JPS635226A - Two-dimensional array pyroelectric type infrared sensor - Google Patents

Two-dimensional array pyroelectric type infrared sensor

Info

Publication number
JPS635226A
JPS635226A JP61148747A JP14874786A JPS635226A JP S635226 A JPS635226 A JP S635226A JP 61148747 A JP61148747 A JP 61148747A JP 14874786 A JP14874786 A JP 14874786A JP S635226 A JPS635226 A JP S635226A
Authority
JP
Japan
Prior art keywords
dimensional array
electrode
infrared
lens group
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148747A
Other languages
Japanese (ja)
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61148747A priority Critical patent/JPS635226A/en
Publication of JPS635226A publication Critical patent/JPS635226A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors

Abstract

PURPOSE:To enhance infrared ray condensing efficiency and to form a signal take-out electrode having a size corresponding to necessity, by condensing incident infrared rays by a two-dimensional array infrared ray condensing lens group and allowing the same to be incident to each signal take-out electrode. CONSTITUTION:An infrared ray condensing lens group 14 is molded from a polymer resin and the first surface thereof is finished into a convex surface group and the infrared emitting surface being the second surface thereof is finished into a plane. The two-dimensional arrangement of the lens group 14 is made same as each element pitch interval of a two-dimensional array semiconductive element 8 in both of longitudinal and lateral directions and nichrome is vapor-deposited to the entire second surface to form an earth electrode 3 and part of said electrode 3 is extended to the side surface of the lens group 14 and a lead wire 15 is connected to said extended part by a conductive adhesive 16. Next, the lens group 14 wherein pyroelectric elements 1 are formed on the electrode 3 and signal take-out electrodes 17 are formed on the elements 1 is adhered to the semiconductor element 8. Further, the dimension of each electrode 17 is made larger than each signal reading electrode 2 of the element 8. By this constitution, infrared ray condensing efficiency can be enhanced by bright lens designing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、赤外線を利用して温度計測、地球資源探査、
気象観測、公害監視、防犯・防災監視、交通機関の運転
管理、工場での熱管理などの監視、測定を行う2次元ア
レイ焦電形赤外センサに関するものである。
[Detailed description of the invention] Industrial fields of application The present invention utilizes infrared rays to measure temperature, explore earth resources,
This invention relates to a two-dimensional array pyroelectric infrared sensor that monitors and measures weather observation, pollution monitoring, crime prevention/disaster prevention monitoring, transportation management, heat management in factories, etc.

従来の技術 2次元アレイ焦電形赤外センサは、焦電素子と、その信
号を時間順次で読み出す2次元アレイ半導体素子との組
合わせが主流であり、その−例として特願昭60−26
0055号に記載されているように半導体素子上に焦電
素子を直接形成した構成が知られている。
2. Description of the Related Art Two-dimensional array pyroelectric infrared sensors are mainly composed of a combination of a pyroelectric element and a two-dimensional array semiconductor element that reads out its signals in time sequence.
As described in No. 0055, a configuration in which a pyroelectric element is directly formed on a semiconductor element is known.

以下、上記従来例について、第2図(a) 、 (b)
を参照しながら説明する。焦電素子1が2次元アレイ半
導体素子8に蒸着法、あるいは塗布法により密着されて
いる。半導体素子8は、焦電素子1の信号取出し電極2
と接触するソースチャンネル4と、その信号を受けるド
レインチャンネル(第1次信号読み出しチャンネル)6
と、クロック信号に従って焦電信号を読み出すスイッチ
の役をするゲートチャンネル5の3つのチャンネルで形
成される1組が縦・横2次元に配列された構成になって
いる。3は赤外受光側全面を覆うアース電極、7は第1
次信号ラインである。
Below, the above conventional example is shown in Figs. 2(a) and (b).
This will be explained with reference to. A pyroelectric element 1 is closely attached to a two-dimensional array semiconductor element 8 by a vapor deposition method or a coating method. The semiconductor element 8 is the signal extraction electrode 2 of the pyroelectric element 1
a source channel 4 in contact with the source channel, and a drain channel (primary signal readout channel) 6 that receives the signal.
A set of three channels, ie, a gate channel 5 serving as a switch for reading out a pyroelectric signal according to a clock signal, is arranged in two dimensions vertically and horizontally. 3 is the ground electrode that covers the entire surface of the infrared receiving side, and 7 is the first
Next is the signal line.

