JPH07262986A - Non-aqueous electrolyte battery and manufacture thereof - Google Patents

Non-aqueous electrolyte battery and manufacture thereof

Info

Publication number
JPH07262986A
JPH07262986A JP5536194A JP5536194A JPH07262986A JP H07262986 A JPH07262986 A JP H07262986A JP 5536194 A JP5536194 A JP 5536194A JP 5536194 A JP5536194 A JP 5536194A JP H07262986 A JPH07262986 A JP H07262986A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrode mixture
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5536194A
Other languages
Japanese (ja)
Inventor
Toshio Mizuno
利男 水野
Masatake Nishio
昌武 西尾
Tomohisa Nozue
智久 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5536194A priority Critical patent/JPH07262986A/en
Publication of JPH07262986A publication Critical patent/JPH07262986A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To stabilize the discharging performance at the time of heavy load discharge without increasing the number of part items in a coin type, bobbin type or spiral type non-aqueous electrolyte battery. CONSTITUTION:The sublimable material is added to the positive electrode active material at 1-5% in relation to the positive electrode active material, and they are mixed for granulation, and formed into a predetermined shape. Thereafter, the porous positive electrode mix 5 of 34-40% pore ratio and of 80% or more pore utilization factor is obtained by a method for heating the mixture of the positive electrode active material and the subliming material for drying to vaporize the subliming material. Furthermore, a negative electrode 7 is faced to the positive electrode mix 5 through a separator 6 to assemble a power generating element 8, and the power generating element 8 is filled with the electrolyte. The subliming material included at the time of forming is vaporized by the heating for drying, and the porous positive electrode mix 5 quickly absorbs the non-aqueous electrolyte to stably hold a large quantity of the non-aqueous electrode (0.18g or more for 1g of the positive electrode mix).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極合剤と負極とをセ
パレータを介して対向させた発電要素に非水電解液を注
入して構成されるコイン形、ボビン形、或いはスパイラ
ル形の非水電解液電池およびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coin-shaped, bobbin-shaped or spiral-shaped non-aqueous electrolyte constructed by injecting a non-aqueous electrolyte into a power-generating element in which a positive electrode mixture and a negative electrode are opposed to each other with a separator interposed therebetween. The present invention relates to a water electrolyte battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、この種の非水電解液電池(例え
ば、リチウム電池)の正極合剤を製造する際には、二酸
化マンガンを主剤とし、黒鉛またはカーボンブラックを
導電材とし、ポリテトラフルオロエチレンをバインダー
とする正極活物質を湿式または乾式で混合・造粒し、所
定の成形圧力でペレット状またはボビン状に成形し、こ
れを真空乾燥して正極合剤を製造していた。
2. Description of the Related Art Conventionally, when manufacturing a positive electrode mixture for a non-aqueous electrolyte battery of this type (for example, a lithium battery), manganese dioxide is used as a main agent, graphite or carbon black is used as a conductive material, and polytetrafluorocarbon is used. A positive electrode active material using ethylene as a binder is mixed and granulated by a wet or dry method, molded into a pellet shape or a bobbin shape under a predetermined molding pressure, and vacuum dried to manufacture a positive electrode mixture.

【0003】この際、正極合剤の成形圧力が低すぎる
と、正極合剤として必要な強度が不足し、割れや欠けが
生じやすくなるため、実用性に乏しく、逆に正極合剤の
成形圧力が高すぎると、正極合剤の空孔率が不足して非
水電解液の保持量が少なくなるので、放電性能が不安定
になる。そのため、正極合剤の成形圧力は3〜4トンの
範囲内とするのが通常である。
At this time, if the molding pressure of the positive electrode mixture is too low, the strength required as the positive electrode mixture is insufficient and cracks and chips are likely to occur, which is not practical and, conversely, the molding pressure of the positive electrode mixture. When the value is too high, the porosity of the positive electrode mixture becomes insufficient and the amount of the non-aqueous electrolyte retained becomes small, so that the discharge performance becomes unstable. Therefore, the molding pressure of the positive electrode mixture is usually within the range of 3 to 4 tons.

