JPS6351058B2 - - Google Patents

Info

Publication number
JPS6351058B2
JPS6351058B2 JP59001162A JP116284A JPS6351058B2 JP S6351058 B2 JPS6351058 B2 JP S6351058B2 JP 59001162 A JP59001162 A JP 59001162A JP 116284 A JP116284 A JP 116284A JP S6351058 B2 JPS6351058 B2 JP S6351058B2
Authority
JP
Japan
Prior art keywords
ethylene
mmol
minutes
gas
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59001162A
Other languages
Japanese (ja)
Other versions
JPS60147237A (en
Inventor
Hidefumi Hirai
Makoto Komyama
Susumu Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59001162A priority Critical patent/JPS60147237A/en
Priority to EP84301514A priority patent/EP0119789A3/en
Priority to US06/587,657 priority patent/US4546094A/en
Priority to CA000449472A priority patent/CA1231932A/en
Publication of JPS60147237A publication Critical patent/JPS60147237A/en
Priority to US07/093,194 priority patent/US4864071A/en
Publication of JPS6351058B2 publication Critical patent/JPS6351058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、窒素、酸素、メタン、エタン、二酸
化炭素および水素などとともにエチレンを含有す
る混合ガスよりエチレンを分離することのできる
固体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a solid from which ethylene can be separated from a gas mixture containing ethylene together with nitrogen, oxygen, methane, ethane, carbon dioxide, hydrogen, etc.

エチレンは化学工業における最も重要な基礎物
質であり、通常、窒素、酸素、メタン、エタン、
二酸化炭素および水素などとともにエチレンを含
有する混合ガスとして得られる。この混合ガスか
ら、エチレンを分離する方法としては、エチレン
吸収剤または吸着剤を用いる方法と深冷分離法と
があり、本発明は、前者に使用する吸着剤に関す
る。
Ethylene is the most important basic material in the chemical industry and is commonly used in nitrogen, oxygen, methane, ethane,
It is obtained as a mixed gas containing ethylene along with carbon dioxide, hydrogen, etc. Methods for separating ethylene from this mixed gas include a method using an ethylene absorbent or adsorbent and a cryogenic separation method, and the present invention relates to an adsorbent used for the former.

これまでに、塩化銅()アルミニウムのトル
エン溶液がエチレンを分離する能力を有すること
が知られている。しかし、塩化銅()アルミニ
ウムは水と強く反応してエチレンの吸収能を不可
逆的に失うので、たとえ、1ppmの水でも混合ガ
スの処理量の増加とともに次第に失活量を増加し
ていくばかりでなく、反応により発生する塩化水
素のために装置腐蝕が進行する短所を有してい
る。
To date, it is known that a toluene solution of copper()aluminum chloride has the ability to separate ethylene. However, copper()aluminum chloride reacts strongly with water and irreversibly loses its ability to absorb ethylene, so even with 1 ppm of water, the amount of deactivation will gradually increase as the amount of mixed gas processed increases. However, it has the disadvantage that equipment corrosion progresses due to hydrogen chloride generated by the reaction.

さらに、溶媒として用いるトルエン蒸気が回収
したエチレン中に含まれるために、このトルエン
を除去する装置が必要であること、および液状吸
収剤を用いるためにプロセス上の制約を受けるな
どの短所を有する。
Further, since the toluene vapor used as a solvent is contained in the recovered ethylene, a device for removing this toluene is required, and the process is subject to limitations due to the use of a liquid absorbent.

本発明は、水を含む混合ガスからエチレンを直
接に分離することを可能とする、エチレンの固体
吸着剤の簡便かつ経済的に有利な製造を実現した
ものである。
The present invention realizes simple and economically advantageous production of a solid adsorbent for ethylene, which allows ethylene to be directly separated from a mixed gas containing water.

本発明によつて製造される固体吸着剤は、ポリ
スチレンあるいはポリスチレン誘導体をハロゲン
化銅()およびハロゲン化アルミニウムととも
に溶媒中、加熱、かくはんしたのち、溶媒を減圧
留去などの方法で除くことにより得られる固体吸
着剤である。
The solid adsorbent produced by the present invention can be obtained by heating and stirring polystyrene or a polystyrene derivative together with copper halide (2) and aluminum halide in a solvent, and then removing the solvent by distilling off under reduced pressure. It is a solid adsorbent.

