JPH0464143B2 - - Google Patents

Info

Publication number
JPH0464143B2
JPH0464143B2 JP59200865A JP20086584A JPH0464143B2 JP H0464143 B2 JPH0464143 B2 JP H0464143B2 JP 59200865 A JP59200865 A JP 59200865A JP 20086584 A JP20086584 A JP 20086584A JP H0464143 B2 JPH0464143 B2 JP H0464143B2
Authority
JP
Japan
Prior art keywords
separator
battery
electrolyte
ester
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59200865A
Other languages
Japanese (ja)
Other versions
JPS6178053A (en
Inventor
Shigeo Kobayashi
Koichi Sato
Eiichi Waki
Toshiaki Kizawa
Tomokazu Mitamura
Noboru Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Panasonic Holdings Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Matsushita Electric Industrial Co Ltd filed Critical Tonen Sekiyu Kagaku KK
Priority to JP59200865A priority Critical patent/JPS6178053A/en
Publication of JPS6178053A publication Critical patent/JPS6178053A/en
Publication of JPH0464143B2 publication Critical patent/JPH0464143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、軽金属を活物質とする負極と、正
極と、非水電解液を用いた電池のセパレータと非
水電解液との組合せに関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a combination of a negative electrode using a light metal as an active material, a positive electrode, a battery separator using a non-aqueous electrolyte, and a non-aqueous electrolyte. .

従来の技術 従来、非水電解液を用いる電池のセパレータに
は、ポリプロピレンの不織布が用いられている。
また非水電解液の溶媒としてはエステル系有機溶
媒であるプロピレン・カーボネート(PC)、エチ
レン・カーボネート、r−ブチロラクトンなど
と、エーテル系有機溶媒のジメトキシエタン
(DME)、ジオキソラン、テトラヒドロフランな
どとの混合物が用いられていた。このエステル系
とエーテル系溶媒の混合物を用いる理由は、エー
テル系溶媒のみでは電解液の蒸発がしやすいこと
などから電池保存時における信頼性が悪いからで
ある。従つてこれを解決するためにはエステル系
の溶媒を加えなければならない。
BACKGROUND ART Conventionally, polypropylene nonwoven fabrics have been used for separators of batteries that use non-aqueous electrolytes.
The solvent for the nonaqueous electrolyte is a mixture of ester organic solvents such as propylene carbonate (PC), ethylene carbonate, and r-butyrolactone, and ether organic solvents such as dimethoxyethane (DME), dioxolane, and tetrahydrofuran. was used. The reason why a mixture of an ester solvent and an ether solvent is used is that if an ether solvent alone is used, the electrolyte tends to evaporate easily, resulting in poor reliability during battery storage. Therefore, to solve this problem, it is necessary to add an ester solvent.

今、リチウム/二酸化マンガン系電池の
CR2016サイズにおいて、前記PCとDMEとの配
合比率(容積比)を種々変化させ、これにいずれ
も1モル/の過塩素酸リチウムを溶解した非水
電解液を用いて電池を組立て、60℃で100日間
100KΩの負荷で放電させた後の残存容量を調べ
たところ、第3図のような結果が得られた。
Nowadays, lithium/manganese dioxide batteries
In the CR2016 size, the blending ratio (volume ratio) of the PC and DME was varied, and batteries were assembled using a non-aqueous electrolyte in which 1 mol/liter of lithium perchlorate was dissolved. 100 days
When we investigated the remaining capacity after discharging with a load of 100KΩ, we obtained the results shown in Figure 3.

発明が解決しようとする問題点 電池の保存性能を良くするにはエステル系溶媒
の比率を増加させればよいが、その場合には電解
液のポリプロピレン不織布との親液性が悪くなる
ため、セパレータは電解液でぬれにくくなり、そ
の結果電池内部抵抗の増大が生じ、大電流放電特
性や低温特性に悪い影響を与えていた。
Problems to be Solved by the Invention In order to improve the storage performance of the battery, it is possible to increase the ratio of the ester solvent, but in this case, the electrolyte's lyophilicity with the polypropylene nonwoven fabric deteriorates, so the separator becomes difficult to wet with electrolyte, resulting in an increase in battery internal resistance, which has a negative effect on large current discharge characteristics and low temperature characteristics.

