JPS635180Y2 - - Google Patents

Info

Publication number
JPS635180Y2
JPS635180Y2 JP5746581U JP5746581U JPS635180Y2 JP S635180 Y2 JPS635180 Y2 JP S635180Y2 JP 5746581 U JP5746581 U JP 5746581U JP 5746581 U JP5746581 U JP 5746581U JP S635180 Y2 JPS635180 Y2 JP S635180Y2
Authority
JP
Japan
Prior art keywords
positive electrode
ring
discharge
mixture
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5746581U
Other languages
Japanese (ja)
Other versions
JPS57170275U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5746581U priority Critical patent/JPS635180Y2/ja
Publication of JPS57170275U publication Critical patent/JPS57170275U/ja
Application granted granted Critical
Publication of JPS635180Y2 publication Critical patent/JPS635180Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【考案の詳細な説明】 本考案は、扁平形電池において正極合剤外周面
を覆う正極リングを用いた電池に関するもので、
比較的大電流での放電特性を改善し種々の放電条
件下での放電々圧の安定性をはじめ、信頼性及び
生産性にすぐれた電池を提供することを目的とす
る。
[Detailed description of the invention] The present invention relates to a battery using a positive electrode ring that covers the outer peripheral surface of a positive electrode mixture in a flat battery.
The object of the present invention is to provide a battery that has improved discharge characteristics at relatively large currents and has excellent discharge voltage stability under various discharge conditions, as well as excellent reliability and productivity.

