JPH0710339B2 - Carbon monoxide adsorbent - Google Patents

Carbon monoxide adsorbent

Info

Publication number
JPH0710339B2
JPH0710339B2 JP61146231A JP14623186A JPH0710339B2 JP H0710339 B2 JPH0710339 B2 JP H0710339B2 JP 61146231 A JP61146231 A JP 61146231A JP 14623186 A JP14623186 A JP 14623186A JP H0710339 B2 JPH0710339 B2 JP H0710339B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorbent
mixed gas
carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61146231A
Other languages
Japanese (ja)
Other versions
JPS634844A (en
Inventor
紀久士 常吉
雅人 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61146231A priority Critical patent/JPH0710339B2/en
Publication of JPS634844A publication Critical patent/JPS634844A/en
Publication of JPH0710339B2 publication Critical patent/JPH0710339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一酸化炭素を含有する混合ガスからの一酸化
炭素分離に用いられる、一酸化炭素吸着剤に関する。
TECHNICAL FIELD The present invention relates to a carbon monoxide adsorbent used for separating carbon monoxide from a mixed gas containing carbon monoxide.

〔従来の技術〕[Conventional technology]

一酸化炭素は合成化学の基礎原料であり、コークス、石
炭から発生炉、水性ガス炉、ウインクラー炉、ルルギ炉
およびコツパース炉などを用いて製造される。また、天
然ガスおよび石油炭化水素から水蒸気改質法および部分
酸化法により製造される。これらの方法では、生成物
は、一酸化炭素、水素、二酸化炭素、メタンおよび窒素
などの混合ガスとして得られる。
Carbon monoxide is a basic raw material of synthetic chemistry, and is produced from coke and coal by using a generation furnace, a water gas furnace, a winker furnace, a Lulgi furnace, a Koppers furnace, and the like. It is also produced from natural gas and petroleum hydrocarbons by steam reforming and partial oxidation. In these methods, the product is obtained as a mixed gas of carbon monoxide, hydrogen, carbon dioxide, methane and nitrogen.

たとえば、水性ガスの場合、一酸化炭素35〜40%、水素
45〜51%、二酸化炭素4〜5%、窒素4〜9%の組成を
もち、通常1000〜2000ppmの水を含んでいる。また、製
鉄所や製油所あるいは石油化学工場で副生する一酸化炭
素も、同様に、混合ガスとして得られる。
For example, in the case of water gas, carbon monoxide 35-40%, hydrogen
It has a composition of 45-51%, carbon dioxide 4-5%, nitrogen 4-9%, and usually contains 1000-2000 ppm of water. In addition, carbon monoxide produced as a by-product at a steel mill, an oil refinery, or a petrochemical plant is also obtained as a mixed gas.

これらの一酸化炭素を合成化学原料として用いるために
は、混合ガスから一酸化炭素を分離することが必要であ
る。
In order to use these carbon monoxide as a synthetic chemical raw material, it is necessary to separate carbon monoxide from the mixed gas.

一方、水素も化学工業における重要な原料であり、前述
の各種混合ガスあるいは、石油化学工場の廃ガス、たと
えば、炭化水素の脱水素工程の廃ガスから分離される
が、少量の一酸化炭素を含有することが多い。この一酸
化炭素は、水素を用いる反応の触媒に対して触媒毒とな
るので、分離除去する必要がある。また、これらの廃ガ
ス中には、少量の水が含まれるのが常である。
On the other hand, hydrogen is also an important raw material in the chemical industry, and it is separated from the above-mentioned various mixed gases or exhaust gas from petrochemical plants, for example, exhaust gas from the dehydrogenation process of hydrocarbons, but it does Often contained. Since this carbon monoxide becomes a catalyst poison to the catalyst of the reaction using hydrogen, it needs to be separated and removed. Moreover, a small amount of water is usually contained in these waste gases.

混合ガスから一酸化炭素を分離除去するには、通常、液
体吸収剤が用いられる。
A liquid absorbent is usually used to separate and remove carbon monoxide from the mixed gas.

