JPS6240333B2 - - Google Patents

Info

Publication number
JPS6240333B2
JPS6240333B2 JP58132360A JP13236083A JPS6240333B2 JP S6240333 B2 JPS6240333 B2 JP S6240333B2 JP 58132360 A JP58132360 A JP 58132360A JP 13236083 A JP13236083 A JP 13236083A JP S6240333 B2 JPS6240333 B2 JP S6240333B2
Authority
JP
Japan
Prior art keywords
ethylene
copper
adsorption
gas
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58132360A
Other languages
Japanese (ja)
Other versions
JPS6025939A (en
Inventor
Hidefumi Hirai
Makoto Komyama
Keiichiro Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58132360A priority Critical patent/JPS6025939A/en
Priority to CA000452224A priority patent/CA1242684A/en
Priority to EP84302605A priority patent/EP0132915B1/en
Priority to DE8484302605T priority patent/DE3469411D1/en
Publication of JPS6025939A publication Critical patent/JPS6025939A/en
Priority to US07/006,343 priority patent/US4747855A/en
Publication of JPS6240333B2 publication Critical patent/JPS6240333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 本発明は、窒玠、酞玠、メタン、゚タン、二酞
化炭玠および氎玠などずずもに䞍飜和炭化氎玠を
含有する混合ガスより䞍飜和炭化氎玠を分離する
吞着分離剀及び吞着分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adsorption separation agent and an adsorption separation method for separating unsaturated hydrocarbons from a mixed gas containing unsaturated hydrocarbons along with nitrogen, oxygen, methane, ethane, carbon dioxide, hydrogen, etc. .

オレフむン類およびゞ゚ン類などの䞍飜和炭化
氎玠は化孊工業における重芁な基瀎物質であり、
倩然ガス、粟油所ガスおよび石油留分などの飜和
炭化氎玠の熱分解によ぀お補造される。たた、流
動接觊分解装眮から副生するオフガスや各皮プロ
セスのパヌゞガスにも盞圓量の䞍飜和炭化氎玠が
含たれる堎合がある。しかしながら、これらの堎
合、䞍飜和炭化氎玠は、窒玠、酞玠、メタン、゚
タン、二酞化炭玠および氎玠などずの混合ガスず
しお埗られる。たた、この混合ガスには、通垞、
1000〜20000ppmの氎が含たれおいる。したが぀
お、䞍飜和炭化氎玠を化孊工業原料ずしお甚いる
ためには、混合ガスよりこれらを分離するこずが
必芁である。
Unsaturated hydrocarbons such as olefins and dienes are important basic substances in the chemical industry;
Produced by pyrolysis of saturated hydrocarbons such as natural gas, refinery gas, and petroleum fractions. Furthermore, off-gas produced as a by-product from fluid catalytic cracking equipment and purge gas from various processes may also contain a considerable amount of unsaturated hydrocarbons. However, in these cases, unsaturated hydrocarbons are obtained as a gas mixture with nitrogen, oxygen, methane, ethane, carbon dioxide, hydrogen, etc. Additionally, this gas mixture usually includes
Contains 1000-20000ppm of water. Therefore, in order to use unsaturated hydrocarbons as raw materials for chemical industries, it is necessary to separate them from a mixed gas.

混合ガスより、䞍飜和炭化氎玠を分離する方法
ずしおは深冷分離法がある。これは、混合ガスを
冷华液化し、䜎枩で分留する方法であるが、耇雑
な冷凍、熱回収システムが必芁であり、高玚材料
を䜿甚するため装眮が高䟡であり、たた、動力消
費が倧きいなどの難点がある。さらに、混合ガス
䞭に氎および二酞化炭玠が含たれおいるず、䜎枩
管システム内での閉そく事故が起きるので、前凊
理蚭備で氎および二酞化炭玠を1ppm以䞋に陀去
しおおく必芁がある。
Cryogenic separation is a method for separating unsaturated hydrocarbons from a mixed gas. This is a method of cooling and liquefying a mixed gas and fractionating it at a low temperature, but it requires a complicated refrigeration and heat recovery system, the equipment is expensive because it uses high-grade materials, and it consumes a lot of power. There are other difficulties. Furthermore, if water and carbon dioxide are included in the mixed gas, a blockage accident will occur in the cryogenic tube system, so it is necessary to remove water and carbon dioxide to 1 ppm or less using pretreatment equipment.

米囜特蚱第3651159号明现曞によれば、塩化銅
アルミニりムを含むトル゚ン溶液は䞍飜和
炭化氎玠ず錯圢成するこずにより、これらを分離
する胜力を有するこずが蚘茉されおいる。しか
し、塩化銅アルミニりムは氎ず匷く反応し
お錯圢成胜を䞍可逆的に倱うので、たずえ1ppm
の氎でも混合ガスの凊理量の増加ずずもに次第に
分離胜が枛少しおいくばかりでなく、反応により
発生する塩化氎玠のために装眮腐觊が進行する短
所を有しおいる。たた、溶媒ずしお甚いるトル゚
ン蒞気が回収した䞍飜和炭化氎玠䞭に含たれるた
め、このトル゚ンを陀去する装眮が必芁であるこ
ず、および液状吞収剀を甚いるためにプロセス䞊
の制玄を受けるなどの短所を有する。さらに、吞
収液が塩化アルミニりムを含むために、これを觊
媒ずするトル゚ンず䞍飜和炭化氎玠ずのFriedel
−Crafts反応が副反応ずしおおこり、䞍飜和炭化
氎玠の損倱および液状吞収剀の倉質を生じる。
US Pat. No. 3,651,159 describes that a toluene solution containing copper()aluminum chloride has the ability to separate unsaturated hydrocarbons by complexing them. However, copper()aluminum chloride reacts strongly with water and irreversibly loses its ability to form complexes, so even if it is
Even with water, the separation ability gradually decreases as the throughput of mixed gas increases, and the hydrogen chloride generated by the reaction also causes corrosion of the equipment. In addition, since toluene vapor used as a solvent is contained in the recovered unsaturated hydrocarbons, a device to remove this toluene is required, and there are disadvantages such as process constraints due to the use of liquid absorbent. have Furthermore, since the absorption liquid contains aluminum chloride, the Friedel reaction between toluene and unsaturated hydrocarbons using aluminum chloride as a catalyst
-Crafts reaction occurs as a side reaction, resulting in loss of unsaturated hydrocarbons and alteration of the liquid absorbent.