【0004】[0004]

【発明が解決しようとする課題】しかし、これでは、真
空乾燥後の正極合剤の成形密度が2.90〜3.05g
/ccとなるため空孔率が32〜34%となり、また空孔
利用率(即ち、空孔のうち実際に非水電解液が保持され
る吸液空間の比率)が80%に達しないので、非水電解
液の保持量は正極合剤1g当り0.18g未満となる。
その結果、通常の放電性能は安定するものの、パルス放
電などの重負荷放電時の放電性能が不安定なものとなっ
てしまう危険性が高い。
However, in this case, the molding density of the positive electrode mixture after vacuum drying is 2.90 to 3.05 g.
/ Cc, the porosity is 32 to 34%, and the vacancy utilization rate (that is, the ratio of the liquid absorption space in which the non-aqueous electrolyte is actually held) does not reach 80%. The retained amount of the non-aqueous electrolyte solution is less than 0.18 g per 1 g of the positive electrode mixture.
As a result, the normal discharge performance is stable, but there is a high risk that the discharge performance will become unstable during heavy load discharge such as pulse discharge.

【0005】また、こうした事態を回避するため、放電
に伴なう正極合剤の膨張を負極側に規制するようなリン
グ等を用いることにより、非水電解液の保持量が正極合
剤1g当り0.16g程度でも重負荷放電時の放電性能
を安定化せんとする方法があるが、この場合、上記リン
グ等を使用する必要があるため部品点数が増加するとい
う不都合があった。
Further, in order to avoid such a situation, by using a ring or the like for restricting the expansion of the positive electrode mixture due to discharge to the negative electrode side, the amount of the non-aqueous electrolyte retained per 1 g of the positive electrode mixture is increased. There is a method of stabilizing the discharge performance at the time of heavy load discharge even with about 0.16 g, but in this case, there is a disadvantage that the number of parts increases because it is necessary to use the ring or the like.

【0006】本発明は、上記事情に鑑み、部品点数を増
やすことなく重負荷放電時の放電性能を安定化すること
が可能な非水電解液電池およびその製造方法を提供する
ことを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a non-aqueous electrolyte battery capable of stabilizing discharge performance during heavy load discharge without increasing the number of parts, and a method for manufacturing the same. .

【0007】[0007]

【課題を解決するための手段】即ち、本発明のうち非水
電解液電池の発明は、多孔質の正極合剤(5)と負極
(7)とをセパレータ(6)を介して対向させた発電要
素(8)に非水電解液を注入して構成される非水電解液
電池(1)において、前記正極合剤が、34〜40%の
空孔率を有し、かつ80%以上の空孔利用率を有するよ
うにして構成される。また、本発明のうち非水電解液電
池の製造方法の発明は、正極活物質に昇華性物質を該正
極活物質に対して1〜5%添加し、次いで、これを混合
・造粒して所定の形状に成形し、その後、これを加熱乾
燥して当該昇華性物質を気化させて多孔質の正極合剤
(5)を調製し、更に、前記正極合剤にセパレータ
(6)を介して負極(7)を対向させて発電要素(8)
を組み立てると共に、前記発電要素に非水電解液を注入
するようにして構成される。更に、正極活物質に分解・
蒸発性物質を該正極活物質に対して1〜5%添加し、次
いで、これを混合・造粒して所定の形状に成形し、その
後、これを真空乾燥して当該分解・蒸発性物質を分解ま
たは蒸発させて多孔質の正極合剤(5)を調製し、更
に、前記正極合剤にセパレータ(6)を介して負極
(7)を対向させて発電要素(8)を組み立てると共
に、前記発電要素に非水電解液を注入するようにして構
成される。
That is, in the invention of the non-aqueous electrolyte battery of the present invention, the porous positive electrode mixture (5) and the negative electrode (7) are opposed to each other via the separator (6). In the non-aqueous electrolyte battery (1) configured by injecting the non-aqueous electrolyte into the power generation element (8), the positive electrode mixture has a porosity of 34 to 40% and a porosity of 80% or more. It is configured to have a hole utilization rate. In the invention of the method for producing a non-aqueous electrolyte battery of the present invention, the sublimable substance is added to the positive electrode active material in an amount of 1 to 5% based on the positive electrode active material, and then the mixture is mixed and granulated. It is molded into a predetermined shape, and then heated and dried to vaporize the sublimable substance to prepare a porous positive electrode mixture (5), and further to the positive electrode mixture through a separator (6). Power generating element (8) with the negative electrode (7) facing each other
Is assembled and the non-aqueous electrolytic solution is injected into the power generating element. Furthermore, it decomposes into a positive electrode active material.
An evaporative substance is added to the positive electrode active material in an amount of 1 to 5%, and then the mixture is mixed and granulated to form a predetermined shape, which is then vacuum dried to obtain the decomposable and evaporative substance. A porous positive electrode mixture (5) is prepared by decomposing or evaporating, and a negative electrode (7) is made to face the positive electrode mixture through a separator (6) to assemble a power generating element (8). It is configured to inject a non-aqueous electrolyte into the power generation element.