本発明に用いられるハロゲン化銅()は、た
とえば、塩化銅()、臭化銅()およびヨウ
化銅()などである。本発明に使用されるハロ
ゲン化アルミニウムは、たとえば、塩化アルミニ
ウム、フツ化アルミニウム、臭化アルミニウムお
よびヨウ化アルミニウムなどである。
Copper halides ( ) used in the present invention include, for example, copper chloride ( ), copper bromide ( ), copper iodide ( ), and the like. The aluminum halides used in the present invention include, for example, aluminum chloride, aluminum fluoride, aluminum bromide, and aluminum iodide.

明細書に記述するポリスチレンおよびポリスチ
レン誘導体は、たとえば、ポリスチレンおよびス
チレンと1〜60モル%のジビニルベンゼンとの共
重合体などのポリスチレン系樹脂である。
The polystyrene and polystyrene derivatives mentioned herein are, for example, polystyrene-based resins such as polystyrene and copolymers of styrene and 1 to 60 mol% divinylbenzene.

本発明における固体吸着剤の製造に用いられる
溶媒は、たとえば、二硫化炭素、ジクロロメタ
ン、クロロホルム、テトラクロロメタン、ジクロ
ロエタン、クリクロロエタン、テトラクロロエタ
ン、ベンゼン、トルエン、キシレン、クロロベン
ゼン、シクロヘキサンおよびデカリンなどであ
る。
Solvents used in the production of the solid adsorbent in the present invention include, for example, carbon disulfide, dichloromethane, chloroform, tetrachloromethane, dichloroethane, dichloroethane, tetrachloroethane, benzene, toluene, xylene, chlorobenzene, cyclohexane, and decalin. .

本発明によるエチレン吸着剤製造におけるポリ
スチレンおよびポリスチレン誘導体の単量体残基
とハロゲン化銅()とのモル比は0.1〜30、好
ましくは1〜5であり、ハロゲン化銅()とハ
ロゲン化アルミニウムとのモル比は0.5〜10、好
ましくは1.0〜1.5である。
The molar ratio of monomer residues of polystyrene and polystyrene derivatives and copper halide (2) in the production of ethylene adsorbent according to the present invention is 0.1 to 30, preferably 1 to 5, and copper halide (2) and aluminum halide are The molar ratio with is 0.5 to 10, preferably 1.0 to 1.5.

本発明における吸着剤の製造雰囲気は、たとえ
ば窒素下、ヘリウム下、アルゴン下などであり、
雰囲気中の水を1000ppm以下、好ましくは
100ppm以下に抑制することが必要である。
The manufacturing atmosphere of the adsorbent in the present invention is, for example, under nitrogen, under helium, under argon, etc.
Water in the atmosphere below 1000ppm, preferably
It is necessary to suppress it to 100ppm or less.

本発明において、ハロゲン化銅()、ハロゲ
ン化アルミニウムおよびポリスチレンまたはポリ
スチレン誘導体を溶媒中でかくはんする時間は1
分〜10時間、好ましくは1〜3時間、かくはん温
度は、10〜100℃、好ましくは20〜60℃である。
In the present invention, the time for stirring copper halide (2), aluminum halide, and polystyrene or polystyrene derivative in a solvent is 1
The stirring temperature is from 10 to 100°C, preferably from 20 to 60°C, for a period of minutes to 10 hours, preferably 1 to 3 hours.

本発明における溶媒除去の際の減圧度は、10-6
〜102mmHg、好ましくは10-2〜10mmHg、温度は、
0〜250℃、好ましくは10〜180℃である。
The degree of reduced pressure during solvent removal in the present invention is 10 -6
~10 2 mmHg, preferably 10 -2 ~10 mmHg, the temperature is
The temperature is 0 to 250°C, preferably 10 to 180°C.

本発明により製造される吸着剤を用いるエチレ
ンの吸着は、常圧下で−40〜90℃、好ましくは0
〜40℃で行うことができ、吸着剤を40〜140℃、
好ましくは60〜100℃に昇温するか、あるいは、
エチレン分圧を下げることにより、吸着されたエ
チレンを放出させることができる。エチレンの吸
着は、混合ガスの圧力を1気圧以上にすることに
より、90℃以上の温度でも実施可能である。
The adsorption of ethylene using the adsorbent produced according to the present invention is carried out at -40 to 90°C under normal pressure, preferably at 0.
The adsorbent can be carried out at ~40℃, 40~140℃,
Preferably the temperature is raised to 60-100°C, or
By lowering the ethylene partial pressure, the adsorbed ethylene can be released. Ethylene adsorption can be carried out at temperatures of 90° C. or higher by increasing the pressure of the mixed gas to 1 atm or higher.

