JPS6351060A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPS6351060A
JPS6351060A JP61192680A JP19268086A JPS6351060A JP S6351060 A JPS6351060 A JP S6351060A JP 61192680 A JP61192680 A JP 61192680A JP 19268086 A JP19268086 A JP 19268086A JP S6351060 A JPS6351060 A JP S6351060A
Authority
JP
Japan
Prior art keywords
gas
battery
main body
supply system
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61192680A
Other languages
Japanese (ja)
Inventor
Toshiaki Takemoto
嶽本 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61192680A priority Critical patent/JPS6351060A/en
Publication of JPS6351060A publication Critical patent/JPS6351060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the operation of a cell in a state of gas shortage by providing a protective device equipped with a computing unit, which calculates a gas utilization factor from values of an inlet gas flow and a DC current, being separated from the main controlling system for always monitoring the utilizing factor, whereby applying protective function such as operation stop when the factor exceeds a definite value. CONSTITUTION:A fuel cell power generation system is composed of a cell main body 1, a fuel supply system 2 which supplies reaction gas to the cell main body 1, and an oxidizer supply system 3, wherein the fuel supply system 2 is equipped with a fuel inlet flowmeter 4, the oxidizer supply system 3 is with an oxidizer inlet flowmeter 5 and the cell main body 1 is with a d.c. current detector 6 t detect the DC current value. A computing unit 7 of a protective device installed in the system calculates the gas utilization factor, by comparing a DC current value detected by the DC current detector 6 in operation of the cell main body 1 with a gas flow rate at the inlet side of cell main body 1 measured by the fuel supply system 2 and the oxidizer supply system 3, whereby operation of the cell is stopped when the gas utilization factor exceeds a definite value. With the arrangement, operation of the cell in a state of gas shortage can be avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電システムに係り、特にガス不足運
転防止に好適な燃料電池発電システムに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation system, and particularly to a fuel cell power generation system suitable for preventing gas starvation operation.

〔従来の技術〕[Conventional technology]

燃温電池は供給される燃料中の水素と酸化剤中の酸素と
が電気化学的に反応する際のエネルギーを、直流電力お
よび熱として取り出し、有効利用するものである。従っ
て供給ガスの量、すなわちエネルギーによって取り出し
得る最大直流電力が決まる。また、化学反応を伴うエネ
ルギー変換系であるため、理論上の電力、すなわち有効
成分を100%利用した電力を取り出すことは不可能で
あり、一般にある程度過剰な反応物質を供給することが
必要である。この過剰量を表わすものとして、次式で示
される利用率がある。
A fuel temperature cell extracts and effectively utilizes the energy generated when hydrogen in a supplied fuel and oxygen in an oxidizer electrochemically react as DC power and heat. Therefore, the amount of supplied gas, that is, the energy, determines the maximum DC power that can be extracted. Furthermore, since it is an energy conversion system that involves chemical reactions, it is impossible to extract theoretical power, that is, power that utilizes 100% of the active ingredient, and it is generally necessary to supply a certain amount of excess reactant. . This excess amount is expressed by the utilization rate expressed by the following equation.