【0008】ここで、「分解・蒸発性物質」とは、真空
乾燥によって分解または蒸発する無機または有機物質を
意味する。
Here, the "decomposable / evaporable substance" means an inorganic or organic substance which is decomposed or evaporated by vacuum drying.

【0009】なお、括弧内の番号等は、図面における対
応する要素を表わす便宜的なものであり、従って、本発
明は図面上の記載に限定拘束されるものではない。この
ことは、「特許請求の範囲」及び「作用」の欄について
も同様である。
The numbers in parentheses are for convenience of showing the corresponding elements in the drawings, and the present invention is not limited to the description in the drawings. This also applies to the “claims” and “action” columns.

【0010】[0010]

【作用】上記した構成により、本発明は、成形時に含ま
れる昇華性物質、分解・蒸発性物質が乾燥によって気
化、分解または蒸発し、多孔質の正極合剤(5)として
非水電解液を迅速に吸液し、多量(正極合剤1g当り
0.18g以上)の非水電解液を安定して保持し得るよ
うに作用する。
According to the present invention, the sublimable substance and the decomposable / evaporable substance contained during molding are vaporized, decomposed or evaporated by drying, and the nonaqueous electrolytic solution is used as the porous positive electrode mixture (5). It absorbs liquid rapidly and acts so that a large amount (0.18 g or more per 1 g of the positive electrode mixture) of non-aqueous electrolyte can be stably held.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明による非水電解液電池の一実施例を
示す正面図、図2は非水電解液電池の重負荷放電特性を
示すグラフである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a front view showing an embodiment of the non-aqueous electrolyte battery according to the present invention, and FIG. 2 is a graph showing heavy load discharge characteristics of the non-aqueous electrolyte battery.

【0012】本発明による非水電解液電池であるコイン
形のリチウム電池1は、図1に示すように、正極缶2を
有しており、正極缶2内には、集電体3、正極合剤5、
セパレータ6及びリチウム負極7からなる発電要素8が
載置されている。即ち、正極缶2の内面中央部には、ペ
レット状に成形された多孔質の正極合剤5が集電体3を
介して載置されており、正極合剤5の上側には、ポリプ
ロピレン不織布からなるセパレータ6を介して円盤状の
リチウム負極7が載置されている。また、リチウム負極
7の上側には負極端子9が載置されており、負極端子9
の周縁部は、ポリプロピレンからなるリング状のガスケ
ット10を介して前記正極缶2の立上り部に把持されて
いる。なお、正極合剤5、セパレータ6及び正極合剤5
の周囲の空間には、プロピレンカーボネートとジメトキ
シエタンとの混合溶液にLiClO4 を溶解した非水電
解液が保持されている。
A coin-shaped lithium battery 1 which is a non-aqueous electrolyte battery according to the present invention has a positive electrode can 2 as shown in FIG. 1, and a current collector 3 and a positive electrode are provided in the positive electrode can 2. Mixture 5,
A power generation element 8 including a separator 6 and a lithium negative electrode 7 is placed. That is, in the center of the inner surface of the positive electrode can 2, a porous positive electrode mixture 5 formed in a pellet shape is placed via the current collector 3, and on the upper side of the positive electrode mixture 5, a polypropylene nonwoven fabric is placed. A disk-shaped lithium negative electrode 7 is placed via a separator 6 made of. A negative electrode terminal 9 is placed on the upper side of the lithium negative electrode 7,
The peripheral portion of is held by the rising portion of the positive electrode can 2 via a ring-shaped gasket 10 made of polypropylene. The positive electrode mixture 5, the separator 6 and the positive electrode mixture 5
A non-aqueous electrolyte solution in which LiClO 4 is dissolved in a mixed solution of propylene carbonate and dimethoxyethane is held in the space around the.