本発明により製造される固体吸着剤は、水に対
して安定である。たとえば、実施例1に見られる
ように、水を含有するエチレンと繰返し接触させ
てもエチレン吸着能力の低下はほとんど認められ
ない。
The solid adsorbents produced according to the invention are stable to water. For example, as seen in Example 1, even when repeatedly brought into contact with ethylene containing water, almost no decrease in ethylene adsorption capacity is observed.

本発明による吸着剤は固体であるので、充填塔
形式および流動層形式などの装置をエチレンの吸
着および放出の装置として用いることができる。
Since the adsorbent according to the invention is a solid, devices such as packed column type and fluidized bed type can be used as devices for adsorption and desorption of ethylene.

つぎに、本発明を実施例によつてさらに説明す
る。
Next, the present invention will be further explained by examples.

実施例 1 塩化アルミニウムは、キシダ化学工業株式会社
製の特級試薬を真空昇華法により脱水精製した。
塩化銅()は、小宗化学薬品株式会社製の特級
試薬を濃塩酸−水系で再沈後、エタノールおよび
エーテルで逐次洗浄したのち、80℃で12時間、真
空乾燥して使用した。二硫化炭素は米山薬品工業
株式会社製の一級試薬を五酸化リンで脱水後、蒸
留して使用した。
Example 1 Aluminum chloride was purified by dehydration using a special grade reagent manufactured by Kishida Chemical Industry Co., Ltd. using a vacuum sublimation method.
Copper chloride () was used by reprecipitating a special grade reagent manufactured by Koso Chemical Co., Ltd. with a concentrated hydrochloric acid-water system, washing successively with ethanol and ether, and drying under vacuum at 80° C. for 12 hours. Carbon disulfide was used by dehydrating a first class reagent manufactured by Yoneyama Pharmaceutical Co., Ltd. with phosphorus pentoxide and then distilling it.

ポリスチレン系樹脂は、Bio−Rad
Laboratories社製の“Bio−Beads SM−2”
(スチレン80%とジビニルベンゼン20%との共重
合体のビーズ、20〜50メツシユ)を6N塩酸中で
55℃、2時間、4N水酸化ナトリウム水溶液中で
55℃、2時間、水中で55℃、2時間、メタノール
中で25℃、1時間、および、ジクロロメタン中で
25℃、1時間、それぞれ磁気かくはん機を用いて
かきまぜて逐次洗浄することにより、不純物を除
いた後、80℃で12時間、真空乾燥して使用した。
Polystyrene resin is manufactured by Bio-Rad
“Bio-Beads SM-2” manufactured by Laboratories
(copolymer beads of 80% styrene and 20% divinylbenzene, 20-50 meshes) in 6N hydrochloric acid.
55℃, 2 hours in 4N sodium hydroxide aqueous solution
55°C for 2 hours, 55°C for 2 hours in water, 25°C for 1 hour in methanol, and dichloromethane for 1 hour.
Impurities were removed by stirring and washing successively at 25°C for 1 hour using a magnetic stirrer, followed by vacuum drying at 80°C for 12 hours before use.

エチレンガスは高千穂化学株式会社製のボンベ
ガスを使用し、水含量を0.6モル%(6000PPm)
に調製した。窒素ガスは、株式会社鈴木商館製
(純度99.999%)のボンベガスを、使用直前にモ
レキユラーシーブ3A(日化精工株式会社製)の充
填塔を通過させて乾燥精製した。
The ethylene gas used was cylinder gas manufactured by Takachiho Chemical Co., Ltd., and the water content was 0.6 mol% (6000PPm).
It was prepared as follows. Nitrogen gas was a cylinder gas manufactured by Suzuki Shokan Co., Ltd. (99.999% purity), which was dried and purified by passing it through a packed tower of Molecular Sieve 3A (manufactured by Nikka Seiko Co., Ltd.) immediately before use.