本発明は、このような問題をセパレータの改良
と特定非水電解液との組合せによつて解決するも
のであり、セパレータの電解液に対するぬれをよ
くして電池特性を向上させることを目的としたも
のである。
The present invention solves these problems by improving the separator and combining it with a specific non-aqueous electrolyte, and aims to improve battery characteristics by improving the wettability of the separator to the electrolyte. It is something.

問題点を解決するための手段 本発明は、非電解液を保持するセパレータとし
て、マイクロ波がプラズマ照射されたポリプロピ
レン不織布と非水電解液としてエステル系有機溶
媒とエーテル系有機溶媒を容積比率で70〜100:
30〜0としたものを用いたものである。
Means for Solving the Problems The present invention uses a polypropylene nonwoven fabric irradiated with microwave plasma as a separator for holding a non-electrolytic solution, and an ester-based organic solvent and an ether-based organic solvent as a non-aqueous electrolyte at a volume ratio of 70%. ~100:
30 to 0 was used.

ポリプロピレン不織布へのプラズマ照射処理の
ガスは、酸素、窒素、アルゴン、空気のいずれで
あつてもよく、これらの単独あるいは混合使用で
あつても構わない。これらのガスを真空度0.01〜
10torr、好ましくは0.1〜5.0torrに保つて、出力
0.1〜5.0KW、好ましくは0.5〜2.0KWのマイクロ
波発生機を10秒間〜30分間、好ましくは2分間〜
10分間作動させればよい。なお、マイクロ波発生
機の周波数は13.56MHz,2450MHzのいずれであ
つてもよい。このような条件でポリプロピレン不
織布はプラズマ照射がなされる。
The gas for plasma irradiation treatment of the polypropylene nonwoven fabric may be any of oxygen, nitrogen, argon, and air, and these may be used alone or in combination. These gases are heated to a vacuum degree of 0.01~
Keep the output at 10torr, preferably between 0.1 and 5.0torr
Microwave generator of 0.1~5.0KW, preferably 0.5~2.0KW for 10 seconds~30 minutes, preferably 2 minutes~
Just run it for 10 minutes. Note that the frequency of the microwave generator may be either 13.56MHz or 2450MHz. Under these conditions, the polypropylene nonwoven fabric is irradiated with plasma.

作 用 プラズマ照射されたポリプロピレン不織布は、
有機溶媒とくにエステル系有機溶媒に対するぬれ
が高まり、これをセパレータに用いた非水電解液
電池では、電解液とのなじみが良好となる。
Effect The plasma-irradiated polypropylene nonwoven fabric
Wetting to organic solvents, especially ester-based organic solvents is enhanced, and non-aqueous electrolyte batteries using this as a separator have good compatibility with the electrolyte.

実施例 以下、この発明の一実施例を説明する。まず、
この発明により得られる非水電解液電池について
第1図に示した。第1図において、1は正極容器
であり、この容器には正極合剤2を充填する。一
方負極容器3には負極4を充填する。正極、負極
の入つた容器を電解液が含浸したセパレータ5を
介してカツプリングし、封口のかしめ部はポロプ
ロピレン製のガスケツト6よりなつている。7は
正極集電体である。ここで正極合剤を二酸化マン
ガンとカーボンとの混合物、負極には金属リチウ
ムを用いて電池を構成し、そのサイズをCR2016
とした。
Embodiment An embodiment of the present invention will be described below. first,
A non-aqueous electrolyte battery obtained by this invention is shown in FIG. In FIG. 1, 1 is a positive electrode container, and a positive electrode mixture 2 is filled in this container. On the other hand, the negative electrode container 3 is filled with the negative electrode 4. A container containing a positive electrode and a negative electrode is coupled together through a separator 5 impregnated with an electrolytic solution, and the caulked portion is made of a gasket 6 made of polypropylene. 7 is a positive electrode current collector. Here, a battery is constructed using a mixture of manganese dioxide and carbon as the positive electrode mixture and metallic lithium as the negative electrode, and its size is CR2016.
And so.