【0013】ここで、前記正極合剤5は、その空孔率が
34〜40%、空孔利用率が80%以上となっている。
そのため、非水電解液の保持量は正極合剤1g当り0.
18g以上が確保されるので、通常の放電性能のみなら
ずパルス放電などの重負荷放電時の放電性能も安定す
る。
Here, the positive electrode mixture 5 has a porosity of 34 to 40% and a porosity utilization rate of 80% or more.
Therefore, the amount of the non-aqueous electrolyte retained is 0.1% per 1 g of the positive electrode mixture.
Since 18 g or more is secured, not only normal discharge performance but also discharge performance during heavy load discharge such as pulse discharge is stabilized.

【0014】ところで、コイン形のリチウム電池1を製
造する際には、まず正極合剤5を調製する。それには、
二酸化マンガン(主剤)と、黒鉛またはカーボンブラッ
ク(導電材)と、ポリテトラフルオロエチレン(バイン
ダー)とからなる正極活物質に、粉末状の樟脳、ナフタ
リン等の昇華性物質を添加する。昇華性物質の添加量は
正極活物質に対して1〜5%とする。次いで、これを混
合・造粒してペレット状に成形した後、加熱乾燥する。
すると、昇華性物質が気化し、その結果、空孔率が34
〜40%で空孔利用率が80%以上の多孔質の正極合剤
5が調製される。
When manufacturing the coin-shaped lithium battery 1, the positive electrode mixture 5 is first prepared. It has
A powdery camphor, a sublimable substance such as naphthalene is added to a positive electrode active material composed of manganese dioxide (main ingredient), graphite or carbon black (conductive material), and polytetrafluoroethylene (binder). The sublimable substance is added in an amount of 1 to 5% with respect to the positive electrode active material. Next, this is mixed and granulated to form a pellet, and then dried by heating.
Then, the sublimable substance is vaporized, resulting in a porosity of 34
A porous positive electrode mixture 5 having a porosity utilization rate of 80% or more is prepared at -40%.

【0015】こうして、多孔質の正極合剤5が調製され
たところで、この正極合剤5を用いて公知の手法でコイ
ン形のリチウム電池1を組み立てる。即ち、正極缶2の
内面中央部に集電体3を溶接し、該集電体3に前記正極
合剤5を圧着する。次に、正極合剤5の上側にセパレー
タ6を載置し、この上から非水電解液を注入する。一
方、円盤状に打抜き加工されたリチウム負極7を負極端
子9の内面中央部に圧着すると共に、負極端子9の周縁
部にガスケット10を嵌着する。そして、正極缶2の上
に負極端子9を被せてリチウム負極7がセパレータ6を
介して正極合剤5に対向するようにした後、正極缶2の
立上り部を内方にかしめて封口する。ここで、コイン形
のリチウム電池1の組立が終了する。
When the porous positive electrode mixture 5 is prepared in this way, the positive electrode mixture 5 is used to assemble the coin-shaped lithium battery 1 by a known method. That is, the current collector 3 is welded to the center of the inner surface of the positive electrode can 2, and the positive electrode mixture 5 is pressure-bonded to the current collector 3. Next, the separator 6 is placed on the upper side of the positive electrode mixture 5, and the nonaqueous electrolytic solution is injected from above. On the other hand, the lithium negative electrode 7 stamped into a disc shape is pressed onto the center of the inner surface of the negative electrode terminal 9, and the gasket 10 is fitted onto the peripheral edge of the negative electrode terminal 9. Then, after covering the positive electrode can 2 with the negative electrode terminal 9 so that the lithium negative electrode 7 faces the positive electrode mixture 5 with the separator 6 in between, the rising part of the positive electrode can 2 is caulked inward to seal it. At this point, the assembly of the coin-shaped lithium battery 1 is completed.