乾燥窒素下で、100mlの二口ナスフラスコ中に
2.88g(21.6mmol)の塩化アルミニウム、2.14
g(21.6mmol)の塩化銅()および2.83g
(単量体残基あたり26.0mmol)の架橋ポリスチ
レン樹脂”Bio−Beads SM−2”を入れ、二硫
化炭素20mlを加えて、磁気かくはん機を用いてか
きまぜつつ、加熱還流した。その後、20〜50℃で
6時間磁気かくはん機を用いてかきまぜつつ減圧
(4mmHg)にして二硫化炭素を十分に留去して、
薄赤茶色の樹脂粒を得た。これが固体吸着剤であ
る。
in a 100 ml two-necked eggplant flask under dry nitrogen.
2.88 g (21.6 mmol) aluminum chloride, 2.14
g (21.6 mmol) of copper chloride () and 2.83 g
(26.0 mmol per monomer residue) of cross-linked polystyrene resin "Bio-Beads SM-2" was added, 20 ml of carbon disulfide was added, and the mixture was heated to reflux while stirring using a magnetic stirrer. Thereafter, carbon disulfide was sufficiently distilled off under reduced pressure (4 mmHg) while stirring using a magnetic stirrer for 6 hours at 20 to 50 °C.
Light reddish brown resin particles were obtained. This is a solid adsorbent.

100mlの二口ナスフラスコにこの固体吸着剤を
入れ、1気圧のエチレンガス(水含量0.6モル%)
を入れた容器と結合し、磁気かくはん機を用いて
かきまぜつつ、20℃で測定した。エチレンの吸着
は迅速で、3分後には18.0mmol(仕込み塩化銅
()の83モル%)、30分後には23.1mmol(仕込
み塩化銅()の107モル%)、120分後には24.4
mmol(仕込み塩化銅()の113モル%)のエチ
レンを吸着した。次に、真空ポンプを用いてこの
二口ナスフラスコ中を10分間、20℃で減圧(8mm
Hg)にして、吸着したエチレンを放出させた。
This solid adsorbent was placed in a 100 ml two-necked eggplant flask, and 1 atm of ethylene gas (water content 0.6 mol%) was added.
The mixture was combined with a container containing 20% of the sample, and measurements were taken at 20°C while stirring using a magnetic stirrer. Ethylene adsorption is rapid: 18.0 mmol (83 mol% of the charged copper chloride ()) after 3 minutes, 23.1 mmol (107 mol% of the charged copper chloride ()) after 30 minutes, and 24.4 mmol after 120 minutes.
mmol (113 mol% of the charged copper chloride) of ethylene was adsorbed. Next, use a vacuum pump to reduce the pressure (8mm
Hg) to release the adsorbed ethylene.

その後、その二口ナスフラスコに1気圧のエチ
レンガス(水含量0.6モル%)を入れた容器と結
合し、磁気かくはん機を用いてかきまぜながら、
20℃でエチレンを吸着させた。エチレンの吸着は
迅速で、3分後には3.4mmol(仕込み塩化銅
()の16モル%)、120分後には5.2mmol(仕込
み塩化銅()の24モル%)のエチレンを吸着し
た。次に、延空ポンプを用いてこの二口ナスフラ
スコ中を10分間、20℃で減圧(8mmHg)にして、
吸着したエチレンを放出させた。
Then, the two-necked eggplant flask was combined with a container containing 1 atm of ethylene gas (water content 0.6 mol%), and stirred using a magnetic stirrer.
Ethylene was adsorbed at 20°C. Ethylene adsorption was rapid, with 3.4 mmol (16 mol % of the charged copper chloride ()) of ethylene adsorbed after 3 minutes and 5.2 mmol (24 mol % of the charged copper chloride ()) after 120 minutes. Next, the pressure inside this two-necked eggplant flask was reduced (8 mmHg) at 20°C for 10 minutes using an air extension pump.
Adsorbed ethylene was released.

その後、再度、この二口ナスフラスコを1気圧
のエチレンガス(水含量0.6モル%)を入れた容
器と結合し、磁気かくはん機を用いてかきまぜな
がら、20℃でエチレンを吸着させた。エチレンの
吸着は迅速で、3分後には3.3mmol(仕込み塩化
銅()の15モル%)、120分後には5.1mmol(仕
込み塩化銅()の24モル%)のエチレンを吸着
した。
Thereafter, this two-necked eggplant flask was again connected to a container containing ethylene gas (water content 0.6 mol %) at 1 atm, and while stirring using a magnetic stirrer, ethylene was adsorbed at 20°C. Ethylene adsorption was rapid; 3.3 mmol (15 mol% of the charged copper chloride ()) was adsorbed after 3 minutes, and 5.1 mmol (24 mol% of the charged copper chloride ()) after 120 minutes.