銅液洗浄法は、ギ酸銅(I)のアンモニア性水溶液や塩
化銅(I)の塩酸懸濁液に、混合ガスを室温で150〜200
atmに加圧し吸収させて一酸化炭素を分離除去し、次
に、この銅液を減圧下で加熱することにより一酸化炭素
を放出させて分離し、銅液を再生させる方法であるが、
液体吸収剤取扱い操作の難しさ、装置の腐蝕、溶液損
失、沈澱物生成を防ぐための運転管理の難しさ、ならび
に高圧のため建設費が高いなどの短所を有している。
The copper solution washing method is a method in which a mixed gas is added to an ammoniacal aqueous solution of copper (I) formate or a hydrochloric acid suspension of copper (I) chloride at room temperature for 150 to 200
Carbon monoxide is separated and removed by pressurizing and absorbing atm, and then this copper solution is heated under reduced pressure to release and separate carbon monoxide, thereby regenerating the copper solution.
It has drawbacks such as difficulty in handling liquid absorbent, difficulty in operation of equipment to prevent corrosion of equipment, solution loss, and precipitation, and high construction cost due to high pressure.

英国特許第1,318,790号によれば、銅アルミニウム四塩
化物{Cu(AlCl4)}のトルエン溶液は、25℃で一酸化
炭素30mol%を含む混合ガスと接触させると、一酸化炭
素を吸収し、これを80℃に加温すると、95%の一酸化炭
素が回収されるという。この吸収液は、混合ガス中に含
まれる水素、二酸化炭素、メタン、窒素および酸素の影
響を受けず、吸収圧力が低いなどの長所を有するが、水
とは不可逆的に反応して吸収能力の劣化および沈澱物の
生成をきたし、塩酸を発生する。工業的に実施するため
には、混合ガス中の水は1ppm以下に厳重に抑制しなけれ
ばならない。従つて、吸収工程の前に、混合ガスの強力
な脱水処理工程が必要となり、厳重な管理が不可欠であ
る。なお、銅アルミニウム四塩化物は、水と強く反応し
て一酸化炭素の吸収能を不可逆的に失うので、たとえ1p
pmの水を含有する混合ガスを接触させた場合でも、混合
ガスの処理量の増加とともに次第に失活量が増大して行
くばかりではなく、水との反応で生成する塩酸によつて
装置腐蝕が進行するという短所を有している。また、こ
の吸収液を用いた場合には、回収した一酸化炭素中にト
ルエン蒸気が混入することが不可避であり、このトルエ
ンを除去する装置が必要であること、および液体吸収剤
を用いるためにプロセス上の制約を受けるなどの短所を
有する。
According to British Patent No. 1,318,790, a toluene solution of copper aluminum tetrachloride {Cu (AlCl 4 )} absorbs carbon monoxide when contacted with a mixed gas containing 30 mol% carbon monoxide at 25 ° C., When heated to 80 ℃, 95% of carbon monoxide is recovered. This absorption liquid has the advantage that it is not affected by hydrogen, carbon dioxide, methane, nitrogen and oxygen contained in the mixed gas and has a low absorption pressure, but it has an absorption capacity that reacts irreversibly with water. This causes deterioration and formation of a precipitate, and generates hydrochloric acid. For industrial implementation, the water content in the mixed gas must be strictly controlled to 1 ppm or less. Therefore, a strong dehydration treatment step of the mixed gas is required before the absorption step, and strict control is essential. Note that copper aluminum tetrachloride reacts strongly with water and irreversibly loses its ability to absorb carbon monoxide.
Even when a mixed gas containing pm of water is brought into contact, not only the deactivation amount gradually increases as the treatment amount of the mixed gas increases, but also the device corrosion is caused by hydrochloric acid generated by the reaction with water. It has the disadvantage of progressing. Further, when this absorbent is used, it is inevitable that toluene vapor is mixed in the recovered carbon monoxide, and that a device for removing this toluene is required, and that the liquid absorbent is used. It has disadvantages such as process restrictions.