反応物質の利用率(%> = <m!jF電池出力電流
に電気化学的に当量の反応物質量÷燃料電池に供給され
た反応物質流量)X100 また、一般に利用率と電池出力との関係は縦軸に電池出
力をとり横軸にガス利用#iをとって、ガス利用率と電
池出力との関係が示されている第2図に示されているよ
うに、ある利用率り以上になると、急激に出力が低下す
る。従って利用率り点以下に反応物質の利用率を下げて
運転する必要がある。従来の燃料電池はこのような特性
上、出力電流をパラメータとして供給ガス基を制御する
方法がとられていた。なおこれに関するものとして特開
昭60−56374号公報がある。
Utilization rate of reactant (%> = <m!jF Amount of reactant electrochemically equivalent to cell output current ÷ Flow rate of reactant supplied to the fuel cell) x 100 In addition, in general, the relationship between utilization rate and battery output is As shown in Figure 2, which shows the relationship between gas utilization rate and battery output, with battery output on the vertical axis and gas usage #i on the horizontal axis, when the usage rate exceeds a certain level, , the output drops suddenly. Therefore, it is necessary to operate by lowering the utilization rate of the reactant below the utilization rate point. Due to these characteristics, conventional fuel cells have adopted a method of controlling the supply gas base using the output current as a parameter. Regarding this, there is Japanese Patent Laid-Open No. 60-56374.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術ではガス供給系統に不具合が生じてガス供
給量が不足した場合に、電池の直流電力が低下するまで
その不具合に気づかず、仮りに電池出力下限値を設けて
保護動作を行った場合でも、ある時間電池はガス供給量
から見て過負荷状態。
In the conventional technology described above, when a problem occurs in the gas supply system and the gas supply amount is insufficient, the problem is not noticed until the DC power of the battery decreases, and a protective operation is performed by setting a lower limit on battery output. However, at certain times the battery is overloaded based on the amount of gas supplied.

換言すればガス欠状態で運転されることになり、電池を
損傷する恐れがあった。
In other words, the vehicle would be operated without gas, which could damage the battery.

本発明は以上の点に鑑もなされたものであり、制御上の
不具合が生じた場合でも電池がガス不足状態で運転され
るのを防止することを可能とした燃料電池発電システム
を提供することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a fuel cell power generation system that can prevent the battery from being operated in a gas-starved state even if a control malfunction occurs. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、入口ガス流量と直流電流値とからガス利用
率を計算する演算器を有する保護装置f?を主制御系統
とは別に設け、常に利用率を監視して、利用率がある一
定値以上になったら停止動作等の保護動作に入るように
することにより、達成される。
The above purpose is a protection device f? having a calculator that calculates the gas utilization rate from the inlet gas flow rate and the DC current value. This is achieved by providing a system separately from the main control system, constantly monitoring the utilization rate, and entering a protective operation such as a shutdown operation when the utilization rate exceeds a certain value.

〔作用〕[Effect]

演算器では実測された直流電流とガス流量とから、上記
利用率の計算式に基づき利用率を演算する。電気化学的
に当量な物質量は単位変換定数をに、、 fl!気化学
的定数をに、、電流を工、直列電池数をNとした場合に
、式次で求まる。
The computing unit calculates the utilization rate based on the above-mentioned utilization rate calculation formula from the actually measured direct current and gas flow rate. The electrochemically equivalent amount of substance is determined by the unit conversion constant, fl! When the gas chemical constant is , the current is , and the number of series batteries is N, it can be found by the following formula.

電気化学的な当量=に、−に日・I−N演算結果と予め
設定される利用率上限値とを比較して、上限値を越えた
場合に保護動作に入るように保護装置を構成することに
よって、電池がガス不足状態で運転されることが防止で
きる。従って電池損傷を未然に防止することができる。
The protection device is configured to compare the electrochemical equivalent = to - to the I-N calculation result with a preset utilization rate upper limit, and to enter a protective operation if the upper limit is exceeded. This prevents the battery from being operated in a gas-starved state. Therefore, damage to the battery can be prevented.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。同図に示さ
れているように燃料電池発電システムは電池本体1.こ
の電池本体1に反応ガスを給排する燃料供給系統2およ
び配化剤供給系統3を備えている。そして燃料供給系状
2には燃料入口流量計4.酸化剤供給系M3には酸化剤
入口流量計5が設けられ、電池本体1にはその直流電流
値を検出する直流電流検出装置6が設けられている。こ
のように↑、弯成された燃料電池発電システムで本実施
例ではシステムに、電池本体1の運転中に直流電流検出
装置1¥6で検出した直流電流値と。
The present invention will be explained below based on the illustrated embodiments. FIG. 1 shows an embodiment of the invention. As shown in the figure, the fuel cell power generation system consists of a battery main body 1. The battery main body 1 is provided with a fuel supply system 2 and a distribution agent supply system 3 for supplying and discharging a reaction gas. The fuel supply system 2 includes a fuel inlet flowmeter 4. The oxidizing agent supply system M3 is provided with an oxidizing agent inlet flowmeter 5, and the battery body 1 is provided with a DC current detection device 6 for detecting the DC current value. In the fuel cell power generation system constructed in this way, in this embodiment, the system uses the DC current value detected by the DC current detection device 1\6 while the battery main body 1 is in operation.