以後、水を0.6%含有するエチレンガスと本発
明の固体吸着剤との接触を5回繰返したが、エチ
レンの吸着量は、2回目および3回目のエチレン
吸着の値とほぼ同一であつた。
Thereafter, the contact between ethylene gas containing 0.6% water and the solid adsorbent of the present invention was repeated five times, and the amount of ethylene adsorbed was almost the same as the value of the second and third ethylene adsorption.

実施例 2 実施例1に記載した二硫化炭素の代わりに、ト
ルエンを使用した以外は、実施例1と同一の試薬
を使用した。トルエンは高橋藤吉商店製の特級試
薬を金属ナトリウムで脱水後、蒸留して使用し
た。
Example 2 The same reagents as in Example 1 were used, except that toluene was used instead of carbon disulfide as described in Example 1. Toluene was used by dehydrating a special grade reagent manufactured by Takahashi Fujiyoshi Shoten with metallic sodium and then distilling it.

乾燥窒素下で、100mlの二口ナスフラスコ中に
2.46g(18.4mmol)の塩化アルミニウム、2.74
g(27.7mmol)の塩化銅()および3.61g
(単量体残基あたり33.2mmol)の架橋ポリスチ
レン樹脂“Bio−Beads SM−2”を入れ、トル
エン20mlを加えて、磁気かくはん機を用いてかき
まぜつつ、加熱還流した。その後、20〜50℃で6
時間磁気かくはん機を用いてかきまぜつつ減圧
(4mmHg)にしてトルエンを十分に留去して固体
吸着剤を調製した。
in a 100 ml two-necked eggplant flask under dry nitrogen.
2.46 g (18.4 mmol) aluminum chloride, 2.74
g (27.7 mmol) of copper chloride () and 3.61 g
(33.2 mmol per monomer residue) of cross-linked polystyrene resin "Bio-Beads SM-2" was added, 20 ml of toluene was added, and the mixture was heated to reflux while stirring using a magnetic stirrer. Then 6 at 20-50℃
A solid adsorbent was prepared by thoroughly distilling toluene under reduced pressure (4 mmHg) while stirring using a magnetic stirrer.

実施例1と同様の操作により、エチレン吸着量
を測定したところ、3分後には14.7mmol、60分
後には19.2mmolのエチレンを吸着した。
When the amount of ethylene adsorption was measured by the same operation as in Example 1, 14.7 mmol of ethylene was adsorbed after 3 minutes and 19.2 mmol after 60 minutes.

次に、この吸着剤を1atmで106℃に加熱する
と、エチレンが迅速に放出され、放出量は、10分
後に9.5mmolに達した。放出ガスをガスクロマ
トグラフ(ポラパツクQカラム、カラム温度60
℃、カラム長2m)で分析した結果、放出ガスは
エチレンであり、他の成分は検出されなかつた。
The adsorbent was then heated to 106° C. at 1 atm, and ethylene was rapidly released, reaching 9.5 mmol after 10 minutes. The released gas was collected using a gas chromatograph (Polapack Q column, column temperature 60
As a result of analysis at a temperature of 20° C. (column length: 2 m), the released gas was ethylene, and no other components were detected.

実施例 3 実施例1に記載した二硫化炭素の代わりに、ジ
クロロメタンを使用した以外は、実施例1と同一
の試薬を使用した。ジクロロメタンは半井化学薬
品株式会社製の特級試薬を五酸化リンで脱水後、
蒸留して使用した。
Example 3 The same reagents as in Example 1 were used, except that dichloromethane was used instead of carbon disulfide as described in Example 1. Dichloromethane is a special grade reagent manufactured by Hanui Chemical Co., Ltd., which is dehydrated with phosphorus pentoxide.
It was distilled and used.