セパレータとしては坪量20g/m2のポリプロピ
レン不織布を用い、そのポリプロピレン不織布の
マイクロ波プラズマ照射処理は、アルゴン雰囲気
としてその真空度を1.0torrに保ち、周波数
13.56KHzのマイクロ波を3分間印加するものと
した。
A polypropylene non-woven fabric with a basis weight of 20 g/m 2 is used as the separator, and the microwave plasma irradiation treatment of the polypropylene non-woven fabric is performed by maintaining the degree of vacuum at 1.0 torr in an argon atmosphere and at a frequency of
Microwaves of 13.56 KHz were applied for 3 minutes.

非水電解液については溶質として1モル/過
塩素酸リチウムを用い、これを溶解する溶媒とし
てエステル系のプロピレン・カーボネート(PC)
と、エーテル系のジメトキシエタン(DME)と
の混合溶媒を用いた。なお、プロピレン・カーボ
ネートの配合比率を100〜30%の割合で変化させ
た。
For the nonaqueous electrolyte, 1 mol/lithium perchlorate is used as the solute, and ester propylene carbonate (PC) is used as the solvent to dissolve it.
A mixed solvent of dimethoxyethane (DME) and ether type dimethoxyethane (DME) was used. The blending ratio of propylene carbonate was varied from 100% to 30%.

このようにプラズマ照射したセパレータと、未
処理のセパレータの両方を用いてCR2016の電池
を構成した。
A CR2016 battery was constructed using both the plasma-irradiated separator and the untreated separator.

上記のようにして得られた電池の内部抵抗と電
解液混合溶媒のPCとDMEの配合比率との関係を
第2図に示した。電池内部抵抗は1HHzの10mA
電流における値である。曲線Aは未処理セパレー
タ、Bはプラズマ照射処理したセパレータのもの
である。未処理のセパレータAは、どの配合比率
でも内部抵抗が高く、かつプロピレン・カーボネ
ートの配合比率が高いほど電池内部抵抗が高くな
る。一方プラズマ照射処理をしたセパレータB
は、プロピレン・カーボネートの配合比率が高く
なつても電池内部抵抗は高くならず、全配合比率
において低い結果となることがわかる。特にプラ
ズマ照射処理したセパレータの効果は、プロピレ
ン・カーボネートの溶媒総量に対する配合比率が
約70%以上から顕著になることがわかる。
FIG. 2 shows the relationship between the internal resistance of the battery obtained as described above and the blending ratio of PC and DME in the electrolyte mixed solvent. Battery internal resistance is 10mA at 1Hz
This is the value in terms of current. Curve A is for an untreated separator and curve B is for a separator treated with plasma irradiation. The untreated separator A has a high internal resistance at any blending ratio, and the higher the blending ratio of propylene carbonate, the higher the battery internal resistance. On the other hand, separator B was subjected to plasma irradiation treatment.
It can be seen that even when the proportion of propylene carbonate increases, the internal resistance of the battery does not increase, and the result is low at all proportions. In particular, it can be seen that the effect of the plasma irradiated separator becomes remarkable when the proportion of propylene carbonate to the total amount of solvent is about 70% or more.

このことは、他のエーテル系、エステル系溶媒
を用いた混合溶液でも同様な結果が得られた。
Similar results were obtained with mixed solutions using other ether-based and ester-based solvents.

従来、アルカリ水溶液を電解液に用いた電池
で、セパレータをプラズマ照射処理することは知
られていたが、これはプラズマ照射処理によつ
て、セパレータの繊維に−COOHや−NH2など
の親水基ができるからである。しかしプラズマ照
射処理することが、エステル系有機溶媒に対して
親液性を増大させる事実は知られていなかつた。
本発明は有機溶媒でも、特にエステル系の有機溶
媒にプラズマ照射処理が親液性を高める上で効果
がることを見い出した。
Conventionally, it has been known that plasma irradiation treatment is applied to separators in batteries using alkaline aqueous solution as electrolyte . This is because it can be done. However, the fact that plasma irradiation treatment increases the lyophilicity toward ester-based organic solvents was not known.
The present invention has found that plasma irradiation treatment is effective in increasing the lyophilicity of organic solvents, especially ester-based organic solvents.