上記2次元アレイ焦電形赤外センサの等価回路図を第3
図に示す。第2図の各部に対応する部分には同一符号を
付す。9は第2次ゲートチャンネル、10は第2次ドレ
インチャンネル(第2次信号読み出しチャンネル)、1
1は第2次信号ライン、12は第1次クロック、13は
第2次クロックである。この回路図かられかるように、
素子数mxnの2次元アレイ焦電素子の赤外信号は、時
間順次で、Vout端子から読み出すことができる。
The equivalent circuit diagram of the above two-dimensional array pyroelectric infrared sensor is shown in the third figure.
As shown in the figure. Components corresponding to those in FIG. 2 are given the same reference numerals. 9 is a secondary gate channel, 10 is a secondary drain channel (secondary signal readout channel), 1
1 is a secondary signal line, 12 is a primary clock, and 13 is a secondary clock. As you can see from this circuit diagram,
The infrared signals of the two-dimensional array of pyroelectric elements having mxn elements can be read out from the Vout terminal in time sequence.

発明が解決しようとする問題点 第2図の構成から明らかなように、焦電素子1に接する
信号取出し電極2の面積は全焦電素子面積の1/4以下
である。従って焦電素子1に発生した信号電荷の大部分
は読み出すことができない。
Problems to be Solved by the Invention As is clear from the configuration shown in FIG. 2, the area of the signal extraction electrode 2 in contact with the pyroelectric element 1 is less than 1/4 of the total area of the pyroelectric element. Therefore, most of the signal charges generated in the pyroelectric element 1 cannot be read out.

そこで、この効率を向上させることが重要問題となって
いる。また上記のように蒸着法、あるいは塗布法により
2次元アレイ半導体素子8上に焦電素子1を形成すると
、上記問題を鱗形するこさができないだけでなく、次の
ような問題がある。
Therefore, improving this efficiency has become an important issue. Furthermore, if the pyroelectric element 1 is formed on the two-dimensional array semiconductor element 8 by the vapor deposition method or the coating method as described above, not only the above problem cannot be solved, but also the following problem occurs.

蒸着法では、結晶性の良い焦電薄層を形成するためには
、基板温度を500〜700°Cの高温にしなければな
らず、そのような高温では、下地の2次元アレイ駆動部
の特性が損われる。塗布法では、ポリフッ化ビニリデン
(PVF2)とテトラフロロエチレン(TFE )の共
重合体の溶液を塗布乾燥するが、テトラフロロエチレン
の生産性が悪く、実用的ではない。
In the vapor deposition method, in order to form a pyroelectric thin layer with good crystallinity, the substrate temperature must be raised to a high temperature of 500 to 700°C, and at such high temperatures, the characteristics of the underlying two-dimensional array drive unit may deteriorate. is damaged. In the coating method, a solution of a copolymer of polyvinylidene fluoride (PVF2) and tetrafluoroethylene (TFE) is applied and dried, but the productivity of tetrafluoroethylene is poor and is not practical.

そこで、本発明は、感度を向上させるこさができ、また
2次元アレイ半導体素子の特性を損わないようにするこ
とができ、更には容易に製作することができるようにし
た2次元アレイ焦電形赤外センサを提供しようとするも
のである。
Therefore, the present invention provides a two-dimensional array pyroelectric device that can improve the sensitivity, do not impair the characteristics of the two-dimensional array semiconductor device, and can be easily manufactured. The present invention aims to provide a type infrared sensor.

問題点を解決するたり)の手段 そして上記問題点を解決するための本発明の技術的な手
段は、有機薄膜よりなる焦電素子と、この焦電素子の出
力信号を時間順次で読み出すための2次元アレイ半導体
素子と、上記焦電素子上に設けられ、上記2次元アレイ
半導体素子の信号読み出し電極さ電気的導通が保たれた
信号取出し電極と、赤外受光面の全面にアース電極を有
し、各信号取出し電極に入射赤外光を集光する2次元ア
レイ赤外集光レンズ群とを備えたものである。
The technical means of the present invention for solving the above-mentioned problems includes a pyroelectric element made of an organic thin film, and a method for reading out output signals of the pyroelectric element in time sequence. A two-dimensional array semiconductor element, a signal extraction electrode provided on the pyroelectric element and having electrical continuity with the signal read-out electrode of the two-dimensional array semiconductor element, and a ground electrode on the entire surface of the infrared receiving surface. It also includes a two-dimensional array infrared condensing lens group that condenses incident infrared light onto each signal extraction electrode.

作    用 上記技術的手段による作用は次のようになる。For production The effects of the above technical means are as follows.