第1図は従来例としての扁平形リチウム電池の
断面図を示したものである。この図において、1
はステンレススチール製の正極ケース、2は二酸
化マンガンを主活物質とする円板状の正極合剤、
3は正極合剤2の外周面を覆う断面L字状のステ
ンレススチール製正極リング、4は正極を覆うポ
リプロピレン不織布製セパレータ、5は同じくポ
リプロピレン不織布製の含浸剤、6は円板状のリ
チウムを活物質とした負極、7はステンレススチ
ール製の負極封口板、8はポリプロピレン製ガス
ケツトである。ここでの正極は加熱脱水処理を施
した二酸化マンガンに導電剤としてアセチレンブ
ラツク、結着剤としてフツ素樹脂デイスパージヨ
ンをそれぞれ混練し、乾燥後、加圧成形により円
板状に成形した後、再度加熱乾燥処理を行なつた
ものである。又、電解液はプロピレンカーボネー
トと1,2ジメトキシエタンとの混合溶媒に溶質
として過塩素酸リチウムを1モル/濃度に溶解
させたものを用いた。3の正極リングは第2図に
示す外観形状をしており、これに外径が正極リン
グ内径よりも若干小さめの正極合剤を挿入して加
圧固定する。両者間の接触抵抗は加圧強度を高め
たり、又正極リング内面の正極合剤との接触面に
コロイダルカーボンなどの導電性被膜を焼付けた
りすることにより低い値に保つことができる。次
に正極リングを使用する理由について述べると、
その第1は正極合剤の欠け、割れを防止するため
の強度補強機能にある。実生産における電池組立
て工程においては衝撃、加圧、振動等により、正
極合剤が破壊し易い。正極リングはこれを確実に
防止できる上、その機械的強度が十分であること
から不必要に結着剤を増量せずにすむだけでな
く、逆に結着剤量を減少させ、その分量だけ活物
質を増量させることも可能で強度が大でかつ放電
容量の大きな電池とすることができる。又第2の
理由として安定な放電特性を維持させる働きがあ
る。これは特に放電による正極合剤の増加分量が
負極減量よりも著しく小さな活物質の場合に顕著
に表われるのであるが、たとえば放電途中で急に
電池電圧が低下してしまい放電不可能となること
に代表される現象が正極リングを用いない電池で
起こることがある。この原因は放電の進行に伴う
正極の膨張による増加量が負極減少量よりも少な
い場合、放電に伴い正負の両極の極間距離が広が
つてゆき、両極間に介在し両極を電解液で連絡し
ている含浸材の厚みを上回ると電池反応が停止し
てしまうことによる。正極リングを用いると正極
合剤外周は正極リングにより完全に固定されるた
め、外周方向への合剤膨張は起こらず膨張分はす
べて垂直方向、すなわち負極方向に振り向けられ
る。このため放電が進んでも正極合剤が膨張増加
しにくく放電途中での放電不能が比較的起こりや
すい電池、たとえば二酸化マンガンを主活物質と
して選んだ電池、あるいはフツ化黒鉛、酸化銅な
どを主活物質として比較的微弱な電流で長期間に
渡つて放電させた場合や、高温における放電など
においても、放電による体積増加分をすべて負極
方向に振りむけることにより正負極間距離の増大
を極力防止し、いかなる条件下においても安定な
放電特性を維持させることができる。又、正極リ
ングの使用は放電による合剤膨張の結果、合剤外
周部から脱落分離した微細合剤が引き起こす内部
短絡等を防止することができる。
FIG. 1 shows a cross-sectional view of a flat lithium battery as a conventional example. In this figure, 1
2 is a positive electrode case made of stainless steel, 2 is a disk-shaped positive electrode mixture whose main active material is manganese dioxide,
3 is a stainless steel positive electrode ring with an L-shaped cross section that covers the outer peripheral surface of the positive electrode mixture 2, 4 is a polypropylene nonwoven fabric separator that covers the positive electrode, 5 is an impregnating agent also made of polypropylene nonwoven fabric, and 6 is a disk-shaped lithium. A negative electrode was used as an active material, 7 was a stainless steel negative electrode sealing plate, and 8 was a polypropylene gasket. The positive electrode here is made by kneading manganese dioxide that has been subjected to heating and dehydration treatment, acetylene black as a conductive agent, and fluororesin dispersion as a binder. After drying, the mixture is molded into a disk shape by pressure molding. The heat drying process was performed again. The electrolytic solution used was one in which lithium perchlorate was dissolved as a solute in a mixed solvent of propylene carbonate and 1,2 dimethoxyethane to a concentration of 1 mole/concentration. The positive electrode ring No. 3 has the external shape shown in FIG. 2, and a positive electrode mixture having an outer diameter slightly smaller than the inner diameter of the positive electrode ring is inserted and fixed under pressure. The contact resistance between the two can be kept at a low value by increasing the pressure strength or by baking a conductive coating such as colloidal carbon on the contact surface with the positive electrode mixture on the inner surface of the positive electrode ring. Next, the reason for using a positive electrode ring is as follows.
The first is its strength reinforcement function to prevent chipping and cracking of the positive electrode mixture. In the battery assembly process in actual production, the positive electrode mixture is easily destroyed by shock, pressure, vibration, etc. The positive electrode ring can reliably prevent this, and since it has sufficient mechanical strength, it not only eliminates the need to increase the amount of binder unnecessarily, but also reduces the amount of binder and increases the amount by just that amount. It is also possible to increase the amount of active material, resulting in a battery with greater strength and discharge capacity. The second reason is to maintain stable discharge characteristics. This is particularly noticeable in the case of active materials in which the increase in the positive electrode mixture due to discharge is significantly smaller than the loss in negative electrode, but for example, if the battery voltage suddenly drops during discharge and discharging becomes impossible. The phenomenon typified by can occur in batteries that do not use a positive electrode ring. The reason for this is that if the amount of increase due to expansion of the positive electrode as the discharge progresses is less than the amount of decrease of the negative electrode, the distance between the positive and negative electrodes will increase as the discharge progresses, and the electrolyte will intervene between the two electrodes and connect them. This is because if the thickness of the impregnated material is exceeded, the battery reaction will stop. When a positive electrode ring is used, the outer periphery of the positive electrode mixture is completely fixed by the positive electrode ring, so the mixture does not expand in the outer peripheral direction, and all expansion is directed in the vertical direction, that is, in the direction of the negative electrode. For this reason, even when discharge progresses, the positive electrode mixture does not expand and increase, and discharge failure during discharge is relatively easy to occur in batteries, such as batteries that use manganese dioxide as the main active material, or batteries that use graphite fluoride, copper oxide, etc. as the main active material. Even when a material is discharged with a relatively weak current for a long period of time, or when discharged at high temperatures, the increase in the distance between the positive and negative electrodes is prevented as much as possible by directing all the volume increase due to discharge toward the negative electrode. , stable discharge characteristics can be maintained under any conditions. Furthermore, the use of the positive electrode ring can prevent internal short circuits caused by fine mixtures that have fallen off and separated from the outer periphery of the mixture as a result of expansion of the mixture due to discharge.