その他、皮々の方法が提案されおいるが、混合
ガスより䞍飜和炭化氎玠を分離する方法には、た
だ完党に満足すべきものはない。
Although various other methods have been proposed, no method for separating unsaturated hydrocarbons from a mixed gas is yet completely satisfactory.

本発明者らは氞幎、気䜓の固䜓吞着剀の研究を
行な぀おきたが、このたび、銅のハラむド
塩たたは酞化銅および掻性炭より構成され
る固䜓吞着剀、たたは、銅のハラむド塩、
カルボン酞塩、硫酞塩、塩基性塩もしくはアンミ
ン錯塩たたは酞化銅ず掻性炭より構成され
る固䜓吞着剀が、枩和な条件䞋で䞍飜和炭化氎玠
を吞着し、これを攟出するこずを発芋した。この
発芋に基づき、鋭意研究を進めた結果、混合ガス
より䞍飜和炭化氎玠を分離粟補あるいは分離陀去
するこずを、技術的ならびに経枈的に容易ならび
に有利に実斜するこずに成功し、本発明を完成し
た。
The present inventors have been conducting research on gaseous solid adsorbents for many years, and now we have developed a solid adsorbent consisting of a halide salt of copper () or copper oxide () and activated carbon. halide salt,
It was discovered that solid adsorbents composed of carboxylates, sulfates, basic salts, ammine complex salts, or copper oxide and activated carbon adsorb and release unsaturated hydrocarbons under mild conditions. . Based on this discovery, as a result of intensive research, we succeeded in separating and refining or separating and removing unsaturated hydrocarbons from a mixed gas in a technically and economically easy and advantageous manner, and completed the present invention. did.

本発明における固䜓着剀は、銅のハラむ
ド塩たたは酞化銅、あるいは、銅の
ハラむド塩、カルボン酞塩、硫酞塩、塩基性塩も
しくはアミン錯塩たたは酞化銅を溶媒に溶
解たたは懞濁し、これに掻性炭を加えお十分にか
くはんした埌、液盞を枛圧留去などの方法で陀く
こずにより埗られる固䜓吞着剀である。
The solid adhesive in the present invention is a halide salt of copper (2) or copper (I) oxide, or a halide salt, carboxylate, sulfate, basic salt, or amine complex salt of copper (2), or copper (1) oxide as a solvent. This is a solid adsorbent obtained by dissolving or suspending the adsorbent, adding activated carbon thereto, stirring thoroughly, and then removing the liquid phase by distillation under reduced pressure.

本発明における固䜓吞着剀の調補に甚いられる
溶媒は、たずえば、氎、塩酞性氎溶液、ギ酞、酢
酞、ベンれン、トル゚ン、プロピオニトリル、ア
セトニトリル、アンモニア氎、アンモニア性ギ酞
氎溶液、および炭玠数〜の䞀玚たたは二玚ア
ルコヌルなどである。
Solvents used in the preparation of the solid adsorbent in the present invention include, for example, water, aqueous hydrochloric acid, formic acid, acetic acid, benzene, toluene, propionitrile, acetonitrile, ammonia water, ammoniacal formic acid aqueous solution, and carbon atoms of 1 to 7. primary or secondary alcohols, etc.

本発明における銅塩および酞化銅の溶媒ずの混
合状態は、䞀郚が懞濁状態でもさし぀かえない。
In the present invention, the mixed state of the copper salt and copper oxide with the solvent may be partially suspended.

本発明に甚いられる掻性炭は、圢状的には成圢
炭、および砎砕炭からなる粒状炭、および粉末炭
である。掻性炭の原料ずしおは、朚材、ダシ穀、
石炭、および石油系ピツチなどが甚いられ、この
付掻方匏には、薬品付掻方匏、およびガス付掻方
匏などが適甚できる。
The activated carbon used in the present invention is shaped like compacted coal, granular coal made of crushed coal, and powdered coal. Raw materials for activated carbon include wood, coconut grain,
Coal, oil-based pitch, etc. are used, and a chemical activation method, a gas activation method, etc. can be applied to this activation method.

本発明に甚いられる銅のハラむド塩ずし
おは、たずえば塩化銅、臭化銅、ペり
化銅などがある。たた、これらの銅
ハラむド塩の代わりに、酞化銅を甚いるこ
ずもできる。
Examples of the halide salt of copper ( ) used in the present invention include copper chloride ( ), copper bromide ( ), and copper iodide ( ). Also, these copper()
Copper oxide () can also be used instead of halide salts.

本発明に甚いられる銅のハラむド塩ずし
おは、たずえば塩化銅、フツ化銅、臭
化銅、およびペり化銅などがある。
銅のカルボン酞塩ずしおは、たずえば酢酞
銅、およびギ酞銅などがある。銅
の塩基性塩ずしおは、たずえば塩基性炭酞
銅、塩基性酢酞銅、および塩基性リン
酞銅などがある。銅のアンミン塩ず
しおは、たずえば、銅ヘキサアンミン塩化
物などがある。たた、これらの銅塩の代わ
りに、酞化銅を甚いるこずもできる。
Examples of the halide salts of copper (2) used in the present invention include copper chloride (2), copper fluoride (1), copper bromide (2), and copper iodide (2).
Examples of carboxylic acid salts of copper () include copper acetate () and copper formate (). Examples of basic salts of copper () include basic copper carbonate (), basic copper acetate (), and basic copper phosphate (). Examples of ammine salts of copper() include copper() hexaammine chloride. Moreover, copper() oxide can also be used instead of these copper() salts.

