JPS635132A - Air-fuel ratio control device for number of cylinders control engine - Google Patents

Air-fuel ratio control device for number of cylinders control engine

Info

Publication number
JPS635132A
JPS635132A JP14770186A JP14770186A JPS635132A JP S635132 A JPS635132 A JP S635132A JP 14770186 A JP14770186 A JP 14770186A JP 14770186 A JP14770186 A JP 14770186A JP S635132 A JPS635132 A JP S635132A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinders
sensor
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14770186A
Other languages
Japanese (ja)
Other versions
JP2750116B2 (en
Inventor
Masaru Yamamoto
勝 山本
Kiyoshi Kuronishi
黒西 潔
Kaoru Yamada
薫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61147701A priority Critical patent/JP2750116B2/en
Publication of JPS635132A publication Critical patent/JPS635132A/en
Application granted granted Critical
Publication of JP2750116B2 publication Critical patent/JP2750116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve contrallability in two running modes, by a method wherein controllability in feedback control of an airfuel ratio during reduced number of cylinders running is set to a value different from that during total cylinder running. CONSTITUTION:Detecting values from an airflow meter 4, an intake air tempera ture sensor 5, a throttle sensor 7, an O2 sensor 11, a water temperature sensor 12, and a number of revolutions sensor 13 are inputted to an engine control unit 15, Based on the detecting values, a number of cylinders reducing means 101 closes a shutter valve 9, shutting off the feed of air to first-third cylinders through an on-off means 10 during low load running, and stops the feed of fuel to the cylinders to perform reduced number of cylinders running, An air-fuel ratio control means 102 computes a fundamental fuel injection amount from the number of revolutions and an intake air amount, and performs feedback control of an air-fuel ratio based on a detecting value from the O2 sensor 11 when a feedback control condition is established. Controllability of an air-fuel ratio during reduced number of cylinders running is set to a value different from that during total cylinder running.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジン軽負荷時に一部気筒の稼動を休止し
て減筒運転を行うとともに、混合気の空燃比を予め設定
された空燃比にフィードバック制御する気筒数制御エン
ジンの空燃比制御装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention suspends the operation of some cylinders when the engine is under light load to perform cylinder reduction operation, and adjusts the air-fuel ratio of the air-fuel mixture to a preset air-fuel ratio. This invention relates to an air-fuel ratio control device for an engine that controls the number of cylinders and performs feedback control on the number of cylinders.

(従来の技術) 一般に、エンジンを高負荷状態で運転すると燃費が良好
になる傾向があることから、エンジン軽負荷時に一部気
筒への燃料の供給をカットしてその作動を休止させ、こ
の分だけ残りの稼動気筒の負荷を相対的に高め、全体と
して軽負荷域の燃費を改善した気筒数制御エンジンは知
られている(例えば特開昭58−211567号公報参
照)。
(Prior art) In general, when an engine is operated under a high load condition, fuel efficiency tends to improve. A cylinder number control engine is known in which the load on the remaining operating cylinders is relatively increased, thereby improving fuel efficiency in the light load range as a whole (see, for example, Japanese Patent Laid-Open No. 58-211567).

また、エンジンに供給される混合気の空燃比を目標空燃
比とするために、空燃比センサの出力に基づいてフィー
ドバック制御するものが知られている。それ番こ加えて
、空燃比を正確に制御するに当って、例えば非フイード
バツク領域からフィードバック領域に移行したときに、
短時間で目標空燃比とするために前回のフィードバック
領域でのフィードバック補正値の平均値を学習値として
記憶して置き、それを用いて移行直後制御するという学
習制御するものも知られている。
Further, in order to set the air-fuel ratio of the air-fuel mixture supplied to the engine to a target air-fuel ratio, there is known one that performs feedback control based on the output of an air-fuel ratio sensor. In addition, in accurately controlling the air-fuel ratio, for example, when transitioning from a non-feedback region to a feedback region,
In order to achieve the target air-fuel ratio in a short time, there is also known a learning control method in which the average value of feedback correction values in the previous feedback region is stored as a learning value, and this is used to perform control immediately after transition.

