JPS6351061A - Fuel cell power generation system - Google Patents
Fuel cell power generation systemInfo
- Publication number
- JPS6351061A JPS6351061A JP61192682A JP19268286A JPS6351061A JP S6351061 A JPS6351061 A JP S6351061A JP 61192682 A JP61192682 A JP 61192682A JP 19268286 A JP19268286 A JP 19268286A JP S6351061 A JPS6351061 A JP S6351061A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- outlet
- concentration
- power generation
- generation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 33
- 238000010248 power generation Methods 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims abstract description 80
- 239000007800 oxidant agent Substances 0.000 claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 238000012544 monitoring process Methods 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 14
- 239000000376 reactant Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04395—Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04462—Concentration; Density of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/0447—Concentration; Density of cathode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fuel Cell (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は燃料電池発電システムに係り、特にガスリーク
検出及びガス利用率監視が可能な燃料電池発電システム
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation system, and more particularly to a fuel cell power generation system capable of detecting gas leaks and monitoring gas utilization rate.
(従来の技術〕
燃料電池は、例えば供給される燃料の水素と酸化剤中の
酸化が電気化学的に反応する際のエネルギーを、直流電
力及び熱として取り出し、有効利用するものである。従
って、供給ガスの址、すなわちエネルギーによって、取
り出し得る最大直流電力が決まる。また、化学反応を伴
うエネルギー変換系であるため、理論上の電力すなわち
、有効成分を100%利用した電力を取り出すことは不
可能であり、一般に、ある程度過剰な反応物質を供給す
ることが必要である。この過剰址を表わすものとして、
次式で示される利用率がある。(Prior Art) A fuel cell is a device that extracts and effectively utilizes the energy generated when, for example, hydrogen in a supplied fuel and oxidation in an oxidizing agent electrochemically react as DC power and heat.Therefore, The maximum DC power that can be extracted is determined by the source of the supplied gas, that is, the energy.Also, since it is an energy conversion system that involves a chemical reaction, it is impossible to extract theoretical power, that is, power that uses 100% of the active ingredients. Therefore, it is generally necessary to supply a certain amount of excess reactant.As an expression of this excess,
There is a utilization rate expressed by the following formula.
反応物質の利用率(%)=(燃料電池出力電流に電気化
学的に当社の反応物質址÷燃料電池に供給された反応物
質濃度)xloo
また、一般に、利用率と電池出力の関係は、第2図に示
すように、ある利用率り以上になると、急激に出力が低
下する特性を示す。従って、上記り点以下に反応物質の
利用率を下げて運転する必要がある。従来の燃料電池と
しては、出口ガス濃度を検出して改質器入口のガス量を
制御する方式が特開昭60−207255号に記載され
ているが、これは、出力電流をパラメータとして供給ガ
ス量を制御する一般的な方式に比べて、濃度検出器の応
答が遅く、主制御系統にガスa度検出値を用いることに
は問題があった。Reactant utilization rate (%) = (fuel cell output current electrochemically our reactant base ÷ reactant concentration supplied to the fuel cell) xloo In general, the relationship between utilization rate and cell output is As shown in Figure 2, when the utilization rate exceeds a certain level, the output suddenly decreases. Therefore, it is necessary to operate by lowering the utilization rate of the reactant to below the above-mentioned point. As for conventional fuel cells, Japanese Patent Application Laid-Open No. 60-207255 describes a method in which the gas concentration at the outlet is detected and the amount of gas at the inlet of the reformer is controlled. Compared to the general method of controlling the amount, the response of the concentration detector is slow, and there is a problem in using the gas a degree detection value in the main control system.