本発明による䞍飜和炭化氎玠吞着剀補造におけ
る掻性炭ず銅塩、酞化銅、銅
塩たたは酞化銅ずの重量比は、0.5〜
60.0、奜たしくは、2.0〜10.0である。たた、溶媒
ず銅塩、酞化銅、銅塩たたは
酞化銅ずの重量比は、〜200、奜たしく
は、〜30である。
Activated carbon and copper() salt, copper() oxide, copper() in the production of unsaturated hydrocarbon adsorbent according to the present invention
The weight ratio with salt or copper oxide () is 0.5~
60.0, preferably 2.0 to 10.0. Further, the weight ratio of the solvent to the copper () salt, copper () oxide, copper () salt, or copper () oxide () is 1 to 200, preferably 3 to 30.

本発明により分離するこずができる䞍飜和炭化
氎玠は、たずえば、炭玠数〜15のモノオレフむ
ン、ポリオレフむン、およびゞ゚ン類などであ
る。
Unsaturated hydrocarbons that can be separated by the present invention include, for example, monoolefins, polyolefins, and dienes having 2 to 15 carbon atoms.

本発明における䞍飜和炭化氎玠の吞着は、垞圧
䞋で−40〜90℃、奜たしくは〜40℃で行なうこ
ずができ、吞着剀を40〜250℃、奜たしくは60〜
180℃に昇枩するか、あるいは、䞍飜和炭化氎玠
の分圧を䞋げるこずにより、吞着された䞍飜和炭
化氎玠を攟出させるこずができる。䞍飜和炭化氎
玠の吞着は、混合ガスの圧力を気圧以䞊にする
こずにより、90℃以䞊の枩床でも実斜可胜であ
る。
The adsorption of unsaturated hydrocarbons in the present invention can be carried out at -40 to 90°C, preferably 0 to 40°C, under normal pressure, and the adsorption can be carried out at 40 to 250°C, preferably 60 to 40°C.
The adsorbed unsaturated hydrocarbons can be released by increasing the temperature to 180°C or by lowering the partial pressure of the unsaturated hydrocarbons. Adsorption of unsaturated hydrocarbons can be carried out at temperatures of 90° C. or higher by increasing the pressure of the mixed gas to 1 atm or higher.

本発明による吞着剀は、混合ガス䞭の氎に察し
お䞍掻性であり、この吞着剀を甚いるこずによ
り、実斜䟋に瀺す通り、氎を含有する混合ガスか
ら盎接に䞍飜和炭化氎玠を分離するこずができ、
くり返し䜿甚しおも吞着剀の胜力の䜎䞋はほずん
ど認められない。さらに、この吞着剀は、䞍飜和
炭化氎玠に察しFriedel−Crafts反応の觊媒䜜甚
を瀺さない。
The adsorbent according to the present invention is inert to water in a gas mixture, and by using this adsorbent, unsaturated hydrocarbons can be directly separated from a water-containing gas mixture, as shown in the examples. It is possible,
Even after repeated use, there is hardly any decrease in the adsorbent's ability. Furthermore, this adsorbent does not catalyze the Friedel-Crafts reaction for unsaturated hydrocarbons.

本発明による吞着剀は固䜓であるので、充填塔
圢匏および流動局圢匏などの装眮を䞍飜和炭化氎
玠の吞着および攟出の装眮ずしお甚いるこずがで
きる。
Since the adsorbent according to the invention is a solid, devices such as packed column type and fluidized bed type can be used as devices for adsorption and desorption of unsaturated hydrocarbons.

぀ぎに、本発明を実斜䟋によ぀おさらに説明す
る。
Next, the present invention will be further explained by examples.

実斜䟋  塩化銅は、小宗化孊薬品株匏䌚瀟補の特
玚詊薬を䜿甚した。塩酞は、高橋藀吉商店補の䞀
玚詊薬を、粟補氎有限䌚瀟東京薬品工業所補
を甚いお䞉芏定に垌釈しお䜿甚した。掻性炭は、
呉矜化孊工業株匏䌚瀟補BAC、−70R、
LOT、No.810117、石油系ピツチ炭原料、氎蒞
気付掻を枛圧mmHg䞋、180℃に24時間加
熱保枩したのち、也燥窒玠䞋で保存したものを甚
いた。゚チレンガスは高千穂化孊株匏䌚瀟補のボ
ンベガスを䜿甚し、氎含量を0.6モル
6000ppmに調補した。たた、窒玠ガスは、株
匏䌚瀟鈎朚商通補のボンベガスを、䜿甚盎前にモ
レキナラヌシヌブ3Aの充填塔を通過させお粟補
した。
Example 1 As copper chloride (), a special grade reagent manufactured by Koso Chemical Co., Ltd. was used. Hydrochloric acid is a first-class reagent manufactured by Takahashi Fujiyoshi Shoten, and purified water (manufactured by Tokyo Yakuhin Kogyo Co., Ltd.)
It was diluted to 3N using . Activated carbon is
BAC manufactured by Kureha Chemical Industry Co., Ltd., G-70R,
LOT, No. 810117, (petroleum-based pitch coal raw material, steam activated) was heated and kept at 180°C for 24 hours under reduced pressure (6 mmHg), and then stored under dry nitrogen. For ethylene gas, cylinder gas manufactured by Takachiho Chemical Co., Ltd. was used, and the water content was 0.6 mol%.
(6000ppm). In addition, the nitrogen gas was purified by passing a cylinder gas manufactured by Suzuki Shokan Co., Ltd. through a column packed with molecular sieve 3A immediately before use.

