
交換結合に加えて静磁気結合によるものであってもかま
わない。Above, a specific example of the present invention has been explained using an example in which the magnetic coupling energy between two layers is due to exchange coupling between both layers, but this magnetic coupling energy may be due to magnetostatic coupling between both layers or in addition to exchange coupling. It does not matter if it is due to a combination.
H1発明の効果
本発明の熱磁気記録方法によれば、レーザ光等の加熱ビ
ームの強度や照射時間を情報信号に応じて変調し、媒体
の加熱温度を第1、第2の温度の間で切換側jltJす
るだけの闇羊な構成により、媒体に対する情報の記録が
有効に行える。H1 Effects of the invention According to the thermomagnetic recording method of the invention, the intensity and irradiation time of a heating beam such as a laser beam are modulated according to the information signal, and the heating temperature of the medium is varied between the first and second temperatures. Information can be effectively recorded on the medium by using a simple configuration that only performs switching on the switching side.
第1図は本発明の一実施例の動作を説明するための磁化
状態図、第2図は該実施例に泪いられる熱磁気記録媒体
の積層構造を概略的に示す要部断面図、第3図は記録装
置の一例を概略的に示す概略構成図、第4図は磁化状呟
の遷移を説明するための図、第5図は外部磁場の変化に
対する磁化状態の変化を示す図、第6図は他の実施例を
説明するための磁化状態図、第7図は該他の実施例にお
ける外部磁場の印加状態を説明するための概略構成図で
ある。
3・・・第1の磁性薄膜
4・・・第2のそn性薄膜
5・・・磁性二層膜
7・・・界面磁壁FIG. 1 is a magnetization state diagram for explaining the operation of an embodiment of the present invention, FIG. 3 is a schematic configuration diagram schematically showing an example of a recording device, FIG. 4 is a diagram for explaining the transition of magnetization state, FIG. 5 is a diagram showing changes in magnetization state in response to changes in external magnetic field, and FIG. FIG. 6 is a magnetization state diagram for explaining another embodiment, and FIG. 7 is a schematic configuration diagram for explaining the application state of an external magnetic field in the other embodiment. 3...First magnetic thin film 4...Second magnetic thin film 5...Magnetic double layer film 7...Interfacial domain wall
Claims (1)
これらの第1、第2の磁性薄膜の各磁気モーメントが互
いに逆向きに結合されている部分を有する積層膜を含む
熱磁気記録媒体を用い、上記第1の磁性薄膜の略々キュ
リー温度T_C_1以上でかつ上記第2の磁性薄膜の磁
気モーメントの反転の生じない温度T_1に加熱する第
1の加熱状態と、上記温度T_C_1以上でかつ上記第
2の磁性薄膜の磁気モーメントを反転させるに充分な温
度T_2に加熱する第2の加熱状態とを、記録しようと
する情報信号に応じて変調し、 上記それぞれの加熱状態から冷却することにより上記熱
磁気記録媒体に記録磁化を形成することを特徴とする熱
磁気記録方法。[Claims] First and second magnetic thin films are magnetically coupled and stacked,
Using a thermomagnetic recording medium including a laminated film having a portion in which the magnetic moments of the first and second magnetic thin films are coupled in opposite directions to each other, the temperature of the first magnetic thin film is approximately equal to or higher than the Curie temperature T_C_1 a first heating state in which the second magnetic thin film is heated to a temperature T_1 at which reversal of the magnetic moment does not occur; and a temperature equal to or higher than the temperature T_C_1 and sufficient to reverse the magnetic moment of the second magnetic thin film. A second heating state of heating to T_2 is modulated according to the information signal to be recorded, and recording magnetization is formed in the thermomagnetic recording medium by cooling from each of the heating states. Thermomagnetic recording method.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61194961A JPS6352354A (en) | 1986-08-20 | 1986-08-20 | Thermomagnetic recording method |
CA000544667A CA1322408C (en) | 1986-08-20 | 1987-08-17 | Thermomagnetic recording method applying power modulated laser on a magnetically coupled double layer structure of perpendicular anisotropy film |
AU77146/87A AU593127B2 (en) | 1986-08-20 | 1987-08-18 | Thermo-magnetic recording method applying power modulated laser on magnetically coupled double layer structure of perpendicular antisotropy film |
EP87111990A EP0257530B2 (en) | 1986-08-20 | 1987-08-18 | Thermo-magnetic recording method applying power modulated laser on magnetically coupled double layer structure of perpendicular anisotropy film |
DE3783833T DE3783833T3 (en) | 1986-08-20 | 1987-08-18 | Method for thermomagnetic recording by applying a power-modulated laser to a magnetically coupled double-layer structure with transverse magnetic anisotropic film. |
AT87111990T ATE85144T1 (en) | 1986-08-20 | 1987-08-18 | METHOD OF THERMOMAGNETIC RECORDING BY APPLYING A POWER MODULATED LASER TO A MAGNETICALLY COUPLED BI-LAYER STRUCTURE WITH TRANSVERSE MAGNETIC ANISOTROPIC FILM. |