高純度の一酸化炭素を大量に得る方法として深冷分離法
がある。これは、混合ガスを冷却液化し、−165〜−210
℃の低温で分留する方法であるが、複雑な冷凍・熱回収
システムが必要であり、高級材料を使用するため装置が
高価であり、また、動力消費が大きいなどの難点があ
る。さらに、混合ガス中に水および二酸化炭素などが含
まれていると、低温管システム内での閉塞事故が起きる
ので、前処理設備で水を1ppm以下にしておく必要があ
る。
There is a cryogenic separation method as a method for obtaining a large amount of high-purity carbon monoxide. This liquefies the mixed gas by cooling and liquefies between -165 and -210.
Although this is a method of fractional distillation at a low temperature of ℃, it requires complicated refrigeration / heat recovery system, uses expensive materials, requires expensive equipment, and consumes a lot of power. Furthermore, if the mixed gas contains water, carbon dioxide, etc., a clogging accident will occur in the cryogenic pipe system, so it is necessary to keep water at 1 ppm or less in the pretreatment facility.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は前述の、液体吸収剤を用いる方法や深冷分離法
による一酸化炭素分離技術の短所および難点が解消しう
る混合ガスから一酸化炭素を選択的に分離する新規な吸
着剤を提供しようとするものである。
The present invention intends to provide a novel adsorbent for selectively separating carbon monoxide from a mixed gas which can solve the above-mentioned disadvantages and drawbacks of the carbon monoxide separation technology using a liquid absorbent and a deep-chill separation method. It is what

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、一酸化炭素を選択的に吸着する物質を鋭
意探索した結果、活性炭とチオシアン酸銅(I)とを構
成成分とする固体が混合ガス中の一酸化炭素の吸着分離
に極めて有効であることを見出し、本発明の完成に至つ
た。
As a result of earnest search for a substance which selectively adsorbs carbon monoxide, the present inventors have found that a solid containing activated carbon and copper (I) thiocyanate as constituents is extremely effective in adsorbing and separating carbon monoxide in a mixed gas. It was found to be effective, and the present invention was completed.

すなわち、本発明は、活性炭とチオシアン酸銅(I)と
を構成成分とすることを特徴とする、混合ガス中の一酸
化炭素の分離に有効な、新規な吸着剤に関する。
That is, the present invention relates to a novel adsorbent effective for separating carbon monoxide in a mixed gas, which comprises activated carbon and copper (I) thiocyanate as constituent components.

本発明の吸着剤は、活性炭とチオシアン酸銅(I)とを
溶媒中で混合かくはんしたのち、溶媒を減圧、留去など
の方法で除くことによつて得られる。
The adsorbent of the present invention can be obtained by mixing and stirring activated carbon and copper (I) thiocyanate in a solvent, and then removing the solvent by a method such as reduced pressure or distillation.

該吸着剤の一酸化炭素吸着能は活性炭とチオシアン酸銅
(I)との組合せに起因するところが極めて大であり、
比較例に示すとおり、活性炭自身の一酸化炭素吸着能は
該吸着剤と比べて著しく小さく、また、チオシアン酸銅
(I)のみでは一酸化炭素吸着能は認められない。
The carbon monoxide adsorption capacity of the adsorbent is extremely large due to the combination of activated carbon and copper (I) thiocyanate,
As shown in the comparative example, the carbon monoxide adsorption capacity of the activated carbon itself is remarkably smaller than that of the adsorbent, and the carbon monoxide adsorption capacity is not recognized only with copper (I) thiocyanate.

本発明の吸着剤の構成成分である活性炭は、木材、ヤシ
殻、石炭、石油系ピツチ、セルロース繊維、化学繊維な
どを原料として、薬品付活方式、ガス付活方式などの方
法により付活したものであり、形状的には全く限定され
ず、粉状、粒状、繊維状、あるいはこれらを任意の幾何
学形状に成型したものなどが用いられる。
Activated carbon, which is a constituent component of the adsorbent of the present invention, is activated by a method such as a chemical activation method or a gas activation method using wood, coconut shell, coal, petroleum-based pitch, cellulose fiber, chemical fiber or the like as a raw material. However, the shape is not limited at all, and powdery, granular, fibrous, or a shape obtained by molding these into an arbitrary geometrical shape is used.