【0016】なお、上述の実施例においては、空孔率が
34〜40%で空孔利用率が80%以上の多孔質の正極
合剤5を調製するのに昇華性物質を用いた場合について
説明したが、昇華性物質の代わりに分解・蒸発性物質
(真空乾燥によって分解または蒸発する無機または有機
物質であり、例えば、氷、ポリビニルピロリドン、ポリ
ビニルブチラール等)を用いることも可能である。以
下、分解・蒸発性物質を用いて多孔質の正極合剤5を調
製する場合について説明する。
In the above-mentioned embodiment, the case where a sublimable substance is used for preparing the porous positive electrode mixture 5 having a porosity of 34 to 40% and a porosity utilization rate of 80% or more. As described above, a decomposable / evaporable substance (an inorganic or organic substance that decomposes or evaporates by vacuum drying, such as ice, polyvinylpyrrolidone, or polyvinyl butyral) can be used instead of the sublimable substance. Hereinafter, a case of preparing the porous positive electrode mixture 5 using a decomposable / evaporable substance will be described.

【0017】即ち、分解・蒸発性物質として氷を用いる
場合には、二酸化マンガン(主剤)と、黒鉛またはカー
ボンブラック(導電材)と、ポリテトラフルオロエチレ
ン(バインダー)とからなる正極活物質に、水を添加し
た後、−10℃に冷却することにより、水を凝固させて
氷の状態にする。水の添加量は正極活物質に対して1〜
5%とする。次いで、これを混合・造粒してペレット状
に成形した後、真空乾燥する。すると、氷が蒸発し、そ
の結果、空孔率が34〜40%で空孔利用率が80%以
上の多孔質の正極合剤5が調製される。
That is, when ice is used as the decomposable / evaporable substance, a positive electrode active material composed of manganese dioxide (main agent), graphite or carbon black (conductive material), and polytetrafluoroethylene (binder) is added. After adding water, it is cooled to −10 ° C. to solidify the water into an ice state. The amount of water added is 1 to the positive electrode active material.
5%. Next, this is mixed and granulated to form a pellet, and then vacuum dried. Then, the ice evaporates, and as a result, a porous positive electrode mixture 5 having a porosity of 34 to 40% and a porosity utilization rate of 80% or more is prepared.

【0018】また、分解・蒸発性物質としてポリビニル
ピロリドン(以下「PVP」と略記する)又はポリビニ
ルブチラール(以下「PVB」と略記する)を用いる場
合には、二酸化マンガン(主剤)と、黒鉛またはカーボ
ンブラック(導電材)と、ポリテトラフルオロエチレン
(バインダー)とからなる正極活物質に、PVP又はP
VBを添加する。PVP又はPVBの添加量は正極活物
質に対して1〜5%とする。次いで、これを混合・造粒
してペレット状に成形した後、真空乾燥する。すると、
PVP又はPVBが分解または蒸発し、その結果、空孔
率が34〜40%で空孔利用率が80%以上の多孔質の
正極合剤5が調製されるのである。
When polyvinylpyrrolidone (hereinafter abbreviated as "PVP") or polyvinyl butyral (hereinafter abbreviated as "PVB") is used as the decomposable / evaporable substance, manganese dioxide (main agent), graphite or carbon is used. PVP or P is added to the positive electrode active material composed of black (conductive material) and polytetrafluoroethylene (binder).
Add VB. The addition amount of PVP or PVB is 1 to 5% with respect to the positive electrode active material. Next, this is mixed and granulated to form a pellet, and then vacuum dried. Then,
PVP or PVB is decomposed or evaporated, and as a result, a porous positive electrode mixture 5 having a porosity of 34 to 40% and a porosity utilization rate of 80% or more is prepared.