乾燥窒素下で、100mlの二口ナスフラスコ中に
2.46g(18.4mmol)の塩化アルミニウム、2.74
g(27.7mmol)の塩化銅()および3.61g
(単量体残基あたり33.2mmol)の架橋ポリスチ
レン樹脂“Bio−Beads SM−2”を入れ、ジク
ロロメタン20mlを加えて、磁気かくはん機を用い
てかきまぜつつ、加熱還流した。その後、20〜50
℃で6時間磁気かくはん機を用いてかきまぜつつ
減圧(4mmHg)にしてジクロロメタンを十分に
留去して固体吸着剤を調製した。
in a 100 ml two-necked eggplant flask under dry nitrogen.
2.46 g (18.4 mmol) aluminum chloride, 2.74
g (27.7 mmol) of copper chloride () and 3.61 g
(33.2 mmol per monomer residue) of cross-linked polystyrene resin "Bio-Beads SM-2" was added, and 20 ml of dichloromethane was added, followed by heating to reflux while stirring using a magnetic stirrer. Then 20-50
A solid adsorbent was prepared by thoroughly distilling dichloromethane under reduced pressure (4 mmHg) while stirring using a magnetic stirrer at °C for 6 hours.

実施例1と同様の操作により、エチレン吸着量
を測定したところ、3分後には13.6mmol、60分
後には19.0mmolのエチレンを吸着した。
When the amount of ethylene adsorption was measured by the same operation as in Example 1, 13.6 mmol of ethylene was adsorbed after 3 minutes and 19.0 mmol after 60 minutes.

次にこの吸着剤をlatmで110℃に加熱すると、
エチレンが迅速に放出され、放出量は、10分後に
9.9mmolに達した。放出ガスを実施例2と同様
にガスクロマトグラフで分析した結果、放出ガス
はエチレンであり、他の成分は検出されなかつ
た。
Next, when this adsorbent is heated to 110℃ at latm,
Ethylene is released quickly and the amount released is after 10 minutes.
It reached 9.9 mmol. As a result of analyzing the released gas using a gas chromatograph in the same manner as in Example 2, it was found that the released gas was ethylene and no other components were detected.

実施例 4 実施例1に記載した塩化アルミニウムの代わり
にヨウ化アルミニウム(柳島製薬株式会社製、特
級試薬)を使用した以外は実施例1と同一の試薬
を使用した。
Example 4 The same reagents as in Example 1 were used except that aluminum iodide (manufactured by Yanagishima Pharmaceutical Co., Ltd., special grade reagent) was used instead of aluminum chloride.

乾燥窒素下で、100mlの二口ナスフラスコ中に
8.2g(20mmol)のヨウ化アルミニウム、2.0g
(20mmol)の塩化銅()および2.5g(単量体
残基あたり24mmol)の架橋ポリスチレン樹脂
“Bio−Beads SM−2”を入れ、二硫化炭素20
mlを加えて、磁気かくはん機を用いてかきまぜつ
つ、加熱還流した。その後、20〜50℃で6時間磁
気かくはん機を用いてかきまぜつつ減圧(4mm
Hg)にして二硫化炭素を十分に留去して固体吸
着剤を調製した。
in a 100 ml two-necked eggplant flask under dry nitrogen.
8.2 g (20 mmol) aluminum iodide, 2.0 g
Copper chloride (20 mmol) and 2.5 g (24 mmol per monomer residue) of cross-linked polystyrene resin “Bio-Beads SM-2” were added, and carbon disulfide 20
ml and heated to reflux while stirring using a magnetic stirrer. After that, the pressure was reduced (4mm) while stirring using a magnetic stirrer for 6 hours at 20-50℃
A solid adsorbent was prepared by thoroughly distilling off carbon disulfide.

実施例1と同様の操作により、エチレン吸着量
を測定したところ、3分後には2.1mmol、60分
後には3.2mmolのエチレンを吸着した。
When the amount of ethylene adsorption was measured by the same operation as in Example 1, 2.1 mmol of ethylene was adsorbed after 3 minutes and 3.2 mmol after 60 minutes.

次に、この吸着剤をlatmで106℃に加熱する
と、エチレンが迅速に放出され、放出量は、10分
後に1.2mmolに達した。放出ガスを実施例2と
同様にガスクロマトグラフで分析した結果、放出
ガスはエチレンであり、他の成分は検出されなか
つた。
The adsorbent was then heated to 106° C. at latm, and ethylene was rapidly released, reaching 1.2 mmol after 10 minutes. As a result of analyzing the released gas using a gas chromatograph in the same manner as in Example 2, it was found that the released gas was ethylene and no other components were detected.

