JPS6352111B2 - - Google Patents

Info

Publication number
JPS6352111B2
JPS6352111B2 JP56073052A JP7305281A JPS6352111B2 JP S6352111 B2 JPS6352111 B2 JP S6352111B2 JP 56073052 A JP56073052 A JP 56073052A JP 7305281 A JP7305281 A JP 7305281A JP S6352111 B2 JPS6352111 B2 JP S6352111B2
Authority
JP
Japan
Prior art keywords
substrate
cylindrical mesh
evaporation method
thin film
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073052A
Other languages
Japanese (ja)
Other versions
JPS57188677A (en
Inventor
Takayuki Fujita
Yoshitaka Kuroda
Kenichiro Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7305281A priority Critical patent/JPS57188677A/en
Publication of JPS57188677A publication Critical patent/JPS57188677A/en
Publication of JPS6352111B2 publication Critical patent/JPS6352111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は小型球状、棒状、角状等の基体の全面
に金属薄膜を均一にかつ効率良く真空蒸着させる
金属薄膜蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal thin film deposition apparatus for uniformly and efficiently vacuum depositing a metal thin film over the entire surface of a small spherical, rod-shaped, angular, etc. substrate.

従来前記形状物に薄膜を真空蒸着する場合、円
筒網籠を真空容器内で水平に置いて回転させ、円
筒網籠内の基体を撹拌しつつ網籠下方または網籠
内より薄膜材料を蒸発させ、円筒網籠内の基体表
面に薄膜を形成する方法が一般に行われている。
Conventionally, when vacuum-depositing a thin film on the above-mentioned shaped object, a cylindrical mesh cage is placed horizontally in a vacuum container and rotated, and the thin film material is evaporated from below or inside the mesh cage while stirring the substrate inside the cylindrical mesh cage. A commonly used method is to form a thin film on the surface of a substrate inside a cylindrical mesh cage.

しかし、この方法では収納する基体容積に比べ
円筒網籠容積が非常に大きくなり真空容器も大き
くなる。また下方より薄膜材料を蒸発させる場合
はさらに大きな容積を必要とし、無駄な真空空間
が多くなり、真空ポンプの容量を大きくするか、
必要真空度への到達時間が長くなつた。また基体
表面の蒸着膜の膜厚も、基体の円筒網籠内での位
置によつてばらつきが大きく、基体自身が円筒網
籠の下方に集中するため基板への着膜効率が悪い
といつた欠点があつた。
However, in this method, the volume of the cylindrical mesh basket is very large compared to the volume of the substrate to be accommodated, and the vacuum container also becomes large. In addition, if the thin film material is evaporated from below, an even larger volume is required, resulting in a large amount of wasted vacuum space, and the capacity of the vacuum pump must be increased.
It took longer to reach the required degree of vacuum. In addition, the thickness of the deposited film on the surface of the substrate varies greatly depending on the position of the substrate within the cylindrical mesh cage, and it has been said that the film deposition efficiency on the substrate is poor because the substrate itself is concentrated below the cylindrical mesh cage. There were flaws.

本発明は従来の欠点を除いた金属薄膜蒸着装置
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metal thin film deposition apparatus that eliminates the conventional drawbacks.

以下、本発明の実施例について図面と共に説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の金属膜蒸着装置の一実施例の
概略構成を示す断面図で、1は真空容器、2は基
体3を収納する浅い縁の付いた円筒状網籠で収納
する基体3がこぼれない大きさの網目を有し真空
容器1内に傾斜した状態で配置されている。4は
薄膜材料の収納るつぼ、5は円筒状網籠2を回転
させる回転軸で、空気漏れのない適宜の軸受装置
(図示せず)で保持され、外部より回転速度可変
のモーターにより回転運動が与えられる。6は、
抵抗加熱蒸着法、電子ビーム蒸着法、誘導加熱蒸
着法等の真空蒸着法によりるつぼ4より蒸発する
蒸気流の範囲を示す。
FIG. 1 is a sectional view showing a schematic configuration of an embodiment of the metal film deposition apparatus of the present invention, in which 1 is a vacuum container, and 2 is a cylindrical mesh basket with a shallow edge that houses a substrate 3. It has a mesh large enough to prevent spillage and is arranged in a tilted state inside the vacuum container 1. 4 is a crucible for storing thin film material, and 5 is a rotating shaft for rotating the cylindrical mesh basket 2, which is held by an appropriate bearing device (not shown) that does not leak air, and whose rotational movement is controlled by an externally variable speed motor. Given. 6 is
The range of vapor flow evaporated from the crucible 4 by a vacuum evaporation method such as a resistance heating evaporation method, an electron beam evaporation method, or an induction heating evaporation method is shown.