【0019】上述の効果を確認するため、樟脳、氷、P
VPをそれぞれ正極活物質に1、3、5%添加し、金型
を用いて4、6トンの成形圧力で成形して多孔質の正極
合剤(実施例)を調製した。なお、樟脳、氷、PVPの
添加量が5%を越えると、成形時に正極合剤が金型に貼
り付く現象がみられた。また、比較例として、正極活物
質に昇華性物質も分解・蒸発性物質も添加せず、金型を
用いて2、3、4、5、6トンの成形圧力で成形した従
来の正極合剤(従来例)を調製した。これらの正極合剤
について、成形密度および空孔率を求めた。空孔率は、
合剤粒子を非水電解液の成分(溶質を含まないプロピレ
ンカーボネート、ジメトキシエタン)中で真空引きして
求めた正極合剤の真比重と成形密度から、数1に示す数
式を用いて算出した。また、正極合剤を非水電解液中に
浸漬したとき(通常の電池組立時の非水電解液の吸液状
態を想定)の吸液量から求めた吸液できる空孔、即ち吸
液空間を求め、この吸液空間と空孔率から、数2に示す
数式を用いて空孔利用率を算出した。
In order to confirm the above effects, camphor, ice, P
VP was added to the positive electrode active material in an amount of 1, 3 and 5%, respectively, and the mixture was molded with a molding pressure of 4 and 6 tons to prepare a porous positive electrode mixture (Example). When the amounts of camphor, ice and PVP added exceeded 5%, a phenomenon was observed in which the positive electrode mixture stuck to the mold during molding. In addition, as a comparative example, a conventional positive electrode mixture formed by using a mold without adding a sublimable substance or a decomposable / evaporable substance to a positive electrode active material and molding with a molding pressure of 2, 3, 4, 5, or 6 tons. (Conventional example) was prepared. The molding density and porosity of these positive electrode mixtures were determined. The porosity is
It was calculated from the true specific gravity and the molding density of the positive electrode mixture obtained by evacuation of the mixture particles in the components of the non-aqueous electrolyte (propylene carbonate and dimethoxyethane containing no solute) using the mathematical formula shown in Formula 1. . In addition, the pores that can be absorbed, that is, the absorption space, obtained from the absorption amount when the positive electrode mixture is immersed in the non-aqueous electrolyte (assuming the absorption state of the non-aqueous electrolyte during normal battery assembly). Then, the void utilization rate was calculated from the liquid absorption space and the void rate using the mathematical formula shown in Formula 2.

【0020】[0020]

【数1】 空孔率(%)=100×(1−成形密度÷真比重)## EQU1 ## Porosity (%) = 100 × (1-molding density ÷ true specific gravity)

【0021】[0021]

【数2】 空孔利用率(%)=100×(吸液空間÷空孔率)## EQU00002 ## Porosity utilization rate (%) = 100 × (liquid absorption space / porosity)

【0022】これらの結果をまとめて表1に示す。The results are summarized in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、従来例では、成
形圧力の増大に伴ない、成形密度が高くなると共に、空
孔率が低下する傾向にある。また、空孔率と吸液空間と
の差が増大しており、高圧力ほど非水電解液が保持され
ない空孔が多くなっていることが分かる。これに対して
実施例では、成形圧力が高くても、昇華性物質または分
解・蒸発性物質の添加により非水電解液が充填されない
空孔(隠蔽空間)が少なくなっており、空孔の有効利用
が図られていると言える。
As is apparent from Table 1, in the conventional example, as the molding pressure increases, the molding density tends to increase and the porosity tends to decrease. Further, it can be seen that the difference between the porosity and the liquid absorption space is increasing, and the higher the pressure is, the larger the number of pores in which the non-aqueous electrolyte is not held. On the other hand, in the examples, even if the molding pressure is high, the number of pores (concealed space) not filled with the non-aqueous electrolyte is reduced due to the addition of the sublimable substance or the decomposable / evaporable substance. It can be said that it is being used.