実施例 5 実施例1に記載した塩化アルミニウムの代わり
にヨウ化アルミニウムを、また塩化銅()の代
わりにヨウ化銅()をそれぞれ使用した以外は
実施例1と同一の試薬を使用した。ヨウ化アルミ
ニウムおよびヨウ化銅()はいずれも柳島製薬
株式会社製の特級試薬を使用した。
Example 5 The same reagents as in Example 1 were used, except that aluminum iodide was used instead of aluminum chloride and copper iodide ( ) was used instead of copper chloride ( ) described in Example 1. Both aluminum iodide and copper iodide () were special grade reagents manufactured by Yanagishima Pharmaceutical Co., Ltd.

乾燥窒素下で、100mlの二口ナスフラスコ中に
8.2g(20mmol)のヨウ化アルミニウム、3.8g
(20mmol)のヨウ化銅()および2.5g(単量
体残基あたり24mmol)の架橋ポリスチレン樹脂
“Bio−Beads SM−2”を入れ、二硫化炭素20
mlを加えて、磁気かくはん機を用いてかきまぜつ
つ、加熱還流した。その後、20〜50℃で6時間磁
気かくはん機を用いてかきまぜつつ減圧(4mm
Hg)にして二硫化炭素を十分に留去して固体吸
着剤を調製した。
in a 100 ml two-necked eggplant flask under dry nitrogen.
8.2 g (20 mmol) aluminum iodide, 3.8 g
(20 mmol) of copper iodide () and 2.5 g (24 mmol per monomer residue) of cross-linked polystyrene resin “Bio-Beads SM-2” were added, and carbon disulfide 20
ml and heated to reflux while stirring using a magnetic stirrer. After that, the pressure was reduced (4mm) while stirring using a magnetic stirrer for 6 hours at 20-50℃
A solid adsorbent was prepared by thoroughly distilling off carbon disulfide.

実施例1と同様の操作により、エチレン吸着量
を測定したところ、3分後には3.4mmol、60分
後には4.4mmolのエチレンを吸着した。
When the amount of ethylene adsorption was measured by the same operation as in Example 1, 3.4 mmol of ethylene was adsorbed after 3 minutes and 4.4 mmol after 60 minutes.

次に、この吸着剤をlatmで106℃に加熱する
と、エチレンが迅速に放出され、放出量は、10分
後に1.8mmolに達した。放出ガスを実施例2と
同様にガスクロマトグラフで分析した結果、放出
ガスはエチレンであり、他の成分は検出されなか
つた。
The adsorbent was then heated to 106° C. at latm, and ethylene was rapidly released, reaching 1.8 mmol after 10 minutes. As a result of analyzing the released gas using a gas chromatograph in the same manner as in Example 2, it was found that the released gas was ethylene and no other components were detected.

実施例 6 実施例1に記載したBio−Rad Laboratories
社製の架橋ポリスチレン樹脂“Bio−Beads SM
−2”の代わりに、昭光通商株式会社製の架橋ポ
リスチレン樹脂S−2001(スチレン71%とジビニ
ルベンゼン29%との共重合体のビーズ、直径約3
mm)を使用した以外は実施例1と同一の試薬を使
用した。
Example 6 Bio-Rad Laboratories as described in Example 1
Bio-Beads SM, a cross-linked polystyrene resin manufactured by
-2", cross-linked polystyrene resin S-2001 manufactured by Shoko Tsusho Co., Ltd. (beads of copolymer of 71% styrene and 29% divinylbenzene, approximately 3" in diameter)
The same reagents as in Example 1 were used except that mm) was used.

乾燥窒素下で、100mlの二口ナスフラスコ中に
2.88g(21.6mmol)の塩化アルミニカム、2.14
g(21.6mmol)の塩化銅()および2.83g
(単量体残基あたり26.0mmol)の架橋ポリスチ
レン樹脂“S−2001”を入れ、二硫化炭素30mlを
加えて、磁気かくはん機を用いてかきまぜつつ、
加熱還流した。その後、20〜50℃で6時間磁気か
くはん機を用いてかきまぜつつ減圧(4mmHg)
にして二硫化炭素を十分に留去して固体吸着剤を
調製した。
in a 100 ml two-necked eggplant flask under dry nitrogen.
2.88 g (21.6 mmol) aluminum chloride, 2.14
g (21.6 mmol) of copper chloride () and 2.83 g
(26.0 mmol per monomer residue) cross-linked polystyrene resin "S-2001" was added, 30 ml of carbon disulfide was added, and while stirring using a magnetic stirrer,
The mixture was heated to reflux. After that, the pressure was reduced (4 mmHg) while stirring using a magnetic stirrer for 6 hours at 20-50℃.
A solid adsorbent was prepared by thoroughly distilling off carbon disulfide.