US07/087,440 US4955007A (en) | 1986-08-20 | 1987-08-20 | Thermomagnetic recording method applying power modulated laser on a magnetically coupled double layer structure of perpendicular anisotropy film |
CN87106297A CN1012656B (en) | 1986-08-20 | 1987-08-20 | Thermo-magnetic recording method |
KR1019870009085A KR950013704B1 (en) | 1986-08-20 | 1987-08-20 | Thermomagnetic recording & reprocducting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61194961A JPS6352354A (en) | 1986-08-20 | 1986-08-20 | Thermomagnetic recording method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6352354A true JPS6352354A (en) | 1988-03-05 |
Family
ID=16333209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61194961A Pending JPS6352354A (en) | 1986-08-20 | 1986-08-20 | Thermomagnetic recording method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6352354A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187947A (en) * | 1989-01-13 | 1990-07-24 | Sony Corp | Magneto-optical recording method |
US5353171A (en) * | 1991-07-30 | 1994-10-04 | Sony Corporation | Magneto-optical recording apparatus |
EP0901121A2 (en) * | 1988-07-13 | 1999-03-10 | Sony Corporation | Thermomagnetic recording method |
US5949743A (en) * | 1995-10-11 | 1999-09-07 | Canon Kabushiki Kaisha | Magnetooptical recording medium having a bias layer related by Curie temperature to a writing layer, which is capable of being overwritten by light modulation |
US6132862A (en) * | 1991-05-16 | 2000-10-17 | Sony Corporation | Magneto-optical recording medium |
-
1986
- 1986-08-20 JP JP61194961A patent/JPS6352354A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0901121A2 (en) * | 1988-07-13 | 1999-03-10 | Sony Corporation | Thermomagnetic recording method |
EP0901121B1 (en) * | 1988-07-13 | 2003-05-21 | Sony Corporation | Thermomagnetic recording method |
JPH02187947A (en) * | 1989-01-13 | 1990-07-24 | Sony Corp | Magneto-optical recording method |
US6132862A (en) * | 1991-05-16 | 2000-10-17 | Sony Corporation | Magneto-optical recording medium |
US5353171A (en) * | 1991-07-30 | 1994-10-04 | Sony Corporation | Magneto-optical recording apparatus |
US5949743A (en) * | 1995-10-11 | 1999-09-07 | Canon Kabushiki Kaisha | Magnetooptical recording medium having a bias layer related by Curie temperature to a writing layer, which is capable of being overwritten by light modulation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950013704B1 (en) | Thermomagnetic recording & reprocducting method | |
CA1314984C (en) | Thermomagnetic recording method applying power modulated laser on a magnetically coupled multi-layer structure of perpendicular anisotropy magnetic film | |
JPH05225627A (en) | High density magneto-optical disk | |
JPH06162589A (en) | Magneto-optical recording medium and magneto-optical recording method | |
JP2762435B2 (en) | Thermomagnetic recording method | |
JPS6352354A (en) | Thermomagnetic recording method | |
JPH06139639A (en) | High density magneto-optical recording medium capable of overwriting and recording or reproducing method | |
JPH03219449A (en) | Magneto-optical recording medium and device | |
JPS6352355A (en) | Thermomagnetic recording method | |
JPH0536141A (en) | Magneto-optical recorder | |
JP2829970B2 (en) | Thermomagnetic recording medium | |
JP2809224B2 (en) | Thermomagnetic recording device | |
JP2805070B2 (en) | Thermomagnetic recording method | |
JPH01273248A (en) | Overwritable magneto-optical recording medium controlled in exchange bonding strength between magnetic layers | |
JP2853704B2 (en) | Thermomagnetic recording medium | |
JP2828092B2 (en) | Thermomagnetic recording medium and thermomagnetic recording method | |
JP3613267B2 (en) | Magneto-optical recording medium | |
JPS63269303A (en) | Thermomagnetic recording method | |
JPS6353738A (en) | Signal reproducing method for magneto-optical recording medium | |
JP3395189B2 (en) | Magneto-optical recording method | |
JP3090891B2 (en) | Thermomagnetic recording medium | |
JP3089659B2 (en) | Magneto-optical recording medium and recording method thereof | |
JPH04251454A (en) | Magneto-optical recording medium | |
JPH0628726A (en) | Recording method for magneto-optical recording medium | |
JPH06187676A (en) | Magneto-optical recording medium |