(発明が解決しようとする問題点) ところで、気筒数制御エンジンにおいて、空燃比のフィ
ードバック制御を行った場合、全筒運転時と減筒運転時
とでは、エアフローセンサの出力が同一でも、インジェ
クタによる総噴射量が異なりその特性が非線形であるの
で1作動領域が異なり、また、吸気の流れが変わってく
ることになるため、互いにフィードバック補正量が異な
り、このことは特に減筒運転と全筒運転との切換え時に
空燃比制御の応答遅れが生じることとなる。又。
(Problem to be solved by the invention) By the way, when feedback control of the air-fuel ratio is performed in an engine with cylinder number control, even if the output of the air flow sensor is the same during full-cylinder operation and during reduced-cylinder operation, the injector Since the total injection amount is different and its characteristics are non-linear, the operating range is different, and the intake air flow changes, so the feedback correction amount is different from each other, and this is especially true for reduced-cylinder operation and full-cylinder operation. There will be a delay in the response of air-fuel ratio control when switching between the two. or.

上記の如く、学習制御を行った場合においても、フィー
ドバック補正量が異なることから単一の学習値では全部
、減筒それぞれの要求に適合しないという問題があった
As described above, even when learning control is performed, there is a problem that a single learning value does not meet the requirements for each cylinder reduction because the feedback correction amounts are different.

本発明はかかる点に鑑み、減筒運転時、全筒運転時共に
空燃比制御性が向上した気筒数制御エンジンの空燃比制
御装置を堤供することを目的とする。
In view of the above, an object of the present invention is to provide an air-fuel ratio control device for an engine with a controlled number of cylinders, which has improved air-fuel ratio controllability both during reduced-cylinder operation and during full-cylinder operation.

(問題点を解決するための手段) この発明は前記問題点を解決するものであって、以下に
その内容を実施例に対応する第1図を用いて説明する。
(Means for Solving the Problems) The present invention solves the above-mentioned problems, and the details thereof will be explained below using FIG. 1 corresponding to an embodiment.

エンジンの運転状態を検出する運転状態検出手段例えば
エアフローメータ4、吸気温センサ5゜スロットルセン
サ7及び水温センサI2と、該運転状態検出手段の出力
を受けエンジン軽負荷時に一部気筒の稼動を休止する減
筒手段101と、エンジンに供給された混合気の空燃比
を検出する空燃比検出手段例えば02センサ11と、該
空燃比検出手段の出力を受け混合気の空燃比を予め設定
された空燃比にフィードバック制御する空燃比制御手段
102を備えたものを前提とするものであって、上記減
筒手段101の出力を受け減筒運転時と全筒運転時とで
上記空燃比制御手段102の制御特性を互いに異なる値
に設定する補正手段103を有する。ここで制御特性と
は具体的に1例えばフィードバック制御量の補正値ある
いは学習値や、フィードバック制御定数等を示すもので
ある。
Operating state detecting means for detecting the operating state of the engine, such as an air flow meter 4, an intake air temperature sensor 5, a throttle sensor 7, and a water temperature sensor I2, and depending on the output of the operating state detecting means, operation of some cylinders is suspended when the engine is lightly loaded. an air-fuel ratio detecting means, for example, 02 sensor 11, which detects the air-fuel ratio of the air-fuel mixture supplied to the engine; This is based on the premise that the air-fuel ratio control means 102 is provided for performing feedback control on the fuel ratio, and the air-fuel ratio control means 102 receives the output of the cylinder reduction means 101 and controls the air-fuel ratio control means 102 during cylinder reduction operation and full cylinder operation. It has a correction means 103 that sets the control characteristics to mutually different values. Here, the control characteristic specifically indicates, for example, a correction value or learning value of a feedback control amount, a feedback control constant, etc.

(作用) 減筒運転時及び全筒運転時に応じて、補正手段103に
て、空燃比制御手段102の制御特性が異なるように補
正されるので、何れの運転時においても空燃比の制御性
が高まる。
(Function) Since the control characteristics of the air-fuel ratio control means 102 are corrected by the correction means 103 to be different depending on the reduced-cylinder operation and the full-cylinder operation, the controllability of the air-fuel ratio is improved during either operation. It increases.