実施例1と同様の操作により、エチレン吸着量
を測定したところ、3分後には19.2mmol、60分
後には22.0mmolのエチレンを吸着した。
When the amount of ethylene adsorption was measured by the same operation as in Example 1, 19.2 mmol of ethylene was adsorbed after 3 minutes and 22.0 mmol after 60 minutes.

次に、この吸着剤をlatmで100℃に加熱する
と、エチレンが迅速に放出され、放出量は、10分
後に21.8mmolに達した。放出ガスを実施例2と
同様にガスクロマトグラフで分析した結果、放出
ガスはエチレンであり、他の成分は検出されなか
つた。
The adsorbent was then heated to 100° C. at latm, and ethylene was rapidly released, reaching 21.8 mmol after 10 minutes. As a result of analyzing the released gas using a gas chromatograph in the same manner as in Example 2, it was found that the released gas was ethylene and no other components were detected.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン化銅()、ハロゲン化アルミニウ
ムおよびポリスチレンまたはポリスチレン誘導体
に溶媒を加えてかくはんし、しかる後に溶媒を留
去することにより、エチレンを吸脱着することの
できる固体を製造する方法。
1. A method for producing a solid capable of adsorbing and desorbing ethylene by adding a solvent to copper halide (2), aluminum halide, and polystyrene or a polystyrene derivative, stirring the mixture, and then distilling off the solvent.
JP59001162A 1983-03-16 1984-01-07 Preparation of ethylene adsorbent Granted JPS60147237A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59001162A JPS60147237A (en) 1984-01-07 1984-01-07 Preparation of ethylene adsorbent
EP84301514A EP0119789A3 (en) 1983-03-16 1984-03-07 Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US06/587,657 US4546094A (en) 1983-03-16 1984-03-08 Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
CA000449472A CA1231932A (en) 1983-03-16 1984-03-13 Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US07/093,194 US4864071A (en) 1983-03-16 1987-09-04 Process for separation of unsaturated hydrocarbon from gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001162A JPS60147237A (en) 1984-01-07 1984-01-07 Preparation of ethylene adsorbent

Publications (2)

Publication Number Publication Date
JPS60147237A JPS60147237A (en) 1985-08-03
JPS6351058B2 true JPS6351058B2 (en) 1988-10-12

Family

ID=11493740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001162A Granted JPS60147237A (en) 1983-03-16 1984-01-07 Preparation of ethylene adsorbent

Country Status (1)

Country Link
JP (1) JPS60147237A (en)

Also Published As

Publication number Publication date
JPS60147237A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US4470829A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
US4747855A (en) Solid absorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US4546094A (en) Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
JPS6351058B2 (en)
JPS6041988B2 (en) Carbon monoxide adsorption separation method
EP0022612B1 (en) A process for the removal of cumene from a gaseous stream
JPS6351057B2 (en)
JPS6240334B2 (en)
JPS6126417B2 (en)
JPS6351059B2 (en)
JPS6211898B2 (en)
JPS6148977B2 (en)
JPS6240332B2 (en)
JP2551417B2 (en) Adsorbent for carbon monoxide separation
JP3740242B2 (en) NOVEL COMPOSITE, PROCESS FOR PRODUCING THE SAME, AND CARBON MONOXIDE ADSORBENT COMPRISING THE COMPOSITION
JPS6253223B2 (en)
JPH0716604B2 (en) Carbon monoxide adsorbent
JPH0232040A (en) Production of terephthalic acid
JPS6152164B2 (en)
JPH0710339B2 (en) Carbon monoxide adsorbent
JPS6240333B2 (en)
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite
JPH0366936B2 (en)
CN115337913A (en) Catechu [9] arene and preparation method and application thereof
JPS6041987B2 (en) Method for separating carbon monoxide from mixed gas