窒玠䞋で、100mlの二口ナスフラスコ䞭に1.5
15.2molの塩化銅を入れ、䞉芏定塩酞
15mlを加えお磁気かくはん機を甚いおかきたぜ぀
぀、20℃で時間攟眮した。このナスフラスコ䞭
に也燥窒玠䞋で掻性炭10を加えお、時間かく
はんを続けたのち、ナスフラスコ内を枛圧mm
Hgにしお、100℃に加熱保枩し、氎および塩化
氎玠を十分に陀去し、黒色粒を埗た。これが固䜓
吞着剀である。
1.5 g in a 100 ml two-necked eggplant flask under nitrogen
(15.2 mmol) of copper chloride () was added, and 3N hydrochloric acid was added.
15 ml was added and left at 20°C for 1 hour while stirring using a magnetic stirrer. 10 g of activated carbon was added to this eggplant flask under dry nitrogen, and after stirring for 1 hour, the inside of the eggplant flask was depressurized (6 mm
Hg) and heated and kept at 100°C to sufficiently remove water and hydrogen chloride to obtain black grains. This is a solid adsorbent.

100mlの二口ナスフラスコにこの固䜓吞着剀を
入れ、1atmの゚チレンず窒玠の混合ガス゚チ
レン分圧0.9atm、窒玠分圧0.1atm1.5を入れ
た容噚ず結合し、磁気かくはん機を甚いおかきた
ぜ぀぀、20℃で゚チレンを吞着せしめた。吞着の
初期の10分間は、株匏䌚瀟むワキ補BA−106T型
゚アヌポンプを甚いお、混合ガスを埪環しお吞着
剀の䞊を通過させた。゚チレン吞着量はガスビナ
ヌレツト法により20℃で枬定した。
This solid adsorbent was placed in a 100 ml two-necked eggplant flask, combined with a container containing 1 atm of a mixed gas of ethylene and nitrogen (ethylene partial pressure 0.9 atm, nitrogen partial pressure 0.1 atm), and stirred using a magnetic stirrer. Ethylene was adsorbed at 20°C while stirring. During the initial 10 minutes of adsorption, a BA-106T air pump manufactured by Iwaki Co., Ltd. was used to circulate the mixed gas and pass it over the adsorbent. The amount of ethylene adsorption was measured at 20°C using the gas brew method.

゚チレンの吞着は迅速で、10分埌には3.4mol
の゚チレンを吞着し、60分埌の゚チレンの吞着量
は4.5molずな぀た。
Adsorption of ethylene is rapid, 3.4 mmol after 10 minutes
of ethylene was adsorbed, and the amount of ethylene adsorbed after 60 minutes was 4.5 mmol.

次に、この吞着剀を1atmで100℃に加熱し、ガ
スの攟出量をガスビナヌレツト法により枬定し
た。゚チレンが迅速に攟出され、攟出量は10分埌
に4.5molに達した。攟出ガスをガスクロマトグ
ラフで分析した結果、攟出ガスぱチレンであ
り、他の成分は怜出されなか぀た。
Next, this adsorbent was heated to 100° C. at 1 atm, and the amount of gas released was measured by the gas billet method. Ethylene was rapidly released, reaching 4.5 mmol after 10 minutes. Analysis of the released gas using a gas chromatograph revealed that the released gas was ethylene and no other components were detected.

その埌1atmの゚チレンず窒玠の混合ガス゚
チレン分圧0.9atm、窒玠分圧0.1atm1.5を入
れた容噚ず結合し、゚チレン吞着量を枬定した。
After that, it was connected to a container containing 1.5 atm of a mixed gas of ethylene and nitrogen (ethylene partial pressure: 0.9 atm, nitrogen partial pressure: 0.1 atm), and the amount of ethylene adsorption was measured.

゚チレンの吞着は迅速で、60分埌の゚チレン吞
着量は3.4molずな぀た。
Ethylene adsorption was rapid, and the amount of ethylene adsorbed after 60 minutes was 3.4 mmol.

次に、この吞着剀を1atmで100℃に加熱し、ガ
スの攟出量をガスビナヌレツト法により枬定し
た。゚チレンが迅速に攟出され、攟出量は10分埌
に3.4molに達した。
Next, this adsorbent was heated to 100° C. at 1 atm, and the amount of gas released was measured by the gas billet method. Ethylene was released rapidly, reaching 3.4 mmol after 10 minutes.

以埌、同様の吞着攟出操䜜を繰返しおも、゚チ
レンの吞着速床および吞着量に倉化は芋られなか
぀た。
Thereafter, even if the same adsorption/desorption operation was repeated, no change was observed in the adsorption rate and amount of ethylene.

実斜䟋  詊薬および吞着剀は実斜䟋に蚘茉したものず
同じものを䜿甚した。
Example 2 The same reagents and adsorbents as described in Example 1 were used.

100mlの二口ナスフラスコに固䜓吞着剀を入
れ、゚チレンず窒玠の混合ガス゚チレン分圧
0.9atm、窒玠分圧0.1atm1.5を入れた容噚ず
結合し、磁気かくはん機を甚いおかきたぜ぀぀、
20℃で゚チレンを吞着せしめた。吞着の初期の10
分間は、株匏䌚瀟むワキ補BA−106T型゚アヌポ
ンプを甚いお、混合ガスを埪環しお吞着剀の䞊を
通過させた。゚チレン吞着量はガスビナヌレツト
法により20℃で枬定した。
Put the solid adsorbent into a 100ml two-necked eggplant flask, and add a mixed gas of ethylene and nitrogen (ethylene partial pressure
0.9atm, nitrogen partial pressure 0.1atm) 1.5, and while stirring using a magnetic stirrer,
Ethylene was adsorbed at 20°C. Initial 10 of adsorption
For a minute, the mixed gas was circulated and passed over the adsorbent using a BA-106T air pump manufactured by Iwaki Co., Ltd. The amount of ethylene adsorption was measured at 20°C using the gas brew method.