第2図は基体3を収納した円筒状網籠2の上面
図であり、7は円筒状網籠2の外周面より放射状
に内方に延びる複数の撹拌羽根である(尚、第1
図においては図面の簡明化のため撹拌羽根7は図
示していない)。回転軸5を回転させるとそれに
固定された円筒状網籠2は同時に回転し、円筒状
網籠2に収納された基体3は、撹拌羽根7によつ
て上部に持ち上げられ、さらに進むと上部より順
次不規則な運動をしながら円筒状網籠2の底面の
網面上を落下し、るつぼ4より蒸発する薄膜材料
の蒸気流6によつて基体3の表面に薄膜が蒸着さ
れる。これを繰り返すことによつて基体3の表面
に所定の膜厚の蒸着薄膜が形成される。尚、第2
図におけるA部分は基体3の団塊領域で、B部分
は基体3が不規則な運動をしつつ着膜される着膜
領域である。るつぼ4より蒸発した薄膜材料の蒸
気流6を効率良く膜に使用するためには、円筒状
網籠2の底面の網面の着膜領域Bに基体3の密度
をできるだけ均一に落下させる必要があり、撹拌
羽根7を取り付けることにより網面での基体3の
密度を均一にすることができ効率的に着膜するこ
とができる。また、円筒状網籠2の傾斜角と回転
速度を変化させることによつて基体3を円筒状網
籠2の着膜領域Bにより均一に落下させることが
できる。
FIG. 2 is a top view of the cylindrical mesh basket 2 housing the base 3, and 7 is a plurality of stirring blades extending radially inward from the outer peripheral surface of the cylindrical mesh basket 2 (note that the first
In the figure, the stirring blade 7 is not shown for the purpose of simplifying the drawing). When the rotating shaft 5 is rotated, the cylindrical mesh basket 2 fixed thereto simultaneously rotates, and the substrate 3 housed in the cylindrical mesh cage 2 is lifted upward by the stirring blade 7, and as it moves further, it is lifted from the top. A thin film is deposited on the surface of the substrate 3 by a vapor flow 6 of the thin film material that falls on the mesh surface of the bottom of the cylindrical mesh basket 2 while moving irregularly and evaporates from the crucible 4. By repeating this process, a deposited thin film having a predetermined thickness is formed on the surface of the base 3. Furthermore, the second
In the figure, part A is a lump region of the substrate 3, and part B is a film-depositing region where the film is deposited while the substrate 3 moves irregularly. In order to efficiently use the vapor flow 6 of the thin film material evaporated from the crucible 4 to form a film, it is necessary to drop the substrate 3 as evenly as possible in density to the film deposition area B of the net surface on the bottom surface of the cylindrical mesh basket 2. By attaching the stirring blades 7, the density of the substrate 3 on the mesh surface can be made uniform, and a film can be efficiently deposited. Further, by changing the inclination angle and rotational speed of the cylindrical mesh basket 2, the substrate 3 can be uniformly dropped into the coating area B of the cylindrical mesh basket 2.

本実施例の装置は例えば金属皮膜抵抗器の製造
に用いることができる。金属皮膜抵抗器における
セラミツク素体(基体)は、直径1〜3mm、長さ
5〜10mm程度の大きさであり、直径1.5mm、長さ
6mmの棒状のセラミツク素体の場合、1バツチで
10〜15万個のセラミツク素体に抵抗膜を蒸着させ
ることができる。
The apparatus of this embodiment can be used, for example, to manufacture metal film resistors. The ceramic body (substrate) in a metal film resistor is approximately 1 to 3 mm in diameter and 5 to 10 mm in length.In the case of a rod-shaped ceramic body with a diameter of 1.5 mm and a length of 6 mm, one batch
Resistive films can be deposited on 100,000 to 150,000 ceramic bodies.

本実施例においては小型棒状基体を従来例と同
一容積の真空容器に約3倍投入でき、また基体表
面に蒸着した薄膜の膜厚ばらつきも従来例の約1/
3に減少した。
In this example, the small rod-shaped substrate can be charged approximately three times as much into a vacuum container with the same volume as the conventional example, and the variation in the thickness of the thin film deposited on the substrate surface is reduced to about 1/1 of that of the conventional example.
It decreased to 3.

以上のように本発明の金属薄膜蒸着装置を構成
したので、小容量の真空容器中に多量の基体を投
入することができ、また円筒状網籠の底面の網面
に均一に基体を落下させることができるため着膜
を効率的に行うことができるとともに基体表面の
蒸着膜厚のばらつきを減少させることができ、そ
の工業的価値は高いものとすることができる。
Since the metal thin film deposition apparatus of the present invention is configured as described above, a large amount of substrates can be charged into a small-capacity vacuum container, and the substrates can be uniformly dropped onto the mesh surface at the bottom of the cylindrical mesh basket. Therefore, the film can be deposited efficiently, and the variation in the thickness of the deposited film on the surface of the substrate can be reduced, and its industrial value can be high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である金属薄膜蒸着
装置の概略構成を示す断面図、第2図は同実施例
の円筒状網籠の上面図である。 1……真空容器、2……円筒状網籠、3……基
体、4……るつぼ、7……撹拌羽根。
FIG. 1 is a sectional view showing a schematic configuration of a metal thin film deposition apparatus according to an embodiment of the present invention, and FIG. 2 is a top view of a cylindrical mesh basket according to the same embodiment. 1... Vacuum container, 2... Cylindrical mesh cage, 3... Substrate, 4... Crucible, 7... Stirring blade.