すなわち、2次元アレイ赤外集光レンズ群により、入射
した赤外光が集光して各信号取出し電極に入射するので
、赤外集光効率を向上させることができ、また予め赤外
集光レンズ群上に形成されている焦電、素子上に2次元
アレイ半導体素子のゲート電極の面積に制限されること
なく、必要に応じた大きさの信号取出し電極を形成する
ことができる。
In other words, the two-dimensional array infrared condensing lens group condenses the incident infrared light and makes it incident on each signal extraction electrode, so it is possible to improve the infrared condensing efficiency. A signal extraction electrode of a size as required can be formed on the pyroelectric element formed on the lens group without being limited by the area of the gate electrode of the two-dimensional array semiconductor element.

これにより感度、視野特性の設計が比較的自由になり、
容易に高感度の2次元アレイ焦電形赤外センサを実現す
ることができる。また焦電素子を有機薄膜により形成し
ているので、環境温度変化により2次元アレイ半導体素
子吉の間に熱膨張、収縮の差が発生しても、その可撓性
により歪を吸収するこさができ、特性が損われることは
ない。また焦電素子を有機薄膜により形成するので、容
易に製作することができる。
This allows relative freedom in designing sensitivity and visual field characteristics,
A highly sensitive two-dimensional array pyroelectric infrared sensor can be easily realized. In addition, since the pyroelectric element is formed from an organic thin film, even if differences in thermal expansion and contraction occur between the two-dimensional array semiconductor elements due to environmental temperature changes, its flexibility makes it difficult to absorb distortion. It can be used without any loss of properties. Furthermore, since the pyroelectric element is formed of an organic thin film, it can be easily manufactured.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図(a)は本発明による2次元アレイ焦電形赤外セ
ンサの一部拡大平面図、同図(b)は同図(a)のAA
Z線に沿う断面図である。図において、第2図と同一部
材には同一符号を付す。
FIG. 1(a) is a partially enlarged plan view of a two-dimensional array pyroelectric infrared sensor according to the present invention, and FIG. 1(b) is an AA of the same figure (a).
It is a sectional view along the Z line. In the figure, the same members as in FIG. 2 are given the same reference numerals.

第1図(aj 、 (b)l=示すように、Si半導体
MO8,FET2次元アレイ半導体素子8を用い、32
 X 32素子の2次元アレイ焦電形赤外センサを製作
した。各素子18のピッチ間隔は縦横共に022mmと
し、信号読み出しチャンネル6の1素子当りの信号読み
出し電極2の面積は、0.06 mm X 0.06 
n+m  である。2次元アレイ赤外集光レンズ群14
は、高分子樹脂、本実施例ではポリエチレン樹脂を射出
成形法により成形し、第1面である赤外入射面がR−0
2の凸面群(32X 32 )で、第2面である赤外出
射面が平面で、厚さ0.2mmに仕上げた。赤外集光レ
ンズ群14の2次元配列は縦横共に半導体素子8の各素
子ピッチ間隔と同様、0.2mmピッチとした。
As shown in FIG. 1 (aj, (b) l = 32
A two-dimensional array pyroelectric infrared sensor with X32 elements was fabricated. The pitch interval of each element 18 is 022 mm both vertically and horizontally, and the area of the signal readout electrode 2 per element of the signal readout channel 6 is 0.06 mm x 0.06 mm.
It is n+m. Two-dimensional array infrared condensing lens group 14
is a polymer resin, in this example polyethylene resin, is molded by injection molding, and the first surface, which is the infrared incident surface, is R-0.
The second convex surface group (32× 32 ) was finished with a flat infrared emitting surface and a thickness of 0.2 mm. The two-dimensional array of the infrared condensing lens group 14 was arranged at a pitch of 0.2 mm in both the vertical and horizontal directions, which is the same as the pitch of each element of the semiconductor element 8.

すなわち、1個の赤外集光レンズの大きさは0.2mm
 X O,2mmである。第1図(a7では、縦のピッ
チが短かくなるように記載しているが、実施例では正方
形である。このポリエチレン樹脂製の2次元アレイ赤外
集光レンズ群14の平面である第2面にニクロムを全面
蒸着し、アース電極3を形成した。
In other words, the size of one infrared condensing lens is 0.2 mm.
XO, 2mm. In FIG. 1 (a7, the vertical pitch is shown as being short, but in the example it is a square. Nichrome was deposited on the entire surface to form a ground electrode 3.