゚チレンの吞着は迅速で、10分埌には3.4mol
の゚チレンを吞着し、60分埌の゚チレン吞着量は
4.5molずな぀た。
Adsorption of ethylene is rapid, 3.4 mmol after 10 minutes
of ethylene is adsorbed, and the amount of ethylene adsorbed after 60 minutes is
The amount was 4.5 mmol.

次に、真空ポンプを甚いおこの二口ナスフラス
コ䞭を10分間、20℃で枛圧0.4mmHgにしお、
吞着した゚チレンを攟出させた。
Next, the pressure inside this two-necked eggplant flask was reduced (0.4 mmHg) at 20°C for 10 minutes using a vacuum pump.
Adsorbed ethylene was released.

その埌、この二口ナスフラスコを気圧の゚チ
レンず窒玠の混合ガス゚チレン分圧0.9atm、
窒玠分圧0.1atm1.5を入れた容噚ず結合し、
゚チレン吞着量を枬定した。
After that, this two-necked eggplant flask was filled with a mixed gas of ethylene and nitrogen at 1 atm (ethylene partial pressure 0.9 atm,
Combined with a container containing nitrogen partial pressure 0.1 atm) 1.5,
The amount of ethylene adsorption was measured.

゚チレンの吞着は迅速で、60分埌には、3.7
molの゚チレンを吞着した。
Ethylene adsorption is rapid; after 60 minutes, 3.7 m
Adsorbed mol of ethylene.

以埌、同様の吞着攟出操䜜を繰返しおも、゚チ
レンの吞着速床および吞着量に倉化は芋られなか
぀た。
Thereafter, even if the same adsorption/desorption operation was repeated, no change was observed in the adsorption rate and amount of ethylene.

実斜䟋  詊薬および吞着剀は実斜䟋に蚘茉したものず
同じものを䜿甚した。
Example 3 The same reagents and adsorbents as described in Example 1 were used.

プロピレンガスは、東京化成工業株匏䌚瀟補プ
ロピレン50キシレン溶液を掻性炭カラムを
通過させお甚いた。
As the propylene gas, propylene (50% xylene solution) manufactured by Tokyo Chemical Industry Co., Ltd. was used by passing it through an activated carbon column.

100mlの二口ナスフラスコに固䜓吞着剀を入
れ、プロピレンず窒玠の混合ガスプロピレン分
圧0.9atm、窒玠分圧0.1atm1.5を入れた容噚
ず結合し、磁気かくはん機を甚いおかきたぜ぀
぀、20℃でプロピレンを吞着せしめた。吞着の初
期の10分間は、株匏䌚瀟むワキ補BA−106Tåž‹ã‚š
アヌポンプを甚いお、混合ガスを埪環しお吞着剀
䞊を通過させた。プロピレン吞着量はガスビナヌ
レツト法により20℃で枬定した。
The solid adsorbent was placed in a 100ml two-necked eggplant flask, combined with a container containing 1.5% of a mixed gas of propylene and nitrogen (propylene partial pressure 0.9atm, nitrogen partial pressure 0.1atm), and stirred using a magnetic stirrer. Propylene was adsorbed at 20°C. During the initial 10 minutes of adsorption, a BA-106T air pump manufactured by Iwaki Co., Ltd. was used to circulate the mixed gas and pass it over the adsorbent. The amount of propylene adsorbed was measured at 20°C using the gas brew method.

プロピレンの吞着は迅速で、10分埌には4.4
molのプロピレンを吞着し、60分埌のプロピレン
吞着量は5.7molずな぀た。
Adsorption of propylene is rapid; 4.4 m after 10 minutes.
mol of propylene was adsorbed, and the amount of propylene adsorbed after 60 minutes was 5.7 mmol.

次に、真空ポンプを甚いおこの二口ナスフラス
コ䞭を10分間、20℃で枛圧0.4mmHgにしお、
吞着したプロピレンを攟出させた。
Next, the pressure inside this two-necked eggplant flask was reduced (0.4 mmHg) at 20°C for 10 minutes using a vacuum pump.
The adsorbed propylene was released.

その埌、この二口ナスフラスコを気圧のプロ
ピレンず窒玠の混合ガスプロピレン分圧
0.9atm、窒玠分圧0.1atm1.5を入れた容噚ず
結合し、プロピレン吞着量を枬定した。
After that, this two-necked eggplant flask was filled with a mixed gas of propylene and nitrogen at 1 atm (partial pressure of propylene).
0.9 atm, nitrogen partial pressure 0.1 atm) was connected to a container containing 1.5, and the amount of propylene adsorbed was measured.

プロピレンの吞着は迅速で、60分埌には、3.3
molのプロピレンを吞着した。
Adsorption of propylene is rapid; after 60 minutes, 3.3
Adsorbed mmol of propylene.

以埌、同様の吞着攟出操䜜を繰返しおも、プロ
ピレンの吞着速床および吞着量に倉化は認められ
なか぀た。
Thereafter, even if the same adsorption/desorption operation was repeated, no change was observed in the adsorption rate and amount of propylene.