燃料、酸化剤供給系統2,3で測定した電池本体  。Battery body measured in fuel and oxidizer supply systems 2 and 3.

1人口側のガス流量とを比較してガス利用率を演算する
演算器7を備えた保護装置を設けて、ガス利用率が一定
値以上になったら電池の運転を停止するようにした。
A protection device equipped with a calculator 7 that calculates the gas utilization rate by comparing the gas flow rate for one population side is provided, and the operation of the battery is stopped when the gas utilization rate exceeds a certain value.

このようにすることによりシステムに、電池本体1の運
転中に直流電流検出装置i!6で検出した直流電流値と
、燃料、!!2化剤供給系統2,3で測定した電池本体
1人口側のガス流量とを比較してガス利用率を演算する
演算器7を備えた保護装置が設けられ、ガス利用率が一
定値以上になったら′fi池の運転が停止されるように
なって、電池がガス不足状態で運転されるのが防止され
るようになり、制御上の不具合が生じた場合でも電池が
ガス不足状態で運転されるのを防止することを可能とし
た燃料電池発電システムを得ることができる。
By doing this, the system has a direct current detection device i! while the battery main body 1 is operating. The DC current value detected in step 6 and the fuel! ! A protection device is provided that includes a calculator 7 that calculates the gas utilization rate by comparing the gas flow rate on the population side of the battery main body 1 measured by the dualizing agent supply systems 2 and 3, and prevents the gas utilization rate from exceeding a certain value. When this occurs, the operation of the 'fi pond will be stopped and the battery will be prevented from operating in a gas starved state.Even if a control problem occurs, the battery will not be operated in a gas starved state. It is possible to obtain a fuel cell power generation system that makes it possible to prevent this from occurring.

すなわちガス供給系統である燃料供給系!a2゜酸化剤
供給系J13に設けられた燃料入口流旦計4および酸化
剤入口流量計5により測定したガス流量と、電池本体1
の直流電流検出装置6により測定した直流電流値とを、
演算器7によりガス利用率に変換して中央制御系統8へ
出力し、予め設定した上限利用率を越えた場合、適切な
保護動作に移行するように保護回路を組んでおく。なお
同図において破線は電気的信号である。このようにする
ことによりガス利用率が上限利用率を越えた場合は主制
御系統とは311に電池の運転が停止されるようになり
、制御上の不具合が生じた場合でも電池のガス不足状態
での運転が防止でき、電池の損傷を防止することができ
る。
In other words, the fuel supply system is the gas supply system! a2゜The gas flow rate measured by the fuel inlet flowmeter 4 and the oxidizer inlet flowmeter 5 provided in the oxidizer supply system J13 and the battery main body 1
The DC current value measured by the DC current detection device 6 of
The arithmetic unit 7 converts it into a gas utilization rate and outputs it to the central control system 8, and a protection circuit is constructed so that if the gas utilization rate exceeds a preset upper limit, an appropriate protective operation is initiated. In addition, in the same figure, the broken line is an electrical signal. By doing this, if the gas utilization rate exceeds the upper limit utilization rate, the main control system will stop the operation of the battery in 311, and even if a control malfunction occurs, the battery will be in a state of gas shortage. It is possible to prevent over-driving and prevent damage to the battery.