アース電極3はその一部分を赤外集光レンズ14の側面
まで延長して蒸着し、この延長部にリード線15を導電
性接着剤16により接続した。次にアース電極3上に焦
電素子Iを形成した。本実施例では、ポリフッ化ビニリ
デン(PVF2)の薄膜を延伸後、両面電極蒸着して分
極処理し、赤外集光レンズ群14 に接着した。この焦
電素子1は塗布法により形成することもでき、この場合
、薄層形成後、分極処理する。分極処理時は信号取出し
電極側も全面電極蒸着し、−度に全面を分極する。
The ground electrode 3 was deposited with a portion thereof extended to the side surface of the infrared condenser lens 14, and a lead wire 15 was connected to this extended portion using a conductive adhesive 16. Next, a pyroelectric element I was formed on the ground electrode 3. In this example, a thin film of polyvinylidene fluoride (PVF2) was stretched, then electrodes were deposited on both sides, polarized, and bonded to the infrared condenser lens group 14. This pyroelectric element 1 can also be formed by a coating method, in which case a polarization treatment is performed after forming a thin layer. During the polarization process, electrodes are deposited on the entire surface of the signal extraction electrode side, and the entire surface is polarized at -degrees.

従って、分極後、−度、全面電極を除去し、各々互に絶
縁状態に分離するように信号取出し電亨17を蒸着し直
す。アース電極3及び焦電素子1、信号取出し電極17
を形成した赤外集光レンズ14を2次元アレイ半導体素
子8に接着する。信号取出し電極17の寸法は2次元ア
レイ半導体素子8の信号読み出し電極2より大きく、0
.1 rrm X O,1mmとする。
Therefore, after polarization, the entire surface electrodes are removed and the signal extraction electrodes 17 are deposited again so as to separate them from each other in an insulating state. Earth electrode 3, pyroelectric element 1, signal extraction electrode 17
The infrared condensing lens 14 formed with the above is bonded to the two-dimensional array semiconductor element 8. The size of the signal readout electrode 17 is larger than the signal readout electrode 2 of the two-dimensional array semiconductor element 8, and the size of the signal readout electrode 17 is 0.
.. 1 rrm X O, 1 mm.

このようにして製作した赤外集光レンズ付の2次元アレ
イ焦電形赤外センサを焦点距離foのレンズと組み合せ
ると、合成焦点距離は、N=1.42゜S = 0.2
、R=0.2であるからf=fo/C(N  1 ) 
S/R+1 ]= fo/1.42となる。従って、視
野角は1素子轟りta n−I Mとなる。
When the two-dimensional array pyroelectric infrared sensor with an infrared condensing lens manufactured in this way is combined with a lens of focal length fo, the combined focal length is N = 1.42°S = 0.2
, R=0.2, so f=fo/C(N 1 )
S/R+1]=fo/1.42. Therefore, the viewing angle becomes one-element tan-IM.

上記実施例によれば、1素子の視野を信号取出し電極1
7の寸法と赤外集光レンズ群14の設計により比較的自
由に選ぶことができ、明るいレンズ設計で、赤外集光効
率を向上させることができた。
According to the above embodiment, the field of view of one element is determined by the signal extraction electrode 1.
7 and the design of the infrared condensing lens group 14, the infrared condensing lens group 14 can be selected relatively freely, and the infrared condensing efficiency can be improved with a bright lens design.

具体的には実施例では焦点距離fOのレンズと組合せて
、合成焦点距離、f=fo/1.42となり、集光効率
は2倍となった。ポリエチレン樹脂製赤外集光レンズ群
14での赤外(8〜12μ)透過率が90俤であるから
出力は18倍であった。
Specifically, in the example, when combined with a lens having a focal length of fO, the combined focal length was f=fo/1.42, and the light collection efficiency was doubled. Since the infrared (8 to 12 μ) transmittance of the polyethylene resin infrared condensing lens group 14 was 90 yen, the output was 18 times higher.

また高分子樹脂製赤外集光レンズ群14と有機薄膜製焦
電素子lの採用により安価で量産し易い2次元アレイ焦
電形赤外センサを製作することができた。
Furthermore, by employing the infrared condensing lens group 14 made of polymer resin and the pyroelectric element l made of organic thin film, it was possible to manufacture a two-dimensional array pyroelectric infrared sensor that is inexpensive and easy to mass produce.