(実施例) 以下、本発明の実施例を図面に沿って説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は6気筒の気筒数M御エンジンで、
吸気通路2及び排気通路3が接続されている。
In Figure 1, 1 is a 6-cylinder engine with M cylinders,
An intake passage 2 and an exhaust passage 3 are connected.

吸気通路2には、上流側から、エアフローメータ4、吸
気温センサ5、スロットル弁6.それの開度を検出する
スロットルセンサ7及びサージタンク8が順に配設され
、サージタンク8下流は枝道路2a、2bに分岐されて
各気筒に通じている。
In the intake passage 2, from the upstream side, an air flow meter 4, an intake temperature sensor 5, a throttle valve 6. A throttle sensor 7 for detecting the opening degree of the throttle sensor 7 and a surge tank 8 are arranged in this order, and the downstream side of the surge tank 8 is branched into branch roads 2a and 2b and communicates with each cylinder.

第1乃至第3気筒に通ずる各枝通路2aにはシャッター
バルブ9が設けられ、該シャッターバルブ9が開閉手段
10にて一体的に開閉されるようになっている。
A shutter valve 9 is provided in each branch passage 2a communicating with the first to third cylinders, and the shutter valve 9 is opened and closed integrally by an opening/closing means 10.

11は排気通路3に配設された空燃比検出手段としての
02センサ、12はエンジン本体に設け    ゛られ
エンジン冷却水温度を検出する水温センサ、13はエン
ジン回転数を検出する回転数センサ。
11 is an 02 sensor as an air-fuel ratio detection means disposed in the exhaust passage 3; 12 is a water temperature sensor provided in the engine body for detecting the temperature of engine cooling water; and 13 is a rotation speed sensor for detecting the engine speed.

14は各枝通路2a、2bに配設されたインジェクタで
ある。
14 is an injector arranged in each branch passage 2a, 2b.

15はエンジン制御ユニットで、エンジンの運転状態を
検出する運転状態検出手段すなわちエアフローメータ4
、吸気温センサ5、スロットルセンサ7及び水温センサ
12の出力を受けエンジン軽負荷時に一部気筒の稼動を
休止する減筒手段101と、エンジンに供給された混合
気の空燃比を゛検出する空燃比検出手段としての02セ
ンサ11の出力を受け混合気の空燃比を予め設定された
空燃比にフィードバック制御する空燃比制御手段lO2
を備えている。また、上記減筒手段101の出力を受け
減筒運転時と全筒運転時とで上記空燃比制御手段102
の制御特性を互いに異なる値に設定する補正手段103
を有する。
Reference numeral 15 denotes an engine control unit, which includes an operating state detection means for detecting the operating state of the engine, that is, an air flow meter 4.
, cylinder reduction means 101 that suspends operation of some cylinders when the engine is under light load in response to the outputs of the intake temperature sensor 5, throttle sensor 7, and water temperature sensor 12; Air-fuel ratio control means lO2 that receives the output of the 02 sensor 11 as a fuel ratio detection means and performs feedback control of the air-fuel ratio of the air-fuel mixture to a preset air-fuel ratio.
It is equipped with Further, in response to the output of the cylinder reduction means 101, the air-fuel ratio control means 102 receives the output from the cylinder reduction means 101 and controls the air-fuel ratio control means 102 during cylinder reduction operation and during all-cylinder operation.
correction means 103 for setting the control characteristics of the
has.

続いて、上記エンジン制御ユニット15の処理の流れを
第2図乃至第5図に沿って説明する。
Next, the process flow of the engine control unit 15 will be explained with reference to FIGS. 2 to 5.

スタートすると、先ず、イニシャライズにより非F/B
領域からF/B領域へ入ったか否かのフィードバック判
定フラグiを0としくステップSI)、データ値例えば
エンジン回転数、吸入空気量、スロットル開度、気温、
大気圧及びエンジン冷却水温を読み込む(ステップS2
)。
When starting, first, non-F/B is set by initialization.
Set the feedback judgment flag i to 0 to indicate whether or not the area has entered the F/B area (step SI), and set data values such as engine speed, intake air amount, throttle opening, temperature,
Read atmospheric pressure and engine cooling water temperature (step S2
).