一方、本発明の吸着剤の調製に用いられる溶媒は、たと
えば、アセトニトリル、テトラヒドロフラン、ジエチル
エーテルなどである。
On the other hand, the solvent used for preparing the adsorbent of the present invention is, for example, acetonitrile, tetrahydrofuran, diethyl ether or the like.

本発明の吸着剤の組成について述べると、該吸着剤の構
成成分とする活性炭のチオシアン酸銅(I)に対する重
量比は0.5〜30、好ましくは2〜5である。
The composition of the adsorbent of the present invention will be described. The weight ratio of activated carbon as a constituent of the adsorbent to copper (I) thiocyanate is 0.5 to 30, preferably 2 to 5.

本発明の吸着剤は、常温、常圧下で一酸化炭素を迅速に
吸着し、この吸着剤を加温するか、減圧にするか、ある
いは一酸化炭素分圧を下げることにより、吸着された一
酸化炭素を脱着させることができるので、混合ガスから
一酸化炭素を容易に分離することが可能である。
The adsorbent of the present invention rapidly adsorbs carbon monoxide at room temperature and atmospheric pressure, and the adsorbed carbon monoxide is adsorbed by heating the adsorbent, reducing the pressure, or decreasing the carbon monoxide partial pressure. Since carbon oxide can be desorbed, it is possible to easily separate carbon monoxide from the mixed gas.

次に、本発明を実施例によつてさらに説明する。Next, the present invention will be further described with reference to examples.

〔実施例〕〔Example〕

実施例1 本発明の吸着剤を次のように調製した。まず、内容積10
0mlのなす形フラスコ中にチオシアン酸銅(I)5g(41.
1m mol)、アセトニトリル20mlを入れ、磁気かくはん機
を用いて室温で混合した。次いで、このフラスコ内の混
合物に、5mmHgの減圧下において120℃で1時間の乾燥を
行つた市販の石炭系粒状活性炭(平均粒径1.0mm、比表
面積1150m2/g)5gを加え、フラスコを密栓して、フラス
コ内容物を室温で6時間かくはんしたのち、5mmHgの減
圧下において80℃でかくはんしながらアセトニトリルを
十分に留去し、粒状固体を得た。これが一酸化炭素吸着
剤である。
Example 1 An adsorbent of the present invention was prepared as follows. First, the internal volume 10
In a 0 ml eggplant shaped flask, 5 g of copper (I) thiocyanate (41.
1mmol) and 20 ml of acetonitrile were added and mixed at room temperature using a magnetic stirrer. Then, to the mixture in the flask, 5 g of commercially available coal-based granular activated carbon (average particle size 1.0 mm, specific surface area 1150 m 2 / g) that had been dried at 120 ° C. for 1 hour under a reduced pressure of 5 mmHg was added, and the flask was closed. The contents of the flask were sealed and the contents of the flask were stirred at room temperature for 6 hours, and then acetonitrile was sufficiently distilled off while stirring at 80 ° C. under a reduced pressure of 5 mmHg to obtain a granular solid. This is a carbon monoxide adsorbent.

上記の吸着剤5gを内容積100mlのなす形フラスコ中に入
れ、5mmHgの減圧下で排気しながら120℃に1時間保つた
のち、減圧下で室温になるまで放置した。次いで、この
なす形フラスコを1気圧の一酸化炭素3を入れた容器
と結合し、室温で、一酸化炭素を該吸着剤と接触させ、
一酸化炭素吸着量をガスビユーレツト法により測定し
た。
5 g of the above-mentioned adsorbent was placed in an eggplant-shaped flask having an internal volume of 100 ml, kept at 120 ° C. for 1 hour while being evacuated under a reduced pressure of 5 mmHg, and then left under a reduced pressure until it reached room temperature. Then, the eggplant-shaped flask was combined with a container containing carbon monoxide 3 at 1 atm, and carbon monoxide was brought into contact with the adsorbent at room temperature,
The amount of adsorbed carbon monoxide was measured by the gas view method.