上記公報記載の従来例は、ガス検知器の応答性について
配慮されておらず、また、一般的な負荷電流による制御
では、入ロガス流云は常に制御されているが、電池内で
反応物質が消費される意が計算された利用率相当量であ
ることを確認する手段については配慮されておらず、ま
たその必要性も論じられていなかった。すなわち、電池
本体内部でのガスリーク量が増加する不具合を生じた場
合、あるいは経時的にガスリーク量が増加した場合、電
池本体に供給された反応物質のうち、リーク量分は反応
に無効となり、実際の利用率が計画値よりも高い状態で
電池本体が運転されることになり、ガス不足による電池
の損傷が発生する恐れがあった。また、電池からの排ガ
スを利用した燃焼機器を設置した場合、失火する恐れも
あり、燃料電池出口ガス成分を監視する必要がある。The conventional example described in the above publication does not take into account the responsiveness of the gas detector, and although the general load current control always controls the incoming gas flow, No consideration was given to means of confirming that the amount consumed corresponds to the calculated usage rate, nor was the necessity discussed. In other words, if a problem occurs in which the amount of gas leaking inside the battery body increases, or if the amount of gas leaking increases over time, the leaked amount of reactants supplied to the battery body becomes ineffective in the reaction, and the actual The battery itself would be operated with a utilization rate higher than the planned value, and there was a risk that the battery would be damaged due to gas shortage. Furthermore, if a combustion device that uses exhaust gas from a battery is installed, there is a risk of a misfire, so it is necessary to monitor the gas components at the fuel cell outlet.
本発明の目的は、電池内のガスリーク検出及びガス利用
率の監視により、ガス不足状態で電池本体が運転される
ことを防止しうる燃料電池発電システムを提供すること
にある。An object of the present invention is to provide a fuel cell power generation system that can prevent the battery main body from being operated in a gas shortage state by detecting gas leaks within the battery and monitoring the gas utilization rate.
C問題を解決するための手段〕
上記目的は、燃料電池発電システムにおいて、ガス供給
系統の電池本体燃料出口側及び酸化剤出口側の両方また
はいずれか一方にガス濃度センサーを設け、入口ガス量
及び直流電流から酸化剤出口及び燃料出口の両方又はい
ずれか一方のガス濃度を計算する演算器を設けることに
より達成される。Means for Solving Problem C] The above object is to provide a gas concentration sensor on both or either one of the fuel outlet side of the cell main body and the oxidizer outlet side of the gas supply system in a fuel cell power generation system, and to measure the amount of inlet gas and This is achieved by providing a calculator that calculates the gas concentration at the oxidizer outlet and/or the fuel outlet from the direct current.
すなわち、直流電流値から電気化学内に当量の反応物量
が求まり、入口ガス成分と入ロガス流址から出口ガス中
の酸素及び水素濃度が理論的に求まる。このガス濃度と
実際4:[視している出口ガス濃度を比較して、後者の
濃度が低い状態が続けば、ガスリーク量が増大し、反応
物の一部が反応に無効となっていることを検知すること
ができる。That is, the equivalent amount of reactants in the electrochemistry is determined from the DC current value, and the oxygen and hydrogen concentrations in the outlet gas are theoretically determined from the inlet gas components and the inlet gas flow area. Comparing this gas concentration with the actual outlet gas concentration, if the latter concentration continues to be low, the amount of gas leak will increase and some of the reactants will become ineffective for the reaction. can be detected.
詳細に説明すると、演算器では実測された直流電流と入
ロガス流景及び予め与えられる入口ガス中の反応物濃度
とから出口ガス中の反応物質濃度を計算する。電気化学
的に出量な反応物質片は次式で求まる。To explain in detail, the arithmetic unit calculates the concentration of the reactant in the outlet gas from the actually measured DC current, the flow of the inlet gas, and the reactant concentration in the inlet gas given in advance. The amount of electrochemically reactive material pieces can be found using the following equation.
電気化学的な当量=:ku−ke−I−Nku=単位変
換定数
ke=電気化学的定数
■ =電流
N=直列電池数
この演算結果と出口ガス濃度の実測値とを比較すること
により、ガスリーク量を監視することが出来るものであ
る。Electrochemical equivalent =: ku-ke-I-Nku = unit conversion constant ke = electrochemical constant ■ = current N = number of series batteries By comparing this calculation result with the actual measured value of outlet gas concentration, gas leakage can be determined. The amount can be monitored.
さらに、出口ガス濃度に下限値を設定し、発電システム
の待機状態、プラント停止への移行、負荷電流の低減、
入口ガス量の増大のうちのいずれかの保護動作へ導く保
護装置を設ければ、電池本体がガス不足状態で運転され
ることを防ぐことが出来る。Furthermore, a lower limit value is set for the outlet gas concentration, allowing the power generation system to enter standby mode, transition to plant shutdown, reduce load current,
If a protection device is provided that leads to one of the protective actions of increasing the amount of inlet gas, it is possible to prevent the battery main body from being operated in a gas-deficient state.