また高分子樹脂製赤外集光レンズ群14と有機薄膜製焦
電素子1の組合せにより、その可撓性を利用して2次元
アレイ半導体素子8との密着度を高めるときが容易にな
った。
Furthermore, the combination of the infrared condensing lens group 14 made of polymer resin and the pyroelectric element 1 made of organic thin film makes it easy to increase the degree of contact with the two-dimensional array semiconductor element 8 by utilizing its flexibility. .

尚、第3図に示す等価回路は信号電圧を読み出す方式で
あり、より高い電圧を得ることが大切であり、信号取出
し電極17を小さめに設計し、これに赤光集光レンズ群
14 により赤外信号を集中することによりそれが可能
となった。また電流モードで読み出す場合、信号読み出
し電極2はなるべく大きくすることが望ましく、合成焦
点距離は下記に示すように視野角との関係で、適当に決
定すればよい。
The equivalent circuit shown in Fig. 3 is a method for reading out signal voltages, and it is important to obtain a higher voltage. This was made possible by concentrating external signals. Further, when reading out in the current mode, it is desirable to make the signal readout electrode 2 as large as possible, and the combined focal length may be appropriately determined in relation to the viewing angle as shown below.

発明の効果 以上のように本発明は、2次元アレイ赤外集光レンズ群
により、入射した赤外光が集光して各信号取出し電極に
入射するので、赤外集光効率を向上させることができ、
また焦電素子上に信号取出し電極を設けて2次元アレイ
半導体素子に組合わせるので、必要に応じた大きさの信
号取出し電極を形成することができ、これにより感度、
視野特性の設計が比較的自由になり、従って感度を向上
させることができる。また焦電素子を有機薄膜により形
成しているので、環境温度変化により2次元アレイ半導
体素子との間に熱膨張、収縮の差が発生しても、その可
撓性により歪を吸収することがでさ、特性が損われるこ
さばない。才た焦電素子を有機薄膜により形成するので
、容易に製作することができる。
Effects of the Invention As described above, the present invention improves the infrared light collection efficiency because the incident infrared light is focused by the two-dimensional array infrared light focusing lens group and is incident on each signal extraction electrode. is possible,
In addition, since a signal extraction electrode is provided on the pyroelectric element and combined with the two-dimensional array semiconductor element, the signal extraction electrode can be formed in a size that meets the needs, which increases the sensitivity and
The visual field characteristics can be designed relatively freely, and the sensitivity can therefore be improved. In addition, since the pyroelectric element is formed from an organic thin film, even if a difference in thermal expansion or contraction occurs between it and the two-dimensional array semiconductor element due to environmental temperature changes, its flexibility allows it to absorb strain. However, the characteristics will not be affected. Since the sophisticated pyroelectric element is formed from an organic thin film, it can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは本発明の一実施例「二おける2次元アレ
イ焦電形赤外センサの一部拡大平面図、第1図fblは
第1図(alのA−A’線に沿う断面図、第2図(al
は従来の2次元アレイ焦電形赤外センサの一部拡大斜視
図、第2図(bJは第2図(ajのB−d線に沿う断面
図、第3図は2次元アレイ焦電形赤外センサの等価回路
図である。 1・・・焦電素子、2・・・信号読み出し電極、3・・
アース電極、4・・・ソースチャンネル、5・・ゲート
チャンネル、6・・・ドレインチャンネル(第1次信号
読み出しチャンネル)、7・・第1次信号ライン、8・
・2次元アレイ半導体素子、14・・・2次元アレイ赤
外集光レンズ群、15・・リート線、17・・信号取出
し電極。 代理人の氏名 弁理士 中 尾 敏 男 はか1名第2
図 6      ゛・\1、 ・隷 ξ 憾 第3図
Figure 1 (al) is a partially enlarged plan view of a two-dimensional array pyroelectric infrared sensor according to an embodiment of the present invention; Figure, Figure 2 (al
2 is a partially enlarged perspective view of a conventional two-dimensional array pyroelectric infrared sensor; FIG. 2 is a sectional view taken along line B-d in FIG. It is an equivalent circuit diagram of an infrared sensor. 1... Pyroelectric element, 2... Signal readout electrode, 3...
Earth electrode, 4... Source channel, 5... Gate channel, 6... Drain channel (primary signal readout channel), 7... Primary signal line, 8...
- Two-dimensional array semiconductor element, 14... Two-dimensional array infrared condensing lens group, 15... Riet wire, 17... Signal extraction electrode. Name of agent: Patent attorney Toshio Nakao (1st person, 2nd person)
Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)有機薄膜よりなる焦電素子と、この焦電素子の出
力信号を時間順次で読み出すための2次元アレイ半導体
素子と、上記焦電素子上に設けられ、上記2次元アレイ
半導体素子の信号読み出し電極と電気的導通が保たれた
信号取出し電極と、赤外受光面の全面にアース電極を有
し、各信号取出し電極に入射赤外光を集光する2次元ア
レイ赤外集光レンズ群とを備えたことを特徴とする2次
元アレイ焦電形赤外センサ。
(1) A pyroelectric element made of an organic thin film, a two-dimensional array semiconductor element for reading out output signals of the pyroelectric element in time sequence, and a signal of the two-dimensional array semiconductor element provided on the pyroelectric element. A two-dimensional array infrared condensing lens group that has a signal extraction electrode that maintains electrical continuity with the readout electrode and a ground electrode on the entire surface of the infrared receiving surface, and focuses incident infrared light on each signal extraction electrode. A two-dimensional array pyroelectric infrared sensor comprising:
(2)焦電素子を形成する有機薄膜が延伸されたポリフ
ッ化ビニリデンであり、赤外集光レンズ群と2次元アレ
イ半導体素子に密着している特許請求の範囲第1項記載
の2次元アレイ焦電形赤外センサ。
(2) The two-dimensional array according to claim 1, wherein the organic thin film forming the pyroelectric element is stretched polyvinylidene fluoride and is in close contact with the infrared condenser lens group and the two-dimensional array semiconductor element. Pyroelectric infrared sensor.
(3)赤外集光レンズ群が高分子樹脂製である特許請求
の範囲第1項記載の2次元アレイ焦電形赤外センサ。
(3) A two-dimensional array pyroelectric infrared sensor according to claim 1, wherein the infrared condenser lens group is made of polymer resin.
JP61148747A 1986-06-25 1986-06-25 Two-dimensional array pyroelectric type infrared sensor Pending JPS635226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148747A JPS635226A (en) 1986-06-25 1986-06-25 Two-dimensional array pyroelectric type infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148747A JPS635226A (en) 1986-06-25 1986-06-25 Two-dimensional array pyroelectric type infrared sensor