以上述べた如く、多くの長所を有する正極リン
グであるが、問題点が一つ存在する。それは比較
的大電流で放電した場合、正極リングを用いない
場合に比べて放電々圧が低いという点である。
種々検討の結果、この原因は放電時の正極反応表
面への電解液の供給能力不足によるものと思われ
る。つまり二酸化マンガン、フツ化黒鉛、酸化銅
など固体状酸化物、フツ化物を正極活物質とし、
有機電解液など非水電解液を用いるリチウム電池
では、電池の放電反応は負極から正極合剤へ向つ
てのリチウムイオンの一方移動反応であり、リチ
ウムイオンは溶媒和している非水溶媒と共に移動
するため、見かけ上は電解液の正極合剤中への移
動として観察される。即ち放電々流が大きい程放
電反応が激しいため、正極合剤中への電解液移動
量も多い。この様にして、電池放電がほぼ終了す
るころには電池内の電解液は、その大部分が正極
合剤中に移動吸収されてしまう。逆に、放電時に
おいて、必要な電解液量が正極合剤反応面に供給
されない場合、正、負両極間にリチウムイオンの
濃度勾配に基づく拡散分極が発生し、放電々圧は
この拡散分極分だけ低下する。この分極は大電流
放電ほど大きく、反応に必要なリチウムイオン、
云いかえれば電解液量をそれだけ必要とする。第
2図に示す正極リングを用いた電池では、第1図
に示す如く正極合剤外周面が正極リング3で覆わ
れているため、合剤外周部から合剤内部への電解
液の供給が、正極リングを用いない合剤に比べて
不十分であり、この電解液供給能力の差が放電々
圧の低下となつて現われるものと考えられる。こ
の点を改善するため従来いくつかの試みが行われ
た。第3図、第4図はその一例を示したものであ
る。第3図は正極リング3の外周面上部に切欠き
部3aを設けた例であり、第4図は正極リング3
の外周面に透孔3bを設けた例である。
As described above, although the positive electrode ring has many advantages, there is one problem. This is because when discharging at a relatively large current, the discharge pressure is lower than when no positive electrode ring is used.
As a result of various studies, it seems that the cause of this is insufficient ability to supply electrolyte to the positive electrode reaction surface during discharge. In other words, solid oxides and fluorides such as manganese dioxide, graphite fluoride, and copper oxide are used as positive electrode active materials.
In lithium batteries that use a non-aqueous electrolyte such as an organic electrolyte, the battery discharge reaction is a one-way transfer reaction of lithium ions from the negative electrode to the positive electrode mixture, and the lithium ions move together with the solvated non-aqueous solvent. Therefore, it is apparently observed as movement of the electrolyte into the positive electrode mixture. That is, the larger the discharge current is, the more intense the discharge reaction is, and therefore the amount of electrolyte transferred into the positive electrode mixture is also large. In this manner, most of the electrolyte in the battery is moved and absorbed into the positive electrode mixture when the battery discharge is almost completed. Conversely, if the required amount of electrolyte is not supplied to the positive electrode mixture reaction surface during discharge, diffusion polarization based on the concentration gradient of lithium ions will occur between the positive and negative electrodes, and the discharge pressure will depend on this diffusion polarization. only decreases. This polarization is larger as the current discharges, and the lithium ions necessary for the reaction,
In other words, that amount of electrolyte is required. In the battery using the positive electrode ring shown in Figure 2, the outer peripheral surface of the positive electrode mixture is covered with the positive electrode ring 3 as shown in Figure 1, so that the electrolyte cannot be supplied from the outer peripheral part of the mixture to the inside of the mixture. , is insufficient compared to a mixture that does not use a positive electrode ring, and it is thought that this difference in electrolyte supply ability appears as a decrease in discharge pressure. Several attempts have been made to improve this point. FIGS. 3 and 4 show an example thereof. FIG. 3 shows an example in which a notch 3a is provided on the upper part of the outer peripheral surface of the positive electrode ring 3, and FIG.
This is an example in which a through hole 3b is provided on the outer circumferential surface of.