一酸化炭素の吸着はすみやかに始まり、10分後には1.58
m molの一酸化炭素が吸着され、60分後の一酸化炭素吸
着量は2.25m molとなり、ほぼ平衡吸着量に達した。
Adsorption of carbon monoxide begins quickly and after 10 minutes is 1.58
After adsorbing m mol of carbon monoxide, the adsorbed amount of carbon monoxide after 60 minutes was 2.25 mmol, which was almost the equilibrium adsorbed amount.

次に、真空ポンプを用いて、この一酸化炭素吸着剤の入
つたなす形フラスコ内を、室温において、5mmHgの減圧
下で10分間排気して、吸着された一酸化炭素を脱着させ
たのち、このなす形フラスコを1気圧の一酸化炭素3
を入れた容器と結合し、室温で、一酸化炭素を吸着剤と
接触させた。
Next, using a vacuum pump, the inside of the eggplant shaped flask containing the carbon monoxide adsorbent was evacuated at room temperature under a reduced pressure of 5 mmHg for 10 minutes to desorb the adsorbed carbon monoxide, This eggplant-shaped flask is placed under 1 atmosphere of carbon monoxide 3
Was combined with the container containing carbon monoxide, and carbon monoxide was contacted with the adsorbent at room temperature.

一酸化炭素の吸着はすみやかに始まり、10分後には1.53
m molの一酸化炭素が吸着され、60分後の一酸化炭素吸
着量は2.18m molとなり、ほぼ平衡吸着量に達した。
Adsorption of carbon monoxide starts quickly and after 10 minutes it is 1.53
After adsorbing m mol of carbon monoxide, the adsorbed amount of carbon monoxide after 60 minutes was 2.18 mmol, which was almost the equilibrium adsorbed amount.

以後、上記の操作を繰り返しても、一酸化炭素の吸着速
度および吸着量に変化は見られなかつた。
Thereafter, even when the above operation was repeated, no change was observed in the adsorption rate and the adsorption amount of carbon monoxide.

その後、この一酸化炭素吸着剤の入つたなす形フラスコ
を160mg(8.9m mol)の水を含有する1気圧の窒素ガス
(水の濃度11000ppm)20を入れた容器と結合し、室温
で、この水を含む窒素ガスを該吸着剤と6時間接触させ
た。次いで、このなす形フラスコを1気圧の一酸化炭素
3を入れた容器と結合し、室温で、一酸化炭素を該吸
着剤と接触させた。
After that, the eggplant-shaped flask containing the carbon monoxide adsorbent was combined with a container containing nitrogen gas (concentration of water: 11000 ppm) 20 at 1 atm containing 160 mg (8.9 mmol) of water, and at room temperature, Nitrogen gas containing water was contacted with the adsorbent for 6 hours. The eggplant shaped flask was then combined with a vessel containing 1 atmosphere of carbon monoxide 3 and carbon monoxide was contacted with the adsorbent at room temperature.

一酸化炭素の吸着はすみやかに始まり、10分後には1.52
m molの一酸化炭素が吸着され、60分後の一酸化炭素吸
着量は2.18m molに達した。すなわち、一酸化炭素の吸
着速度および吸着量は、吸着剤を11000ppmの水を含有す
るガスと接触させても、ほとんど変化しなかつた。
Adsorption of carbon monoxide begins quickly and after 10 minutes is 1.52
After adsorbing 60 mol of carbon monoxide, the amount of adsorbed carbon monoxide reached 2.18 mol. That is, the adsorption rate and adsorption amount of carbon monoxide hardly changed even when the adsorbent was brought into contact with a gas containing 11000 ppm of water.