なお、燃料として化石燃料を改質して用いるような発電
システムでは、燃料の流景の他に燃料組成を監視する必
要がある。この場合に燃料入口側にガス成分々析計を設
け、ガス量と有効成分濃度とにより、ガス利用率を演算
させろように保護装置を構成すればよい。
In addition, in a power generation system that uses reformed fossil fuel as fuel, it is necessary to monitor the fuel composition in addition to the flow of the fuel. In this case, the protection device may be configured so that a gas component analyzer is provided on the fuel inlet side and the gas utilization rate is calculated based on the gas amount and the concentration of the active ingredient.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は制御上の不具合が生じた場合でも
電池がガス不足状態で運転されるのが防止されるように
なって、制御上の不具合が生じた場合でも電池がガス不
足状態で運転されるのを防止することを可能とした燃料
11池発電システムを得ることができろ。
As described above, the present invention prevents the battery from being operated in a gas-starved state even if a control malfunction occurs; It is possible to obtain a fuel 11 pond power generation system that can be prevented from being operated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料電池発電システムの一実施例の発
電システムフロー図、第2図は一般的なガス利用率と電
池出力との関係を示す特性図である。 1・・・電池本体、2・・燃料供給系統(ガス供給系統
)、3・・・酸化剤供給系統(ガス供給系統)、4・・
・燃料入口流量計、5・・・酸化剤入口流量計、6・・
・直流電流検出装置、7・・・演算器、8・・・中央制
御系統。
FIG. 1 is a power generation system flowchart of an embodiment of the fuel cell power generation system of the present invention, and FIG. 2 is a characteristic diagram showing a general relationship between gas utilization rate and battery output. 1... Battery body, 2... Fuel supply system (gas supply system), 3... Oxidizer supply system (gas supply system), 4...
・Fuel inlet flow meter, 5... Oxidizer inlet flow meter, 6...
- DC current detection device, 7... Arithmetic unit, 8... Central control system.

Claims (1)

【特許請求の範囲】 1、複数の単電池から構成される電池本体、この電池本
体に配化剤、燃料の反応ガスを給排するガス供給系統を
備え、前記電池本体にはその直流電流を検出する直流電
流検出装置が設けられている燃料電池発電システムにお
いて、前記システムに、前記電池本体の運転中に前記直
流電流検出装置で検出した直流電流値と、前記ガス供給
系統で測定した前記電池本体入口側のガス流量とを比較
してガス利用率を演算する演算器を備えた保護装置を設
け、前記ガス利用率が一定値以上になつたら前記電池の
運転を停止するようにしたことを特徴とする燃料電池発
電システム。 2、前記保護装置が、前記燃料の電池本体への入口側に
ガス成分検出器を設け、前記入口側のガス流量を有効成
分のガス量として検出するように形成されたものである
特許請求の範囲第1項記載の燃料電池発電システム。 3、前記保護装置が、前記ガス利用率が一定値以上で電
池が運転されるのを防止する動作が、前記システムの主
制御系統とは別に行うように形成されたものである特許
請求の範囲第1項記載の燃料電池発電システム。
[Scope of Claims] 1. A battery body composed of a plurality of single cells, a gas supply system for supplying and discharging a coordinating agent and a reaction gas of fuel to the battery body, and a direct current of the battery body is provided. In a fuel cell power generation system that is provided with a DC current detection device for detecting, the system includes a DC current value detected by the DC current detection device during operation of the battery main body, and a DC current value measured by the gas supply system of the battery. A protection device is provided that includes a calculator that calculates the gas utilization rate by comparing the gas flow rate at the inlet of the main body, and the operation of the battery is stopped when the gas utilization rate exceeds a certain value. Characteristic fuel cell power generation system. 2. The protection device is configured to include a gas component detector on the inlet side of the fuel into the cell main body, and to detect the gas flow rate on the inlet side as the amount of active ingredient gas. The fuel cell power generation system according to scope 1. 3. Claims in which the protection device is formed so that the operation of preventing the battery from being operated when the gas utilization rate exceeds a certain value is performed separately from the main control system of the system. The fuel cell power generation system according to item 1.
JP61192680A 1986-08-20 1986-08-20 Fuel cell power generation system Pending JPS6351060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192680A JPS6351060A (en) 1986-08-20 1986-08-20 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192680A JPS6351060A (en) 1986-08-20 1986-08-20 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPS6351060A true JPS6351060A (en) 1988-03-04