これらの正極リングを用いた電池では、放電々
圧の点で多少の改善は見られるものの、たとえば
放電に伴い外周方向に膨張する正極合剤を正極リ
ングにて完全に抑止し、膨張分を全て負極リチウ
ムのある垂直方向へ振り向けるということが切欠
き部あるいは透孔があるため構造的に不十分であ
り、正極リングの効果を完全に発揮することがむ
ずかしい。このため先に述べた正極リングの機
能、即ち放電に伴い正極の膨張量が比較的小さい
放電条件、たとえば微弱電流での長期間放電や、
高温における放電、及び二酸化マンガンを主活物
質とする電池等における放電においても常に安定
した放電特性を維持させることや、あるいは放電
に伴い膨張する正極合剤が切き部3a、透孔3b
から漏出分離し、電解液中を浮遊して微少内部短
絡を引き起こす問題等を完全に防止することがで
きない。
Batteries using these cathode rings show some improvement in discharge pressure, but for example, the cathode ring completely suppresses the cathode mixture that expands in the outer circumferential direction due to discharge, and all of the expansion is absorbed by the cathode ring. It is structurally insufficient to orient the negative electrode lithium in the vertical direction due to the cutout or through hole, and it is difficult to fully demonstrate the effect of the positive electrode ring. For this reason, the function of the positive electrode ring mentioned earlier, that is, under discharge conditions where the amount of expansion of the positive electrode during discharge is relatively small, such as long-term discharge with a weak current,
To maintain stable discharge characteristics at all times even during discharge at high temperatures and discharge in batteries with manganese dioxide as the main active material, or to prevent the positive electrode mixture expanding with discharge from forming in the cut portions 3a and through holes 3b.
It is not possible to completely prevent problems such as leakage and separation from the electrolyte, floating in the electrolyte, and causing minute internal short circuits.