発明の効果 以上述べたように、プラズマ照射処理したポリ
プロピレン不織布製セパレータとエステル系の溶
媒の配合比率の高い混合溶媒とを組合せた電池を
採用することにより、電池の内部抵抗が低く、保
存性能も優れた電池が得られる。
Effects of the Invention As described above, by using a battery that combines a plasma irradiated polypropylene nonwoven fabric separator and a mixed solvent with a high blending ratio of ester solvents, the internal resistance of the battery is low and the storage performance is also improved. An excellent battery can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電池の断面
図、第2図は本発明の電池の内部抵抗と、電解液
混合溶媒のプロピレン・カーボネート/ジメトキ
シエタンの配合比率との関係を示す図、第3図は
プロピレン・カーボネート/ジメトキシエタンと
の配合比率と電池保存後の残存容量との関係を示
す図である。 2……正極合剤、4……負極、5……プラズマ
照射処理したセパレータ。
FIG. 1 is a cross-sectional view of a battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the internal resistance of the battery of the present invention and the blending ratio of propylene carbonate/dimethoxyethane in the electrolyte mixed solvent. FIG. 3 is a diagram showing the relationship between the propylene carbonate/dimethoxyethane blending ratio and the remaining capacity of the battery after storage. 2... Positive electrode mixture, 4... Negative electrode, 5... Separator subjected to plasma irradiation treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 軽金属を活物質とした負極と、正極と、非水
電解液と、この電解液を保持するセパレータを有
し、セパレータとしてマイクロ波がプラズマ照射
されたポリプロピレン不織布を用い、非水電解液
としてエステル系有機溶媒と、エーテル系有機溶
媒を容積比率で70〜100:30〜0としたものであ
ることを特徴とする電池。
1 It has a negative electrode with a light metal as an active material, a positive electrode, a non-aqueous electrolyte, and a separator for holding this electrolyte, using a polypropylene nonwoven fabric irradiated with microwave plasma as the separator, and using ester as the non-aqueous electrolyte. A battery characterized in that the volume ratio of organic solvent to organic solvent ether is 70 to 100:30 to 0.
JP59200865A 1984-09-26 1984-09-26 Electric cell Granted JPS6178053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200865A JPS6178053A (en) 1984-09-26 1984-09-26 Electric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200865A JPS6178053A (en) 1984-09-26 1984-09-26 Electric cell

Publications (2)

Publication Number Publication Date
JPS6178053A JPS6178053A (en) 1986-04-21
JPH0464143B2 true JPH0464143B2 (en) 1992-10-14

Family

ID=16431505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200865A Granted JPS6178053A (en) 1984-09-26 1984-09-26 Electric cell

Country Status (1)

Country Link
JP (1) JPS6178053A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808611B2 (en) * 1988-09-22 1998-10-08 東レ株式会社 Battery separator
JP2665479B2 (en) * 1989-01-20 1997-10-22 三菱瓦斯化学株式会社 Rechargeable battery
JP3040041B2 (en) * 1993-04-26 2000-05-08 日東電工株式会社 Alkaline secondary battery and method of manufacturing the same
US5830603A (en) * 1993-09-03 1998-11-03 Sumitomo Electric Industries, Ltd. Separator film for a storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894752A (en) * 1981-11-30 1983-06-06 Toshiba Battery Co Ltd Manufacture of alkaline cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894752A (en) * 1981-11-30 1983-06-06 Toshiba Battery Co Ltd Manufacture of alkaline cell

Also Published As

Publication number Publication date
JPS6178053A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
US6692870B2 (en) Electrode active material and lithium secondary battery
JP3318675B2 (en) Electrolyte for non-aqueous electrochemical cells
JP2711545B2 (en) Non-aqueous battery
JP2003007357A (en) Non-aqueous electrolyte air battery
JP2000123880A (en) Nonaqueous secondary battery
JPH10199510A (en) Negative electrode for lithium battery and lithium battery
JPH0464143B2 (en)
JPH0576744B2 (en)
JP3396990B2 (en) Organic electrolyte secondary battery
EP1146587A2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JPS60167280A (en) Electrochemical device capable of recharging
JPH04162370A (en) Nonaqueous electrolyte secondary battery
JP2000036325A (en) Secondary power supply
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
Voinov On the stoichiometry of lithium insertion in manganese dioxide
JP6197541B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JP2003242981A (en) Non-aqueous electrolyte battery and its manufacturing method
JP2000123869A (en) Nonaqueous secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JPS61165961A (en) Organic electrolytic solution battery
JPH01302659A (en) Organic solvent battery
JPH0447431B2 (en)
JPS59128772A (en) Nonaqueous solvent battery