Family

ID=16295256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192680A Pending JPS6351060A (en) 1986-08-20 1986-08-20 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPS6351060A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461755A (en) * 1990-06-28 1992-02-27 Tohoku Electric Power Co Inc Operation control system of fuel cell power generating device
US5241106A (en) * 1991-10-22 1993-08-31 Mitsui Toatsu Chemicals, Inc. Process for producing ethyl acetate
JP2000067895A (en) * 1998-08-19 2000-03-03 Toshiba Corp Fuel cell power generating system
JP2004342617A (en) * 2004-06-16 2004-12-02 Equos Research Co Ltd Display device of fuel cell vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158557A (en) * 1984-01-27 1985-08-19 Mitsubishi Electric Corp Fuel cell power generating system
JPS60241661A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Fuel cell protector
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPS6188463A (en) * 1984-10-08 1986-05-06 Fuji Electric Co Ltd Method of measuring volume of internal air leakage in matrix type fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158557A (en) * 1984-01-27 1985-08-19 Mitsubishi Electric Corp Fuel cell power generating system
JPS60241661A (en) * 1984-05-15 1985-11-30 Mitsubishi Electric Corp Fuel cell protector
JPS6151772A (en) * 1984-08-18 1986-03-14 Mitsubishi Electric Corp Flow rate controller of fuel cell system
JPS6188463A (en) * 1984-10-08 1986-05-06 Fuji Electric Co Ltd Method of measuring volume of internal air leakage in matrix type fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461755A (en) * 1990-06-28 1992-02-27 Tohoku Electric Power Co Inc Operation control system of fuel cell power generating device
US5241106A (en) * 1991-10-22 1993-08-31 Mitsui Toatsu Chemicals, Inc. Process for producing ethyl acetate
JP2000067895A (en) * 1998-08-19 2000-03-03 Toshiba Corp Fuel cell power generating system
JP2004342617A (en) * 2004-06-16 2004-12-02 Equos Research Co Ltd Display device of fuel cell vehicle

Similar Documents

Publication Publication Date Title
US6322917B1 (en) Diagnostic method and control of preferential oxidation of carbon monoxide
US6650968B2 (en) Technique to regulate an efficiency of a fuel cell system
EP3109931A1 (en) Redox flow battery system and method for operating redox flow battery
JP2001210346A (en) Establishing method of fuel flow through fuel cell laminated material and fuel cell system
US6581015B2 (en) Technique and apparatus to control the transient response of a fuel cell system
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
EP1570538B1 (en) Method and apparatus for monitoring fuel cell voltages
US20110117468A1 (en) Pressure relief system for a fuel cell system having a pressurized fuel flow
JP2007220625A (en) Fuel cell system
JPH0715653B2 (en) Fuel cell output controller
JP4172792B2 (en) Method for detecting fuel concentration in direct methanol fuel cell and direct methanol fuel cell system
JPS6351060A (en) Fuel cell power generation system
JPH0955219A (en) Fuel cell power generating device and operation method
JPS60177565A (en) Operation method of fuel cell power generating system
JP2007265786A (en) Fuel cell system and its control method
JP5380039B2 (en) Fuel cell power generation system and operation method thereof
JPH05275097A (en) Fuel cell generating device
JP2014002924A (en) Fuel cell system
JPH0719615B2 (en) Fuel cell power generation system
JPS6351061A (en) Fuel cell power generation system
JPH01200567A (en) Power generation system of fuel cell
US20050089729A1 (en) Technique and apparatus to control the response of a fuel cell system to load transients
JP2542096B2 (en) How to stop the fuel cell
US6697745B2 (en) Technique and apparatus to control the transient response of a fuel cell system
US20200350605A1 (en) System for managing hydrogen utilization in a fuel cell power plant