ガス濃度センサーは、酸化剤出口側及び燃料出口側の両
方に設けてもよいが、必要に応じどちらか一方に設ける
こともできる。、酸化剤として空気、燃料として水素を
用いる場合、出口ガス濃度センサーは、酸化剤出口側が
酸化濃度センサー、燃料出口側が水素濃度センサーとな
る。The gas concentration sensor may be provided on both the oxidant outlet side and the fuel outlet side, but it may also be provided on either one as necessary. When air is used as the oxidizing agent and hydrogen is used as the fuel, the oxidizing agent outlet side serves as the oxidizing concentration sensor, and the fuel outlet side serves as the hydrogen concentration sensor.
以下、本発明の一実施例を第1図により説明する。燃料
電池発電システムは電池本体1.前記電池本体1にガス
を給排するガス供給系である燃料入口配管2.酸化剤入
口配管3.燃料入口流量計6、Wi化剤入口流量計7.
燃料出口配管4.酸化剤出口配管5などから構成されて
いる。また、電池本体1には直流電流検出器1oが設け
られ、プラント全体の状態を制御する制御装置12が設
けられている。尚1図中の破線は電気信号を表わす。An embodiment of the present invention will be described below with reference to FIG. The fuel cell power generation system consists of 1. A fuel inlet pipe 2, which is a gas supply system for supplying and discharging gas to and from the battery body 1; Oxidizer inlet piping 3. Fuel inlet flow meter 6, Wi agent inlet flow meter 7.
Fuel outlet piping 4. It is composed of an oxidizer outlet pipe 5 and the like. Further, the battery main body 1 is provided with a DC current detector 1o, and a control device 12 that controls the state of the entire plant. Note that the broken line in Figure 1 represents an electrical signal.
燃料出口配管4には水素濃度計8が設けられており、酸
化剤出口配管5には酸素濃度計9が設けられ、各々、出
口ガス中の反応成分濃度を検出し、一方電池本体1の直
流電流検出器10で測定された電流値及び入口流量計6
,7で実測されたガス入口流量と予め与えられている入
口ガス成分により演算器11で計算された出口ガス中の
反応成分濃度を、前記検出された濃度と比較することに
より、ガスリークレベルを監視することが出来る。The fuel outlet pipe 4 is provided with a hydrogen concentration meter 8, and the oxidizer outlet pipe 5 is provided with an oxygen concentration meter 9, each of which detects the concentration of reactive components in the outlet gas. Current value measured by current detector 10 and inlet flow meter 6
The gas leak level is monitored by comparing the reaction component concentration in the outlet gas calculated by the calculator 11 based on the gas inlet flow rate actually measured in , 7 and the inlet gas component given in advance with the detected concentration. You can.
また、出口ガス濃度検出値が、予め設定した下限界濃度
以下となった場合は、制御装置により、発電システムの
待機状態または停止状態への移行、負荷電流の低減、入
口ガス量の増大のいずれかの動作を行うようにすること
で、電池本体が高ガス利用率で運転されることを防止出
来る。In addition, if the detected outlet gas concentration value falls below the preset lower limit concentration, the control device will either shift the power generation system to a standby state or stop state, reduce the load current, or increase the inlet gas amount. By performing this operation, it is possible to prevent the battery main body from operating at a high gas utilization rate.
尚、本実施例では酸化剤及び燃料の両系統にガス濃度セ
ンサーを設け、監視及び保護を行っているが、必要性に
応じてどちらか一方に設けた場合も、本発明に含まれる
。In this embodiment, gas concentration sensors are provided in both the oxidizer and fuel systems for monitoring and protection, but the present invention also includes a case where they are provided in either one depending on necessity.