【0025】また、上記の実施例と従来例について重負
荷放電特性(2.7kΩ)を比較した。その結果を図2
に示す。図2において、は樟脳、は氷、はPVP
を用いた場合の放電曲線であり、は従来例の放電曲線
である。図2から、従来例(図2の)に比べて実施例
(図2の、、)は重負荷放電時の放電性能が安定
化していることが判る。
Further, heavy load discharge characteristics (2.7 kΩ) were compared between the above embodiment and the conventional example. The result is shown in Figure 2.
Shown in. In Fig. 2, is camphor, is ice, and is PVP
Is a discharge curve when is used, and is a discharge curve of a conventional example. It can be seen from FIG. 2 that the discharge performance at the time of heavy load discharge is stabilized in the embodiment (FIG. 2) compared to the conventional example (FIG. 2).

【0026】なお、上述の実施例においては、コイン形
のリチウム電池1について説明したが、ボビン形やスパ
イラル形のリチウム電池に本発明を適用することも可能
である。
Although the coin type lithium battery 1 has been described in the above embodiment, the present invention can be applied to a bobbin type or spiral type lithium battery.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
成形時に含まれる昇華性物質、分解・蒸発性物質が乾燥
によって気化、分解または蒸発し、多孔質の正極合剤5
として非水電解液を迅速に吸液し、多量(正極合剤1g
当り0.18g以上)の非水電解液を安定して保持し得
ることから、部品点数を増やすことなく重負荷放電時の
放電性能を安定化することが可能となる。
As described above, according to the present invention,
The sublimable substance and the decomposable / evaporable substance contained in the molding are vaporized, decomposed or evaporated by drying, and the porous positive electrode mixture 5
Quickly absorbs non-aqueous electrolyte as a large amount (1 g of positive electrode mixture)
Since 0.18 g or more) of non-aqueous electrolyte can be stably held, it is possible to stabilize the discharge performance during heavy load discharge without increasing the number of parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による非水電解液電池の一実施例を示す
正面図である。
FIG. 1 is a front view showing an embodiment of a non-aqueous electrolyte battery according to the present invention.

【図2】非水電解液電池の重負荷放電特性を示すグラフ
である。
FIG. 2 is a graph showing heavy load discharge characteristics of a non-aqueous electrolyte battery.

【符号の説明】[Explanation of symbols]

1……非水電解液電池 5……多孔質の正極合剤 6……セパレータ 7……負極 8……発電要素 1 ... Non-aqueous electrolyte battery 5 ... Porous positive electrode mixture 6 ... Separator 7 ... Negative electrode 8 ... Power generation element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質の正極合剤(5)と負極(7)と
をセパレータ(6)を介して対向させた発電要素(8)
に非水電解液を注入して構成される非水電解液電池
(1)において、 前記正極合剤が、34〜40%の空孔率を有し、かつ8
0%以上の空孔利用率を有することを特徴とする非水電
解液電池。
1. A power generation element (8) in which a porous positive electrode mixture (5) and a negative electrode (7) are opposed to each other through a separator (6).
In the non-aqueous electrolyte battery (1) configured by injecting a non-aqueous electrolyte into the positive electrode mixture, the positive electrode mixture has a porosity of 34 to 40%, and 8
A non-aqueous electrolyte battery having a pore utilization rate of 0% or more.
【請求項2】 正極活物質に昇華性物質を該正極活物質
に対して1〜5%添加し、 次いで、これを混合・造粒して所定の形状に成形し、 その後、これを加熱乾燥して当該昇華性物質を気化させ
て多孔質の正極合剤(5)を調製し、 更に、前記正極合剤にセパレータ(6)を介して負極
(7)を対向させて発電要素(8)を組み立てると共
に、 前記発電要素に非水電解液を注入するようにして構成し
た非水電解液電池の製造方法。
2. A sublimable substance is added to the positive electrode active material in an amount of 1 to 5% with respect to the positive electrode active material, which is then mixed and granulated to form a predetermined shape, which is then dried by heating. Then, the sublimable substance is vaporized to prepare a porous positive electrode mixture (5), and further, the negative electrode (7) is opposed to the positive electrode mixture through the separator (6) to generate a power generating element (8). And a method for manufacturing a non-aqueous electrolyte battery, in which the non-aqueous electrolyte solution is configured to be injected into the power generation element.
【請求項3】 正極活物質に分解・蒸発性物質を該正極
活物質に対して1〜5%添加し、 次いで、これを混合・造粒して所定の形状に成形し、 その後、これを真空乾燥して当該分解・蒸発性物質を分
解または蒸発させて多孔質の正極合剤(5)を調製し、 更に、前記正極合剤にセパレータ(6)を介して負極
(7)を対向させて発電要素(8)を組み立てると共
に、 前記発電要素に非水電解液を注入するようにして構成し
た非水電解液電池の製造方法。
3. A decomposable / evaporable substance is added to the positive electrode active material in an amount of 1 to 5% with respect to the positive electrode active material, and this is mixed / granulated to form a predetermined shape, and then this is formed. Vacuum decomposition is performed to decompose or evaporate the decomposable / evaporable substance to prepare a porous positive electrode mixture (5), and the negative electrode (7) is opposed to the positive electrode mixture via a separator (6). A method for manufacturing a non-aqueous electrolyte battery, in which the power generating element (8) is assembled and the non-aqueous electrolyte is injected into the power generating element.
JP5536194A 1994-03-25 1994-03-25 Non-aqueous electrolyte battery and manufacture thereof Pending JPH07262986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5536194A JPH07262986A (en) 1994-03-25 1994-03-25 Non-aqueous electrolyte battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5536194A JPH07262986A (en) 1994-03-25 1994-03-25 Non-aqueous electrolyte battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07262986A true JPH07262986A (en) 1995-10-13