実斜䟋  実斜䟋に蚘茉した塩化銅の代わりに塩
化銅二氎和物小宗化孊薬品株匏䌚瀟補、
特玚詊薬を甚いたこず、および、䞉芏定塩酞の
代わりに粟補氎有限䌚瀟東京薬品工業所補を
甚いた以倖は、実斜䟋に蚘茉したのず同䞀の詊
薬を䜿甚した。
Example 4 Copper chloride () dihydrate (manufactured by Koso Chemical Co., Ltd.,
The same reagents as those described in Example 1 were used, except that 3-N hydrochloric acid (special grade reagent) was used and purified water (manufactured by Tokyo Yakuhin Kogyo Co., Ltd.) was used instead of 3N hydrochloric acid.

窒玠䞋で、100mlの二口ナスフラスコ䞭に2.6
15.0molの塩化銅二氎和物を入れ、粟
補氎15mlを加えお磁気かくはん機を甚いおかきた
ぜ぀぀、20℃で時間攟眮した。このナスフラス
コ䞭に窒玠䞋で掻性炭10を加えお、時間かく
はんを続けたのち、ナスフラスコ内を枛圧mm
Hgにしお、180℃に加熱保枩し、氎を十分に陀
去し、黒色粒を埗た。これが固䜓吞着剀である。
2.6 g in a 100 ml two-neck eggplant flask under nitrogen
(15.0 mmol) of copper chloride () dihydrate was added thereto, and 15 ml of purified water was added thereto. The mixture was stirred using a magnetic stirrer and left at 20°C for 1 hour. 10 g of activated carbon was added to this eggplant flask under nitrogen, and after stirring for 1 hour, the inside of the eggplant flask was depressurized (6 mm
Hg) and heated and kept at 180°C to thoroughly remove water to obtain black grains. This is a solid adsorbent.

100mlの二口ナスフラスコに固䜓吞着剀を入
れ、゚チレンず窒玠の混合ガス゚チレン分圧
0.9atm、窒玠分圧0.1atm1.5を入れた容噚ず
結合し、磁気かくはん機を甚いおかきたぜ぀぀、
20℃で゚チレンを吞着せしめた。吞着の初期の10
分間は、株匏䌚瀟むワキ補BA−106T型゚アヌポ
ンプを甚いお、混合ガスを埪環しお吞着剀の䞊を
通過させた。゚チレン吞着量はガスビナヌレツト
法により20℃で枬定した。
Put the solid adsorbent into a 100ml two-necked eggplant flask, and add a mixed gas of ethylene and nitrogen (ethylene partial pressure
0.9atm, nitrogen partial pressure 0.1atm) 1.5, and while stirring using a magnetic stirrer,
Ethylene was adsorbed at 20°C. Initial 10 of adsorption
For a minute, the mixed gas was circulated and passed over the adsorbent using a BA-106T air pump manufactured by Iwaki Co., Ltd. The amount of ethylene adsorption was measured at 20°C using the gas brew method.

゚チレンの吞着は迅速で、10分埌には3.3mol
の゚チレンを吞着し、60分埌の゚チレン吞着量は
4.2molずな぀た。
Adsorption of ethylene is rapid, 3.3 mmol after 10 minutes
of ethylene is adsorbed, and the amount of ethylene adsorbed after 60 minutes is
The amount was 4.2 mmol.

次に、真空ポンプを甚いおこの二口ナスフラス
コ䞭を10分間、20℃で枛圧0.4mmHgにしお、
吞着した゚チレンを攟出させた。
Next, the pressure inside this two-necked eggplant flask was reduced (0.4 mmHg) at 20°C for 10 minutes using a vacuum pump.
Adsorbed ethylene was released.

その埌、この二口ナスフラスコを気圧の゚チ
レンず窒玠の混合ガス゚チレン分圧0.9atm、
窒玠分圧0.1atm1.5を入れた容噚ず結合し、
゚チレン吞着量を枬定した。
After that, this two-necked eggplant flask was filled with a mixed gas of ethylene and nitrogen at 1 atm (ethylene partial pressure 0.9 atm,
Combined with a container containing nitrogen partial pressure 0.1 atm) 1.5,
The amount of ethylene adsorption was measured.

゚チレンの吞着は迅速で、60分埌には、4.0
molの゚チレンを吞着した。
Ethylene adsorption is rapid; after 60 minutes, 4.0 m
Adsorbed mol of ethylene.

以埌、同様の吞着攟出操䜜を繰返しおも、゚チ
レンの吞着速床および吞着量に倉化はなか぀た。
Thereafter, even if the same adsorption/desorption operation was repeated, there was no change in the adsorption rate and amount of ethylene.

実斜䟋  実斜䟋に蚘茉した塩化銅の代わりに臭
化銅米山薬品工業株匏䌚瀟補、特玚詊
薬を甚いたこず、および、䞉芏定塩酞の代わり
に28アンモニア氎有限䌚瀟高橋藀吉商店補
を甚いた以倖は、実斜䟋に蚘茉したのず同䞀の
詊薬を䜿甚した。
Example 5 Copper bromide ( ) (manufactured by Yoneyama Pharmaceutical Co., Ltd., special grade reagent) was used instead of copper chloride ( ) described in Example 1, and 28% ammonia water ( Manufactured by Takahashi Fujiyoshi Shoten Co., Ltd.)
The same reagents as described in Example 1 were used, except that:

窒玠䞋で、100mlの二口ナスフラスコ䞭に2.2
15.0molの臭化銅を入れ、アンモニア
æ°Ž15mlを加えお磁気かくはん機を甚いおかきたぜ
぀぀、20℃で時間攟眮した。このナスフラスコ
䞭に窒玠䞋で掻性炭10を加えお、時間かくは
んを続けたのち、ナスフラスコ内を枛圧mm
Hgにしお、100℃に加熱保枩し、氎およびアン
モニアを十分に陀去し、黒色粒を埗た。これが固
䜓吞着剀である。
2.2 g in a 100 ml two-neck eggplant flask under nitrogen
(15.0 mmol) of copper bromide () was added, 15 ml of ammonia water was added, and the mixture was left at 20°C for 1 hour while stirring using a magnetic stirrer. 10 g of activated carbon was added to this eggplant flask under nitrogen, and after stirring for 1 hour, the inside of the eggplant flask was depressurized (6 mm
Hg) and heated and kept at 100°C to sufficiently remove water and ammonia to obtain black grains. This is a solid adsorbent.