それから、エンジン回転数とスロットル開度により、第
4図に示すF/B判定マツプに従ってF/B領域である
か否かを判定する(ステップSa)。
Then, based on the engine speed and throttle opening, it is determined whether or not the engine is in the F/B region according to the F/B determination map shown in FIG. 4 (step Sa).

非F/B領域であれば、後述するサブルーチンプログラ
ム(第3図参照)を実行しくステップS4)、ステップ
Slへ戻る。
If it is a non-F/B area, a subroutine program (see FIG. 3) to be described later is executed (step S4), and the process returns to step Sl.

F/B領域であれば、エンジン回転数とスロットル開度
とにより、第5図に示す運転状態判定マツプに従って全
筒運転状態であるか減筒運転状態であるかを判定しくス
テップS5)、全筒運転時には運転状態判定フラグ■を
1としくステップS6)、減筒運転時には運転状態判定
フラグエを2としくステップS7)、その後、フィード
バック判定フラグi=0であるか否かを判定しくステッ
プSs)、それによって非F/B領域からF/B領域に
入ったか否かを判別する。
If it is in the F/B region, it is determined based on the engine speed and throttle opening whether it is an all-cylinder operating state or a reduced-cylinder operating state according to the operating state determination map shown in FIG. During cylinder operation, the operating state determination flag is set to 1 (step S6), and during reduced cylinder operation, the operating state determination flag is set to 2 (step S7), and then it is determined whether or not the feedback determination flag i=0 (step Ss). ), thereby determining whether or not the F/B area has been entered from the non-F/B area.

判定フラグi=0の場合は非F/B領域からF/B領域
に入ったことになるので、フィードバック制御項Cy 
a、学習補正項CLcをステップS12において予め記
憶されているCF30(1)、CLco(I)としくス
テップS9)、空燃比制御の開始においてすなわちF/
B領域に入った一発目のみ、運転状態に応じて上記記憶
しているCya、CLcすなわち全筒運転時にはCF[
Io(1)+ cLco (1)を、減筒運転時にはC
F2O(2)* CLCO(2)を用いて制御する。
If the determination flag i=0, it means that the F/B area has been entered from the non-F/B area, so the feedback control term Cy
a. The learning correction term CLc is set to CF30(1) and CLco(I) which are stored in advance in step S12 (step S9), and at the start of air-fuel ratio control, that is, F/
Only for the first shot that enters area B, Cya and CLc that are stored above according to the operating condition, that is, CF[ during all cylinder operation.
Io (1) + cLco (1), and C during cylinder reduction operation.
Control using F2O(2)*CLCO(2).

なお、上記学習補正項CL Cは、フィードバック制御
項CF8をサンプリングして、次式で求められる。
Note that the learning correction term CL C is obtained by sampling the feedback control term CF8 using the following equation.

CLCj+t=CLcj+ (Σ(CF B M AX十CF 8 M I N)/
 2  ) /4X+61 ここで、CFBMAXはCF8の最大値、CF8MIN
はCFBの最小値である。
CLCj+t=CLcj+ (Σ(CF B M AX 0 CF 8 M I N)/
2) /4X+61 Here, CFBMAX is the maximum value of CF8, CF8MIN
is the minimum value of CFB.

それから、運転状態判定フラグIの値を工0として記憶
しくステップS+ o)、第3図に示すサブルーチンプ
ログラムを実行しくステップS++)、現在の状態にお
けるフィードバック制御項cFB、学習補正項CL C
をそれぞれC1Bo 、r、rCLCO< r )とし
て記憶した(ステップ512)後、フィードバック判定
フラグiを1としくステップ513)、ステップS2へ
戻る。
Then, the value of the driving state determination flag I is stored as 0 in step S+o), the subroutine program shown in FIG. 3 is executed in step S++), and the feedback control term cFB and learning correction term CL in the current state are stored.
are respectively stored as C1Bo, r, rCLCO<r) (step 512), the feedback determination flag i is set to 1 (step 513), and the process returns to step S2.