実施例2 実施例1と同様に調製した一酸化炭素吸着剤5gを内容積
100mlのなす形フラスコ中に入れ、5mmHgの減圧下で排気
しながら120℃に1時間保つたのち、減圧下で室温にな
るまで放置した。次いで、このなす形フラスコを1気圧
の一酸化炭素3を入れた容器を結合し、室温で、一酸
化炭素を該吸着剤と接触させ、一酸化炭素吸着量をガス
ビユーレツト法により測定した。
Example 2 5 g of carbon monoxide adsorbent prepared in the same manner as in Example 1 was used.
The mixture was placed in a 100 ml eggplant-shaped flask, kept at 120 ° C. for 1 hour while being evacuated under reduced pressure of 5 mmHg, and then left under reduced pressure until it reached room temperature. Next, this eggplant-shaped flask was combined with a container containing carbon monoxide 3 at 1 atm, and carbon monoxide was brought into contact with the adsorbent at room temperature, and the amount of adsorbed carbon monoxide was measured by a gas biuret method.

一酸化炭素の吸着はすみやかに始まり、10分後には1.58
m molの一酸化炭素が吸着され、60分後の一酸化炭素吸
着量は2.25m molとなり、ほぼ平衡吸着量に達した。
Adsorption of carbon monoxide begins quickly and after 10 minutes is 1.58
After adsorbing m mol of carbon monoxide, the adsorbed amount of carbon monoxide after 60 minutes was 2.25 mmol, which was almost the equilibrium adsorbed amount.

次に、この吸着剤を1気圧下で120℃に加温し、一酸化
炭素の脱着量をガスビユーレツト法により測定した。一
酸化炭素はすみやかに脱着され、脱着量は10分後に2.23
m molに達した。脱着ガスをガスクロマトグラフで分析
した結果、脱着ガスは一酸化炭素のみであり、他の成分
は検出されなかつた。
Next, this adsorbent was heated to 120 ° C. under 1 atm, and the desorption amount of carbon monoxide was measured by the gas view method. Carbon monoxide is quickly desorbed, and the desorption amount is 2.23 after 10 minutes.
Reached m mol. As a result of gas chromatographic analysis of the desorbed gas, the desorbed gas was only carbon monoxide, and other components were not detected.

その後、一酸化炭素を脱着させた吸着剤の入つたなす形
フラスコを、窒素を通じながら放冷したのち、1気圧の
一酸化炭素3を入れた容器と結合し、室温で、一酸化
炭素を吸着剤と接触させた。
Then, the eggplant shaped flask containing the adsorbent desorbed carbon monoxide was allowed to cool while passing nitrogen through, and then combined with a container containing carbon monoxide 3 at 1 atm to adsorb carbon monoxide at room temperature. Contact with the agent.

一酸化炭素の吸着はすみやかに始まり、10分後には1.56
m molの一酸化炭素が吸着され、60分後の一酸化炭素吸
着量は2.23m molとなり、ほぼ平衡吸着量に達した。
The adsorption of carbon monoxide begins quickly and after 10 minutes it is 1.56.
After adsorbing m mol of carbon monoxide, the adsorbed amount of carbon monoxide after 60 minutes was 2.23 mmol, which was almost the equilibrium adsorbed amount.

比較例 実施例1と同一の活性炭5gを内容積100mlのなす形フラ
スコ中に入れ、5mmHgの減圧下で排気しながら120℃に1
時間保つたのち、減圧下で室温になるまで放置した。次
いで、このなす形フラスコを1気圧の一酸化炭素3を
入れた容器と結合し、一酸化炭素を該活性炭と接触させ
たが、60分後の一酸化炭素吸着量は0.89m molにとどま
り、ほぼ平衡吸着量に達した。
Comparative Example 5 g of the same activated carbon as in Example 1 was placed in an eggplant-shaped flask with an internal volume of 100 ml, and the temperature was raised to 120 ° C. while exhausting under a reduced pressure of 5 mmHg.
After maintaining for a time, the mixture was left under reduced pressure until it reached room temperature. Then, this eggplant-shaped flask was combined with a container containing carbon monoxide 3 at 1 atm, and carbon monoxide was brought into contact with the activated carbon, but after 60 minutes, the carbon monoxide adsorption amount remained at 0.89 mmol, The equilibrium adsorption amount was almost reached.

一方、上記と同様に、一酸化炭素をチオシアン酸銅
(I)と接触させたが、一酸化炭素の吸着は認められな
かつた。
On the other hand, when carbon monoxide was brought into contact with copper (I) thiocyanate in the same manner as above, no adsorption of carbon monoxide was observed.