本考案は従来のこれら欠点を改善するものであ
り、以下に実施例にて説明する。第5図は本考案
の一実施例を示したもので、ステンレススチール
等の金属製正極リング3の側周面にリングの内径
方向に突出した縦溝3cを多数形設したものであ
り、正極合剤2をリング3内に加圧固定してもリ
ング内面に間隙が存在するものである。第6図は
第5図に示す本考案による正極リングを用いた電
池Aを、第2図に示す正極リングを用いた従来電
池B、及び正極リングを用いない電池Cとを比較
放電させた放電特性図である。第6図からわかる
如く本考案の電池Aの放電々圧は、正極リングを
用いない電池Cとほぼ同じであり、第2図に示す
従来の正極リングを用いた電池Bに比べてすぐれ
た放電特性を示す。又、本考案による正極リング
は先じ述べた正極リングの長所、即ち正極合剤の
強度補強機能、あるいは正極合剤の膨張が小さい
条件下での放電における安定な放電々圧維持機能
はそのまま保有している。この様に、従来の正極
リングの長所を保有しつつ、欠点である比較的大
電流放電において放電々圧が低下するという問題
を解決し得たのは、第5図に示す正極リングの側
周面にリングの内径方向に向つて形設した縦溝3
cによるものである。すなわちこの縦溝3cによ
り正極合剤とリング内周面との間に間隙が確保さ
れ、この間隙が放電に伴い合剤外周面から合剤内
部へ向つて浸入しようとする電解液、云いかえれ
ば電池放電反応に必要なリチウムイオンの移動を
円滑にさせる働きを持ち、電解液は該間隙を伝つ
て正極合剤側面部へ供給される。この結果第6図
に示す如き放電々圧の改善を可能にできたものと
思われる。第7図〜第9図は本考案による正極リ
ングの他の実施例を示すものであり、第7図は縦
溝3cに加え更にリング内方へ突出する横溝3d
を形設したもの、第8図は互いに交差する斜め溝
3eを斜め方向に形設したものである。又第9図
はリング内方向に向つて突出した半球状突起3f
を形設したものである。いずれも正極合剤周面に
溝あるいは突起が接するが、合剤とリング内面と
の間には間隙が確保されている。
The present invention is intended to improve these conventional drawbacks, and will be explained below using examples. FIG. 5 shows an embodiment of the present invention, in which a large number of vertical grooves 3c protruding in the inner diameter direction of the ring are formed on the side circumferential surface of a positive electrode ring 3 made of metal such as stainless steel. Even if the mixture 2 is pressurized and fixed inside the ring 3, a gap still exists on the inner surface of the ring. Figure 6 shows a comparative discharge of battery A using the cathode ring according to the present invention shown in Fig. 5, conventional battery B using the cathode ring shown in Fig. 2, and battery C not using the cathode ring. It is a characteristic diagram. As can be seen from Figure 6, the discharge pressure of Battery A of the present invention is almost the same as Battery C which does not use a positive electrode ring, and has a superior discharge pressure compared to Battery B which uses a conventional positive electrode ring shown in Figure 2. Show characteristics. In addition, the positive electrode ring according to the present invention retains the advantages of the positive electrode ring mentioned earlier, namely, the function of reinforcing the strength of the positive electrode mixture or the function of maintaining stable discharge pressure during discharge under conditions where the expansion of the positive electrode mixture is small. are doing. In this way, the side circumference of the positive electrode ring shown in Fig. 5 was able to solve the problem of a decrease in discharge pressure in relatively large current discharge while retaining the advantages of the conventional positive electrode ring. Vertical groove 3 formed on the surface toward the inner diameter of the ring
This is due to c. In other words, a gap is secured between the positive electrode mixture and the inner circumferential surface of the ring by the vertical groove 3c, and this gap allows the electrolyte to infiltrate from the outer circumferential surface of the mixture toward the inside of the mixture due to discharge, in other words. It has the function of smoothing the movement of lithium ions necessary for the battery discharge reaction, and the electrolytic solution is supplied to the side surface of the positive electrode mixture through the gap. As a result, it seems possible to improve the discharge pressure as shown in FIG. Figures 7 to 9 show other embodiments of the positive electrode ring according to the present invention, and Figure 7 shows a horizontal groove 3d that protrudes inward of the ring in addition to the vertical groove 3c.
Figure 8 shows an example in which diagonal grooves 3e intersecting each other are formed in an oblique direction. Also, Fig. 9 shows a hemispherical protrusion 3f protruding toward the inside of the ring.
It is shaped like this. In either case, a groove or protrusion is in contact with the circumferential surface of the positive electrode mixture, but a gap is maintained between the mixture and the inner surface of the ring.

以上述べた如く本考案は円板状正極合剤の外周
面を覆いかつこれを保持固定する正極リングの合
剤接触面に溝又は突起等により凸凹状の粗面を形
設し、合剤とリング内面との間に間隙を確保する
ことにより、正極リングの持つ長所を保有したま
ま従来欠点とされていた比較的大電流放電におい
て放電々圧が低くなるという問題を改善したもの
で、第3図、第4図に示す従来の改善例に比べて
すぐれたものである。更に又加工が容易であるた
め正極リングの生産性にもすぐれているなどその
価値は大きい。
As mentioned above, the present invention forms a rough rough surface with grooves or protrusions on the mixture contacting surface of the positive electrode ring that covers the outer peripheral surface of the disk-shaped positive electrode mixture and holds and fixes it. By securing a gap between the inner surface of the ring and the inner surface of the ring, it has improved the problem of low discharge pressure during relatively large current discharge, which was considered a conventional drawback, while retaining the advantages of the positive electrode ring. This is superior to the conventional improved example shown in FIGS. Furthermore, since it is easy to process, the productivity of the positive electrode ring is excellent, and its value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の扁平形電池の断面図、第2図は
従来の正極リング外観図、第3図、第4図は正極
リングの他の従来例を示す図、第5図は本考案に
よる正極リングの一実施例を示す図、第6図は本
考案電池と従来電池との放電特性比較図、第7図
〜第9図は本考案による正極リングの他の実施例
を示す図である。 2……正極合剤、3……正極リング、4……セ
パレータ、5……含浸剤、3c……縦溝、3d…
…横溝、3e……斜め溝、3f……半球状突起。
Fig. 1 is a sectional view of a conventional flat battery, Fig. 2 is an external view of a conventional positive electrode ring, Figs. 3 and 4 are views showing other conventional examples of positive electrode rings, and Fig. 5 is according to the present invention. FIG. 6 is a diagram showing a discharge characteristic comparison between a battery of the present invention and a conventional battery, and FIGS. 7 to 9 are diagrams showing other embodiments of the positive electrode ring of the present invention. . 2... Positive electrode mixture, 3... Positive electrode ring, 4... Separator, 5... Impregnating agent, 3c... Vertical groove, 3d...
...Transverse groove, 3e...Oblique groove, 3f...Semispherical projection.