100mlの二口ナスフラスコにこの固䜓吞着剀を
入れ、1atmの゚チレンず窒玠の混合ガス゚チ
レン分圧0.9atm、窒玠分圧0.1atm1.5を入れ
た容噚ず結合し、磁気かくはん機を甚いおかきた
ぜ぀぀、20℃で゚チレンを吞着せしめた。吞着の
初期の10分間は、株匏䌚瀟むワキ補BA−106T型
゚アヌポンプを甚いお、混合ガスを埪環しお吞着
剀の䞊を通過させた。゚チレン吞着量はガスビナ
ヌレツト法により20℃で枬定した。
This solid adsorbent was placed in a 100 ml two-necked eggplant flask, combined with a container containing 1 atm of a mixed gas of ethylene and nitrogen (ethylene partial pressure 0.9 atm, nitrogen partial pressure 0.1 atm), and stirred using a magnetic stirrer. Ethylene was adsorbed at 20°C while stirring. During the initial 10 minutes of adsorption, a BA-106T air pump manufactured by Iwaki Co., Ltd. was used to circulate the mixed gas and pass it over the adsorbent. The amount of ethylene adsorption was measured at 20°C using the gas brew method.

゚チレンの吞着は迅速で、10分埌には2.3mol
の゚チレンを吞着し、60分埌の゚チレン吞着量は
3.3molずな぀た。
Adsorption of ethylene is rapid, 2.3 mmol after 10 minutes
of ethylene is adsorbed, and the amount of ethylene adsorbed after 60 minutes is
The amount was 3.3 mmol.

実斜䟋  実斜䟋に蚘茉した塩化銅の代わりに無
氎硫酞銅米山薬品工業株匏䌚瀟補を甚
いたこず、および、䞉芏定塩酞の代わりに35塩
酞有限䌚瀟高橋藀吉商店補を甚いた以倖は、
実斜䟋に蚘茉したものず同䞀の詊薬を䜿甚し
た。
Example 6 Anhydrous copper sulfate () (manufactured by Yoneyama Pharmaceutical Co., Ltd.) was used instead of copper chloride ( ) described in Example 1, and 35% hydrochloric acid (manufactured by Takahashi Fujiyoshi Co., Ltd.) was used instead of 3N hydrochloric acid. (manufactured by a store) was used.
The same reagents as described in Example 1 were used.

窒玠䞋で、100mlの二口ナスフラスコ䞭に2.4
15molの無氎硫酞銅を入れ、35塩
酾15mlを加えお磁気かくはん機を甚いおかきたぜ
぀぀、20℃で時間攟眮した。このナスフラスコ
䞭に窒玠䞋で掻性炭10を加えお、時間かくは
んを続けたのち、ナスフラスコ内を枛圧mm
Hgにしお、100℃に加熱保枩し、氎および塩化
氎玠を十分に陀去し、黒色粒を埗た。これが固䜓
吞着剀である。
2.4 g in a 100 ml two-necked eggplant flask under nitrogen
(15 mmol) of anhydrous copper sulfate () was added, 15 ml of 35% hydrochloric acid was added, and the mixture was left at 20°C for 1 hour while stirring using a magnetic stirrer. 10 g of activated carbon was added to this eggplant flask under nitrogen, and after stirring for 1 hour, the inside of the eggplant flask was depressurized (6 mm
Hg) and heated and kept at 100°C to sufficiently remove water and hydrogen chloride to obtain black grains. This is a solid adsorbent.

100mlの二口ナスフラスコにこの固䜓吞着剀を
入れ、1atmの゚チレンず窒玠の混合ガス゚チ
レン分圧0.9atm、窒玠分圧0.1atm1.5を入れ
た容噚ず結合し、磁気かくはん機を甚いおかきた
ぜ぀぀、20℃で゚チレンを吞着せしめた。吞着の
初期の10分間は、株匏䌚瀟むワキ補BA−106T型
を゚アヌポンプを甚いお、混合ガスを埪環しお吞
着剀の䞊を通過させた。゚チレン吞着量はガスビ
ナヌレツト法により20℃で枬定した。
This solid adsorbent was placed in a 100 ml two-neck eggplant flask, combined with a container containing 1 atm of a mixed gas of ethylene and nitrogen (ethylene partial pressure 0.9 atm, nitrogen partial pressure 0.1 atm), and stirred using a magnetic stirrer. Ethylene was adsorbed at 20°C while stirring. During the initial 10 minutes of adsorption, a BA-106T model manufactured by Iwaki Co., Ltd. was used to circulate the mixed gas and pass it over the adsorbent using an air pump. The amount of ethylene adsorption was measured at 20°C by the gas brew method.

゚チレンの吞着は迅速で、10分埌には2.0mol
の゚チレンを吞着し、60分埌の゚チレン吞着量は
3.2molずな぀た。
Adsorption of ethylene is rapid, 2.0 mmol after 10 minutes
of ethylene is adsorbed, and the amount of ethylene adsorbed after 60 minutes is
The amount was 3.2 mmol.

比范䟋 甚いた掻性炭、゚チレンおよび窒玠は、実斜䟋
に蚘茉したものず同じものを䜿甚した。
Comparative Example The activated carbon, ethylene and nitrogen used were the same as those described in Example 1.