〔発明の効果〕〔The invention's effect〕

実施例の結果から明らかなように、本発明の吸着剤は、
常温、常圧下で迅速に一酸化炭素を吸着し、簡単な操作
で吸着した一酸化炭素を脱着させることができるので、
混合ガスから一酸化炭素を容易に分離できるし、吸着、
脱着を繰り返しても性能低下のない優れた吸着剤であ
る。
As is clear from the results of the examples, the adsorbent of the present invention is
Since it can adsorb carbon monoxide rapidly at room temperature and atmospheric pressure and desorb the adsorbed carbon monoxide with a simple operation,
Carbon monoxide can be easily separated from mixed gas, and adsorption,
It is an excellent adsorbent that does not deteriorate in performance even after repeated desorption.

また、本発明の一酸化炭素吸着剤は固体であるので、充
填カラム形式、充填塔形式および流動層形式などの装置
を一酸化炭素の吸着および脱着の装置として用いること
ができる。更に水分の存在下でも劣化しない吸着剤であ
る。
Further, since the carbon monoxide adsorbent of the present invention is a solid, a device such as a packed column system, a packed tower system or a fluidized bed system can be used as a device for adsorbing and desorbing carbon monoxide. Furthermore, it is an adsorbent that does not deteriorate even in the presence of water.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】活性炭とチオシアン酸銅(I)とを構成成
分とすることを特徴とする一酸化炭素吸着剤。
1. A carbon monoxide adsorbent comprising activated carbon and copper (I) thiocyanate as constituent components.
JP61146231A 1986-06-24 1986-06-24 Carbon monoxide adsorbent Expired - Lifetime JPH0710339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146231A JPH0710339B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146231A JPH0710339B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Publications (2)

Publication Number Publication Date
JPS634844A JPS634844A (en) 1988-01-09
JPH0710339B2 true JPH0710339B2 (en) 1995-02-08

Family

ID=15403072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146231A Expired - Lifetime JPH0710339B2 (en) 1986-06-24 1986-06-24 Carbon monoxide adsorbent

Country Status (1)

Country Link
JP (1) JPH0710339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201071A2 (en) 1985-05-08 1986-11-12 The Du Pont Merck Pharmaceutical Company 2-Substituted-1-naphthols as 5-lipoxygenase inhibitors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112346C (en) * 2000-01-21 2003-06-25 华中理工大学 Process for synthesizing phenylpyruvic acid by catalytic dioxonation
JP7090585B2 (en) * 2019-07-24 2022-06-24 株式会社三井E&Sマシナリー Boil-off gas supply / recovery device and boil-off gas supply / recovery method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201071A2 (en) 1985-05-08 1986-11-12 The Du Pont Merck Pharmaceutical Company 2-Substituted-1-naphthols as 5-lipoxygenase inhibitors

Also Published As

Publication number Publication date
JPS634844A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US4587114A (en) Method for separating carbon dioxide from mixed gas
US4696682A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
CA1081135A (en) Selective adsorption of mercury from gas streams
CA1242684A (en) Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US4874525A (en) Purification of fluid streams containing mercury
CN86102838A (en) High-efficiency adsorbent and its production and application
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPH0710339B2 (en) Carbon monoxide adsorbent
JPH0716604B2 (en) Carbon monoxide adsorbent
JPS58124516A (en) Separation of carbon monooxide from mixed gas
JPH0716605B2 (en) Carbon monoxide adsorbent
SU1161157A1 (en) Method of cleaning gases from mercury
JPS61197415A (en) Purification of dichlorosilane
JPS641405B2 (en)
JPS6148977B2 (en)
JPH0712427B2 (en) Manufacturing method of carbon monoxide adsorbent
JPS6240333B2 (en)
JPS6253223B2 (en)
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite
JPS6135128B2 (en)
JPS63205140A (en) Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide
JPH0232040A (en) Production of terephthalic acid
JPS62237942A (en) Preparation of carbon monoxide adsorbent
JPS63267434A (en) Carbon monoxide adsorbent