−方、ステップS8の判・定においてi =Oでなけれ
ば、運転状態判定フラグ■がroであるがすなわち前回
と同一の運転状S(稼動気筒同一)であるかを判定する
(ステップ5I4)、1前回と同一の運転状態であれば
、02センサ11の出力値を読み込み(ステップS+ 
s) 、空燃比がリッチであるかり−ンであるかの判定
を行い(ステップS’s)、リッチの場合はフィードバ
ック制御項CFIIをCF B−ΔCとしくステップS
L?)、リーンの場合はフィードバック制御項CF B
 fg Cy e+ΔCとしくステップ5ta)、ステ
ップSIOへ移る。
- On the other hand, if i = O in the judgment/determination in step S8, it is determined whether the operating state determination flag ■ is ro, that is, the operating state S is the same as the previous time (same operating cylinders) (step 5I4). , 1 If the operating state is the same as the previous time, read the output value of the 02 sensor 11 (step S+
s), it is determined whether the air-fuel ratio is rich or low (step S's), and if it is rich, the feedback control term CFII is set to CF B - ΔC and step S
L? ), in the case of lean, the feedback control term CF B
fg Cy e+ΔC and moves to step 5ta), step SIO.

サブルーチンプログラムは、第3図に示すように、基本
噴射量τE2を次式で演算する(ステップ521)。
As shown in FIG. 3, the subroutine program calculates the basic injection amount τE2 using the following formula (step 521).

τE2 =に/ (N−U” ) Nはエンジン回転数、Uは吸入空気量、Kは全筒運転時
、減筒運転時とで異なる値をとる。
τE2 = / (N-U'') N is the engine speed, U is the intake air amount, and K takes different values depending on whether the engine is operating with all cylinders or with reduced cylinders.

それから、燃料噴射量TPを次式により演算する(ステ
ップ522)。
Then, the fuel injection amount TP is calculated using the following equation (step 522).

Tp=f E2 (1+CF e+cLc)−+−r 
a A TτB^↑はバッテリ電圧補正噴射量である。
Tp=f E2 (1+CF e+cLc)-+-r
a A TτB^↑ is the battery voltage corrected injection amount.

上記実施例では、フィードバック制flJ項CF 13
と学習補正項CLCを共に記憶するようにしているが、
そのほか、全筒運転と減筒運転との両者の違いに対し予
め実験的に求められた値を固定的に記憶しておき、それ
らを全筒運転と減筒運転に応じて使い分けるようにして
もよい。
In the above embodiment, the feedback system flJ term CF 13
and the learning correction term CLC are stored together,
In addition, it is also possible to permanently store values determined experimentally in advance for the differences between all-cylinder operation and reduced-cylinder operation, and to use these values depending on all-cylinder operation and reduced-cylinder operation. good.

(発明の効果) 本発明は、上記のように、減筒運転時と全筒運転時とで
空燃比制御手段の制御特性を互いに異なる値に設定する
ようにしたから、減筒運転時、全筒運転時共に精度良く
制御でき、空燃比制御特性が向上する。
(Effects of the Invention) As described above, the present invention sets the control characteristics of the air-fuel ratio control means to different values during reduced-cylinder operation and during full-cylinder operation. Accurate control is possible during cylinder operation, improving air-fuel ratio control characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は気筒数制御エン
ジンの空燃比制御装置の全体構成図、第2図及び第3図
はエンジン制御ユニットの処理の流れを示す流れ図、第
4図はF/B領域の説明図、第5図は全筒運転領域、減
筒運転領域の説明図、第6図は気筒数制御信号、シャッ
ターバルブの動作信号及び燃料噴射信号の関係を示す図
である。 1・・・・・・気筒数制御エンジン、2・・・・・・吸
気通路、3・・・・・・排気通路、4・・・・・・エア
フローメータ、9・・・・・・シャッターバルブ、10
・・・・・・開閉手段、11・・・・・・02センサ、
14・・・・・・インジェクタ、15・・・・・・エン
ジン制御ユニット、101・・・・・・減筒手段、10
2・・・・・・空燃比制御手段、103・・・・・・補
正手段。
The drawings show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram of an air-fuel ratio control device for an engine with cylinder number control, FIGS. 2 and 3 are flowcharts showing the flow of processing of the engine control unit, and FIG. is an explanatory diagram of the F/B region, FIG. 5 is an explanatory diagram of the all-cylinder operation region and reduced-cylinder operation region, and FIG. 6 is a diagram showing the relationship among the cylinder number control signal, shutter valve operation signal, and fuel injection signal. be. 1... Cylinder number control engine, 2... Intake passage, 3... Exhaust passage, 4... Air flow meter, 9... Shutter valve, 10
...Opening/closing means, 11...02 sensor,
14... Injector, 15... Engine control unit, 101... Cylinder reduction means, 10
2... Air-fuel ratio control means, 103... Correction means.