Family

ID=12996359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5536194A Pending JPH07262986A (en) 1994-03-25 1994-03-25 Non-aqueous electrolyte battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07262986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100280A (en) * 2000-10-20 2006-04-13 Massachusetts Inst Of Technol <Mit> Reticulated and controlled porosity battery structure
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
CN112687834A (en) * 2020-12-25 2021-04-20 珠海冠宇动力电池有限公司 Battery cell, manufacturing method of battery cell and battery
JP2022078959A (en) * 2020-11-13 2022-05-25 リキャップ テクノロジーズ、インコーポレイテッド Dry electrode manufacture with composite binder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100280A (en) * 2000-10-20 2006-04-13 Massachusetts Inst Of Technol <Mit> Reticulated and controlled porosity battery structure
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
JP2022078959A (en) * 2020-11-13 2022-05-25 リキャップ テクノロジーズ、インコーポレイテッド Dry electrode manufacture with composite binder
CN112687834A (en) * 2020-12-25 2021-04-20 珠海冠宇动力电池有限公司 Battery cell, manufacturing method of battery cell and battery
CN112687834B (en) * 2020-12-25 2022-11-15 珠海冠宇动力电池有限公司 Battery cell, manufacturing method of battery cell and battery

Similar Documents

Publication Publication Date Title
US6291090B1 (en) Method for making metal-air electrode with water soluble catalyst precursors
JP3318675B2 (en) Electrolyte for non-aqueous electrochemical cells
US4197366A (en) Non-aqueous electrolyte cells
JPH07262986A (en) Non-aqueous electrolyte battery and manufacture thereof
JP2003007357A (en) Non-aqueous electrolyte air battery
CN117096273B (en) Protective layer modified lithium metal composite negative electrode, preparation method thereof and battery
JP2001143692A (en) Carbonaceous negative electrode material for lithium secondary cell and method for manufacturing the same
JPH0576744B2 (en)
JP3439084B2 (en) Non-aqueous electrolyte battery
JPS5931182B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP2000164211A (en) Positive electrode material and battery using the same
KR100790039B1 (en) Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
JPH0464143B2 (en)
JPS58189963A (en) Positive electrode for organic electrolyte battery
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH0644481B2 (en) Cylindrical alkaline battery
JP2002208402A (en) Carbonaceous negative electrode material for lithium secondary battery and its manufacturing method
JP3211086B2 (en) Lithium battery
JPS62108455A (en) Non aqueous secondary cell
JPH0318308B2 (en)
JPH02239572A (en) Polyaniline battery
JPS62119867A (en) Manufacture of active material for positive electrode of battery with organic electrolytic solution
JPH01302659A (en) Organic solvent battery
JPS635180Y2 (en)
JPS59148279A (en) Nonaqueous electrolyte battery