Publications (1)

Publication Number Publication Date
JPS635226A true JPS635226A (en) 1988-01-11

Family

ID=15459718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148747A Pending JPS635226A (en) 1986-06-25 1986-06-25 Two-dimensional array pyroelectric type infrared sensor

Country Status (1)

Country Link
JP (1) JPS635226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709154B1 (en) 1998-09-16 2004-03-23 Braun Gmbh Radiation thermometer and radiation sensor with several sensor elements, method for determining temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709154B1 (en) 1998-09-16 2004-03-23 Braun Gmbh Radiation thermometer and radiation sensor with several sensor elements, method for determining temperature

Similar Documents

Publication Publication Date Title
US4593456A (en) Pyroelectric thermal detector array
US4532424A (en) Pyroelectric thermal detector array
US4250384A (en) Radiant energy systems, memories and thermal imaging methods and apparatus
EP0034637A1 (en) Radient energy systems, memories and thermal imaging methods and apparatus
KR20030033931A (en) Radiation detector
KR940006391A (en) Solid state imaging device
EP0018033B1 (en) Radiation detector devices and circuit arrangements including radiation detector devices
JPS6038623A (en) Detector for infrared ray
US4588261A (en) IR-CCD imager and method of making the same
US5122666A (en) Pyroelectric and other infrared detection devices with thin films
US4542294A (en) Infrared detector and method of producing the same
EP0345047B1 (en) Thermal imaging device
JPS635226A (en) Two-dimensional array pyroelectric type infrared sensor
JPS62119422A (en) 2-d array pyroelectric type sensor
JPH01308927A (en) Pyroelectric type infrared detection element array, pyroelectric type infrared detector and preparation thereof
JPS59138371A (en) Photo sensor array
JPH0219727A (en) Pyroelectric type infrared detecting element array, pyroelectric type infrared detector and their production
JPS635225A (en) Two-dimensional array pyroelectric type infrared sensor
JP2806972B2 (en) Thermal image creation device
JP3441405B2 (en) Semiconductor infrared detector
US3426198A (en) Detector array with electrode connections
JPS635227A (en) Two-dimensional array pyroelectric type infrared sensor
TW541413B (en) Two-layer thermo-electric stack sensor device
JP2616654B2 (en) One-dimensional pyroelectric sensor array
JPS62280627A (en) Array type pyroelectric sensor