Claims (1)

【実用新案登録請求の範囲】 (1) 円板状の正極合剤と電解液を保持したセパレ
ータ部材と負極活物質とを備え、前記円板状正
極合剤の外周面を覆うとともにこれを保持固定
する金属製正極リングの正極合剤との接触面に
凹凸を形設して粗面とし、かつ合剤とリング内
面との間に間隙を設けてなる扁平形電池。 (2) 前記負極がリチウムからなり、電解液が非水
電解液からなる実用新案登録請求の範囲第1項
記載の扁平形電池。
[Claims for Utility Model Registration] (1) A separator member holding a disk-shaped positive electrode mixture and an electrolyte, and a negative electrode active material, which covers and holds the outer peripheral surface of the disk-shaped positive electrode mixture. A flat battery in which a metal positive electrode ring to be fixed has a rough surface formed by forming irregularities on the contact surface with the positive electrode mixture, and a gap is provided between the mixture and the inner surface of the ring. (2) The flat battery according to claim 1, wherein the negative electrode is made of lithium and the electrolyte is a non-aqueous electrolyte.
JP5746581U 1981-04-20 1981-04-20 Expired JPS635180Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5746581U JPS635180Y2 (en) 1981-04-20 1981-04-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5746581U JPS635180Y2 (en) 1981-04-20 1981-04-20

Publications (2)

Publication Number Publication Date
JPS57170275U JPS57170275U (en) 1982-10-26
JPS635180Y2 true JPS635180Y2 (en) 1988-02-12

Family

ID=29853940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5746581U Expired JPS635180Y2 (en) 1981-04-20 1981-04-20

Country Status (1)

Country Link
JP (1) JPS635180Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641345Y2 (en) * 1990-03-05 1994-10-26 富士電気化学株式会社 Flat type non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPS57170275U (en) 1982-10-26

Similar Documents

Publication Publication Date Title
JP2018092857A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US2562215A (en) Primary cell
JPS635180Y2 (en)
JPH07262986A (en) Non-aqueous electrolyte battery and manufacture thereof
JPH0322346A (en) Organic electrolyte battery
JPH10154527A (en) Positive electrode conductive material for sodium-sulfur battery
JPH0570264B2 (en)
JPS6321098Y2 (en)
JPS636984B2 (en)
JP2686072B2 (en) Non-aqueous electrolyte battery
JPS59230257A (en) Positive electrode for nonaqueous electrolyte battery
JP2735890B2 (en) Flat battery
JPH0318308B2 (en)
JPH0127562Y2 (en)
JPS6366863A (en) Sodium-sulfur battery
JPH04121654U (en) organic electrolyte battery
JPS6191862A (en) Manufacture of nonaqueous electrolyte battery
JPS58129764A (en) Nonaqueous electrolytic cell
JPH0426051A (en) Organic electrolyte battery
JP2834731B2 (en) Non-aqueous secondary battery
JPS63259967A (en) Organic electrolyte cell
JPH01309251A (en) Flat type organic electrolyte battery
JPH0215567A (en) Nonaqueous type electrolyte battery
JPS61165964A (en) Organic electrolytic solution battery
JPH0279366A (en) Organic electrolyte battery