Claims (1)

【特許請求の範囲】[Claims] 1 真空容器と、この真空容器中で傾斜した状態
で回転し円筒状の外周面より放射状に内方に延び
る複数の撹拌羽根を設けて小型球状、棒状、角状
等の基体を撹拌する浅い円筒状網籠とを備え、前
記円筒状網籠の傾斜した平面からなる底面の下部
より抵抗加熱蒸着法、電子ビーム蒸着法、誘導加
熱蒸着法等の真空蒸着法により金属薄膜材料を蒸
発させ、前記円筒状網籠内の基体表面全面に均一
な金属薄膜を着膜させる金属薄膜蒸着装置。
1. A vacuum container and a shallow cylinder that rotates in an inclined state in the vacuum container and is provided with a plurality of stirring blades extending radially inward from the outer peripheral surface of the cylinder to stir a small spherical, rod-shaped, square-shaped substrate, etc. A thin metal film material is evaporated from the lower part of the bottom surface of the cylindrical mesh cage by a vacuum evaporation method such as a resistance heating evaporation method, an electron beam evaporation method, an induction heating evaporation method, etc. A metal thin film deposition device that deposits a uniform thin metal film over the entire surface of a substrate inside a cylindrical mesh cage.
JP7305281A 1981-05-14 1981-05-14 Vapor depositing device for metallic thin film Granted JPS57188677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305281A JPS57188677A (en) 1981-05-14 1981-05-14 Vapor depositing device for metallic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7305281A JPS57188677A (en) 1981-05-14 1981-05-14 Vapor depositing device for metallic thin film

Publications (2)

Publication Number Publication Date
JPS57188677A JPS57188677A (en) 1982-11-19
JPS6352111B2 true JPS6352111B2 (en) 1988-10-18

Family

ID=13507202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305281A Granted JPS57188677A (en) 1981-05-14 1981-05-14 Vapor depositing device for metallic thin film

Country Status (1)

Country Link
JP (1) JPS57188677A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245051A (en) * 1988-08-04 1990-02-15 Shiro Yamada Artificial hair for planting and method and apparatus for producing artificial hair
EP1136587B1 (en) 2000-03-23 2013-05-15 Hitachi Metals, Ltd. Deposited-film forming apparatus
JP2006342384A (en) * 2005-06-08 2006-12-21 Moritex Corp Method and apparatus for manufacturing spherical lens with full face filter film, spherical lens with full-face filter film, and optical module
JP4899717B2 (en) * 2006-08-21 2012-03-21 ソニー株式会社 Composite powder manufacturing method and composite powder manufacturing apparatus
JP5749223B2 (en) * 2012-07-13 2015-07-15 株式会社メイハン Method for forming spherical film
EP3567128A1 (en) * 2018-05-08 2019-11-13 IHI Hauzer Techno Coating B.V. Deposition apparatus and method of coating spherical objects
CN115287601B (en) * 2022-08-05 2023-09-22 温州鑫淼电镀有限公司 Vacuum coating process for plastic product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059441A (en) * 1973-09-27 1975-05-22

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441155Y2 (en) * 1975-05-01 1979-12-03
JPS5441156Y2 (en) * 1975-05-01 1979-12-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5059441A (en) * 1973-09-27 1975-05-22

Also Published As

Publication number Publication date
JPS57188677A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JPS6352111B2 (en)
JPS59208069A (en) Evaporation device having radiation heat portion for evaporating many substances
US3926147A (en) Glow discharge-tumbling vapor deposition apparatus
CA1093811A (en) Planetary evaporator
US3746571A (en) Method of vacuum evaporation
JP2005325424A (en) Evaporation source for organic material and organic vapor deposition system
US3752691A (en) Method of vacuum evaporation
US3395674A (en) Apparatus for vapor coating tumbling substrates
JP2007204784A (en) Particle coating method and particle coating apparatus
US8268080B2 (en) Apparatus and method for preparing composite particulates using vapor deposition
US6467427B1 (en) Evaporation source material supplier
KR20080084140A (en) Apparatus for vacuum treatment and the vacuum-treating method for pluverulent body using it
JP4555638B2 (en) Thin film deposition equipment
JPH03264667A (en) Carrousel-type sputtering device
JP2007100123A (en) Vacuum vapor deposition apparatus
KR100889762B1 (en) Method of vacuum evaporation and apparatus the same
JPH04329869A (en) Vapor deposition method
KR101194851B1 (en) Deposition source
JP3808244B2 (en) Target holder structure
JP2589525B2 (en) Back metal forming equipment for semiconductor devices
JP4451510B2 (en) Film forming method and apparatus, and hard disk manufacturing method
JPH0619569Y2 (en) Molecular beam cell PBN crucible
JPH02294472A (en) Vacuum deposition device
JP4550540B2 (en) Sample stage and ion sputtering equipment
JPH0538048Y2 (en)