100mlナスフラスコに掻性炭10を入れ、゚チ
レンず窒玠の混合ガス゚チレン分圧0.9atm、
窒玠分圧0.1atm1.5を入れた容噚ず結合し、
磁気かくはん機を甚いおかきたぜ぀぀、20℃で゚
チレンを吞着せしめた。吞着の初期の10分間は、
株匏䌚瀟むワキ補BA−106T型゚アヌポンプを甚
いお、混合ガスを埪環しお吞着剀の䞊を通過させ
た。゚チレン吞着量はガスビナヌレツト法により
20℃で枬定した。
Put 10g of activated carbon in a 100ml eggplant flask and add a mixed gas of ethylene and nitrogen (ethylene partial pressure 0.9 atm,
Combined with a container containing nitrogen partial pressure 0.1 atm) 1.5,
Ethylene was adsorbed at 20°C while stirring using a magnetic stirrer. During the initial 10 minutes of adsorption,
Using a BA-106T air pump manufactured by Iwaki Co., Ltd., the mixed gas was circulated and passed over the adsorbent. The amount of ethylene adsorption was determined by the gas brewing method.
Measured at 20°C.

゚チレンの吞着量は、10分埌に0.12molであ
り、60分埌の゚チレン吞着量は1.2molであ぀
た。
The amount of ethylene adsorbed was 0.12 mmol after 10 minutes, and 1.2 mmol after 60 minutes.

すなわち、銅化合物を含たない掻性炭のみによ
る䞍飜和炭化氎玠の吞着は、本発明の固䜓吞着剀
による吞着より著しく小さい。
That is, the adsorption of unsaturated hydrocarbons by activated carbon alone, which does not contain copper compounds, is significantly smaller than the adsorption by the solid adsorbent of the present invention.

Claims (1)

【特蚱請求の範囲】  (i)銅のハラむド塩もしくは酞化銅
ず掻性炭又は(ii)銅のハラむド塩、カ
ルボン酞塩、硫酞塩、塩基性塩もしくはアンミン
錯塩たたは酞化銅ず掻性炭より構成される
䞍飜和炭化氎玠の吞着分離甚固䜓吞着剀。  (i)銅のハラむド塩もしくは酞化銅
ず掻性炭又は(ii)銅のハラむド塩、カ
ルボン酞塩、硫酞塩、塩基性塩もしくはアンミン
錯塩、たたは酞化銅ず掻性炭より構成され
る固䜓吞着剀を甚いるこずを特城ずする混合ガス
より䞍飜和炭化氎玠を分離する方法。
[Scope of Claims] 1 (i) Halide salt of copper () or copper oxide () and activated carbon, or (ii) Halide salt, carboxylate, sulfate, basic salt, or ammine complex salt of copper () or copper oxide A solid adsorbent for adsorption and separation of unsaturated hydrocarbons, consisting of ( ) and activated carbon. 2 (i) halide salt of copper () or copper oxide () and activated carbon, or (ii) halide salt, carboxylate, sulfate, basic salt or ammine complex salt of copper (), or copper () oxide and activated carbon A method for separating unsaturated hydrocarbons from a mixed gas, characterized by using a solid adsorbent composed of:
JP58132360A 1983-07-20 1983-07-20 Process for adsorptive separation of unsaturated hydrocarbon Granted JPS6025939A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58132360A JPS6025939A (en) 1983-07-20 1983-07-20 Process for adsorptive separation of unsaturated hydrocarbon
CA000452224A CA1242684A (en) 1983-07-20 1984-04-17 Solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
EP84302605A EP0132915B1 (en) 1983-07-20 1984-04-17 Method of preparing solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
DE8484302605T DE3469411D1 (en) 1983-07-20 1984-04-17 Method of preparing solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US07/006,343 US4747855A (en) 1983-07-20 1987-01-21 Solid absorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132360A JPS6025939A (en) 1983-07-20 1983-07-20 Process for adsorptive separation of unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6025939A JPS6025939A (en) 1985-02-08
JPS6240333B2 true JPS6240333B2 (en) 1987-08-27

Family

ID=15079540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132360A Granted JPS6025939A (en) 1983-07-20 1983-07-20 Process for adsorptive separation of unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6025939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612323B2 (en) * 2004-04-02 2011-01-12 日本パむオニクス株匏䌚瀟 Carbon monoxide gas adsorbent, adsorption method, and recovery method
DE102009000660A1 (en) * 2009-02-06 2010-08-12 Robert Bosch Gmbh battery module

Also Published As

Publication number Publication date
JPS6025939A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
EP0132915B1 (en) Method of preparing solid adsorbent for unsaturated hydrocarbon and process for separation of unsaturated hydrocarbon from gas mixture
US4587114A (en) Method for separating carbon dioxide from mixed gas
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US4470829A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
JPS6230550A (en) Adsorbent for selectively adsorbing and separating gas and its preparation
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPS6240333B2 (en)
JPS58124516A (en) Separation of carbon monooxide from mixed gas
JPS634844A (en) Adsorbent for carbon monoxide
JPS5849436A (en) Separation of carbon monoxide
JPS6253223B2 (en)
JPH0716604B2 (en) Carbon monoxide adsorbent
JPS6148977B2 (en)
JPS60147239A (en) Preparation of adsorbent for unsaturated hydrocarbon
JPS6135128B2 (en)
JP2551417B2 (en) Adsorbent for carbon monoxide separation
JPS62237942A (en) Preparation of carbon monoxide adsorbent
JPH0716605B2 (en) Carbon monoxide adsorbent
JPH09290153A (en) New composite body, production thereof, and carbon monoxide-adsorbing agent consisting thereof
JPH05279046A (en) Solid state cyanocobaltate complex
JPH08243384A (en) New composite, its production and olefin adsorbent made of the same
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite
JPS6240332B2 (en)
JPS63267434A (en) Carbon monoxide adsorbent
JPH0712427B2 (en) Manufacturing method of carbon monoxide adsorbent