本発明システムによれば、燃料電池において、電池出口
ガス中の反応成分ガス濃度を監視し、計算上のガス出口
濃度と比較することで電池本体内のガスリークレベルを
知ることが出来る。したがって、ガス不足運転による電
池損傷の防止に効果があるだけでなく、後流側に燃焼器
をつけた場合の失火防止にも有効である。さらに、出口
ガス濃度に下限界を設けて保護動作を行えば、電池が高
利用事運転、すなわちガス不足状態で運転されることを
防止することが出来、電池損傷を予防出来る効果がある
。According to the system of the present invention, in a fuel cell, the gas leak level within the cell body can be determined by monitoring the concentration of the reactant gas in the cell outlet gas and comparing it with the calculated gas outlet concentration. Therefore, it is effective not only in preventing battery damage due to gas starvation operation, but also in preventing misfires when a combustor is attached on the downstream side. Furthermore, if a protective operation is performed by setting a lower limit on the outlet gas concentration, it is possible to prevent the battery from being operated under high utilization conditions, that is, in a state of insufficient gas, and this has the effect of preventing damage to the battery.
第1図は本発明の実施例を示す発電システムフロー図、
第2図は一般的なガス利用率と電池出力との関係を示す
特性図である。
1・・・電池本体、4・・・燃料出口配管、5・・・酸
化剤出口配管、8・・・水素濃度センサー、9・・・酸
m′a度センサー、11・・・演算器、12・・・制御
装置。FIG. 1 is a power generation system flow diagram showing an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing a general relationship between gas utilization rate and battery output. DESCRIPTION OF SYMBOLS 1... Battery body, 4... Fuel outlet piping, 5... Oxidizer outlet piping, 8... Hydrogen concentration sensor, 9... Acid m'a degree sensor, 11... Arithmetic unit, 12...Control device.
Claims (1)
酸化剤、燃料の反応ガスを夫々給排するガス供給系統、
前記電池本体の直流電流を検知する手段、前記ガス供給
系統に設けられた流量計及びプラント状態を制御する制
御装置とを有する燃料電池発電システムにおいて、前記
ガス供給系統の燃料出口側および酸化剤出口側の両方、
またはいずれか一方にガス濃度センサーを設け、前記ガ
ス供給系統で測定した入口ガス量と、前記直流電流検知
手段により検出した直流電流値とから酸化剤出口および
燃料出口の両方又はいずれか一方のガス濃度を計算する
演算器を設けたことを特徴とし、該演算器によるガス濃
度計算値と前記ガス濃度センサーによるガス濃度検出値
とを比較して、その偏差により電池内のガスリーク量を
監視しうる燃料電池発電システム。 2、ガス濃度センサーにより検出されたガス濃度が、予
め設定したガス濃度より低下した場合に、制御装置によ
り、発電システムの待機状態または停止状態への移行、
負荷電流の低減、入口ガス量の増大のいずれかの動作を
行うようにしたことを特徴とする特許請求の範囲第1項
記載の燃料電池発電システム。[Claims] 1. A battery body composed of unit cells, a gas supply system for supplying and discharging reaction gases of an oxidizer and fuel to and from the battery body, respectively;
In a fuel cell power generation system comprising means for detecting direct current of the battery body, a flow meter provided in the gas supply system, and a control device for controlling plant conditions, a fuel outlet side and an oxidizer outlet of the gas supply system are provided. both sides,
Alternatively, a gas concentration sensor is provided on either one, and the gas at both or either of the oxidizer outlet and the fuel outlet is detected based on the inlet gas amount measured by the gas supply system and the DC current value detected by the DC current detection means. The device is characterized by being provided with a computing unit that calculates the concentration, and the gas concentration calculated by the computing unit is compared with the gas concentration detected by the gas concentration sensor, and the amount of gas leakage in the battery can be monitored based on the deviation. Fuel cell power generation system. 2. When the gas concentration detected by the gas concentration sensor falls below a preset gas concentration, the control device causes the power generation system to enter a standby state or a stop state;
2. The fuel cell power generation system according to claim 1, wherein the fuel cell power generation system performs one of the following operations: reducing the load current and increasing the amount of inlet gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192682A JPS6351061A (en) | 1986-08-20 | 1986-08-20 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192682A JPS6351061A (en) | 1986-08-20 | 1986-08-20 | Fuel cell power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6351061A true JPS6351061A (en) | 1988-03-04 |
Family
ID=16295290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61192682A Pending JPS6351061A (en) | 1986-08-20 | 1986-08-20 | Fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6351061A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475651B1 (en) | 2000-07-31 | 2002-11-05 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells |