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンの運転状態を検出する運転状態検出手段
と、該運転状態検出手段の出力を受けエンジン軽負荷時
に一部気筒の稼動を休止する減筒手段と、エンジンに供
給された混合気の空燃比を検出する空燃比検出手段と、
該空燃比検出手段の出力を受け混合気の空燃比を予め設
定された空燃比にフィードバック制御する空燃比制御手
段を備えたものにおいて、上記減筒手段の出力を受け減
筒運転時と全筒運転時とで上記空燃比制御手段の制御特
性を互いに異なる値に設定する補正手段を有することを
特徴とする気筒数制御エンジンの空燃比制御装置。
(1) An operating state detection means for detecting the operating state of the engine, a cylinder reduction means for suspending operation of some cylinders when the engine is under light load based on the output of the operating state detection means, and a cylinder reduction means for suspending operation of some cylinders when the engine is under light load. an air-fuel ratio detection means for detecting an air-fuel ratio;
The air-fuel ratio control means receives the output of the air-fuel ratio detection means and feedback-controls the air-fuel ratio of the air-fuel mixture to a preset air-fuel ratio. An air-fuel ratio control device for an engine with a controlled number of cylinders, comprising a correction means for setting control characteristics of the air-fuel ratio control means to different values during operation.
JP61147701A 1986-06-23 1986-06-23 Air-fuel ratio control device for cylinder number control engine Expired - Lifetime JP2750116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147701A JP2750116B2 (en) 1986-06-23 1986-06-23 Air-fuel ratio control device for cylinder number control engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147701A JP2750116B2 (en) 1986-06-23 1986-06-23 Air-fuel ratio control device for cylinder number control engine

Publications (2)

Publication Number Publication Date
JPS635132A true JPS635132A (en) 1988-01-11
JP2750116B2 JP2750116B2 (en) 1998-05-13

Family

ID=15436295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147701A Expired - Lifetime JP2750116B2 (en) 1986-06-23 1986-06-23 Air-fuel ratio control device for cylinder number control engine

Country Status (1)

Country Link
JP (1) JP2750116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590504B2 (en) 2009-05-08 2013-11-26 Honda Motor Co., Ltd. Method for controlling an intake system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797038A (en) * 1980-12-09 1982-06-16 Nissan Motor Co Ltd Air-fuel ratio control apparatus
JPS6146436A (en) * 1984-08-13 1986-03-06 Toyota Motor Corp Air fuel ratio controller for internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797038A (en) * 1980-12-09 1982-06-16 Nissan Motor Co Ltd Air-fuel ratio control apparatus
JPS6146436A (en) * 1984-08-13 1986-03-06 Toyota Motor Corp Air fuel ratio controller for internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8590504B2 (en) 2009-05-08 2013-11-26 Honda Motor Co., Ltd. Method for controlling an intake system

Also Published As

Publication number Publication date
JP2750116B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JPH0363654B2 (en)
JPS6356416B2 (en)
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
JP2001349231A (en) Fuel supply control device of internal combustion engine
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS635132A (en) Air-fuel ratio control device for number of cylinders control engine
JPH11101144A (en) Fuel supply control device for internal combustion engine
US5193509A (en) Fuel control system for automotive power plant
JP3055378B2 (en) Control device for internal combustion engine
JPS61232340A (en) Air-fuel ratio controller for engine
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0455234Y2 (en)
JP2609126B2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2630371B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JPH0515552Y2 (en)
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0625551B2 (en) Air-fuel ratio controller for engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH089390Y2 (en) Air-fuel ratio feedback control system for internal combustion engine
JPH0330601Y2 (en)
JPH10288064A (en) Internal combustion engine provided with turbo charger and exhaust re-circulation device
JPH0612087B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS6179839A (en) Idle rotational speed control device in engine
JPS6181536A (en) Method of controlling feed of fuel during idle running of internal-combustion engine