JP2003077510A (en) * | 2001-09-03 | 2003-03-14 | Fujitsu Ltd | Electronic apparatus |
DE102006008254A1 (en) * | 2006-02-22 | 2007-08-30 | Siemens Ag | Gas leakage detection method in fuel cell arrangement, involves supplying air to fuel cell arrangement and oxygen fraction in discharge gas is determined and gas leakage is closed on basis of oxygen fraction |
US7648787B2 (en) | 2004-11-29 | 2010-01-19 | Toyota Jidosha Kabushiki Kaisha | Gas leak detection device and fuel cell system |
JP2013191316A (en) * | 2012-03-12 | 2013-09-26 | Aisin Seiki Co Ltd | Pipe member for supplying oxidant gas and fuel cell system provided with the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151772A (en) * | 1984-08-18 | 1986-03-14 | Mitsubishi Electric Corp | Flow rate controller of fuel cell system |
JPS6188463A (en) * | 1984-10-08 | 1986-05-06 | Fuji Electric Co Ltd | Method of measuring volume of internal air leakage in matrix type fuel cell |
-
1986
- 1986-08-20 JP JP61192682A patent/JPS6351061A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6151772A (en) * | 1984-08-18 | 1986-03-14 | Mitsubishi Electric Corp | Flow rate controller of fuel cell system |
JPS6188463A (en) * | 1984-10-08 | 1986-05-06 | Fuji Electric Co Ltd | Method of measuring volume of internal air leakage in matrix type fuel cell |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475651B1 (en) | 2000-07-31 | 2002-11-05 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells |
JP2003077510A (en) * | 2001-09-03 | 2003-03-14 | Fujitsu Ltd | Electronic apparatus |
US7648787B2 (en) | 2004-11-29 | 2010-01-19 | Toyota Jidosha Kabushiki Kaisha | Gas leak detection device and fuel cell system |
DE102006008254A1 (en) * | 2006-02-22 | 2007-08-30 | Siemens Ag | Gas leakage detection method in fuel cell arrangement, involves supplying air to fuel cell arrangement and oxygen fraction in discharge gas is determined and gas leakage is closed on basis of oxygen fraction |
JP2013191316A (en) * | 2012-03-12 | 2013-09-26 | Aisin Seiki Co Ltd | Pipe member for supplying oxidant gas and fuel cell system provided with the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0831436A (en) | Package type fuel cell power generation plant | |
JP2000208161A (en) | Operating method of and operating device for fuel cell | |
US20110117468A1 (en) | Pressure relief system for a fuel cell system having a pressurized fuel flow | |
KR20190094123A (en) | Methods for Transitioning a Fuel Cell System between Modes of Operation | |
JP7257639B2 (en) | fuel cell system | |
JP5164014B2 (en) | Fuel cell system and control method thereof | |
JP2009070788A (en) | Fuel supply control method and fuel cell device utilizing the method | |
JPS6351061A (en) | Fuel cell power generation system | |
JPS6030062A (en) | Output controller of fuel cell | |
JPH0955219A (en) | Fuel cell power generating device and operation method | |
US20130221675A1 (en) | Gas turbine combined power generation system with high temperature fuel cell and operating method thereof | |
JPH06267577A (en) | Control device for fuel cell | |
KR20190094121A (en) | Methods for Transitioning a Fuel Cell System between Modes of Operation | |
JPS6351060A (en) | Fuel cell power generation system | |
JP2819819B2 (en) | Fuel cell abnormality detection device | |
JP2948037B2 (en) | Fuel cell power plant | |
JP2931372B2 (en) | Operating method of fuel cell power generation system | |
JPH01251561A (en) | Control of combustor for fuel cell reformer | |
JP2837529B2 (en) | Fuel cell exhaust heat utilization system degradation alarm device and degradation determination method | |
JP2819154B2 (en) | Operating method of hybrid fuel cell | |
JPH04174975A (en) | Multilayer fuel cell | |
JPH0282459A (en) | Service control device for fuel cell | |
JPH0714595A (en) | Operating method of power generating device of fuel cell type | |
JPH0834106B2 (en) | How to stop the fuel cell power generation system | |
KR20190094122A (en) | Methods for Transitioning a Fuel Cell System between Modes of Operation |