JPS63205140A - Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide - Google Patents

Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide

Info

Publication number
JPS63205140A
JPS63205140A JP62036353A JP3635387A JPS63205140A JP S63205140 A JPS63205140 A JP S63205140A JP 62036353 A JP62036353 A JP 62036353A JP 3635387 A JP3635387 A JP 3635387A JP S63205140 A JPS63205140 A JP S63205140A
Authority
JP
Japan
Prior art keywords
adsorbent
solvent
nitrogen monoxide
activated carbon
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62036353A
Other languages
Japanese (ja)
Inventor
Hidefumi Hirai
平井 英史
Naoki Toshima
直樹 戸嶋
Hiroyuki Asanuma
浩之 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62036353A priority Critical patent/JPS63205140A/en
Publication of JPS63205140A publication Critical patent/JPS63205140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To recover nitrogen monoxide at high concn. from gas containing nitrogen monoxide at low concn., by using a nitrogen monoxide adsorbent prepared by a method wherein activated carbon and a divalent or trivalent iron salt are mixed in a solvent and the solvent is removed to dry the resulting mixture. CONSTITUTION:After activated carbon and a divalent or trivalent iron salt such as ferrous sulfate, ferrous chloride, ammonium ferrous sulfate, ferric sulfate, ferric chloride or ferric acetate are mixed in a solvent, the solvent is removed and the resulting mixture is dried to prepare a nitrogen monoxide adsorbent. There is no limit in the shape of activated carbon but the particle size thereof is 0.01-50mm, pref., 0.1-5mm. As the solvent, 1-6C alcohol is pref. and the addition amount thereof is 1-1,000cm<3>, pref., 10-100cm<3> per 10g of activated carbon. When the obtained adsorbent is used, NO can be selectively adsorbed from a gaseous mixture containing 30%-1ppm of NO.

Description

【発明の詳細な説明】 本発明は、−酸化窒素を含有する混合ガスから一酸化窒
素(NO)を迅速に吸着し、脱着することのできる吸着
剤およびこれを用いて混合ガスよりNOを分離除去する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides - an adsorbent that can rapidly adsorb and desorb nitric oxide (NO) from a mixed gas containing nitrogen oxide, and a method for separating NO from a mixed gas using the adsorbent. It relates to a method of removal.

大気汚染物質であるNoは9通常火力発電所および製鉄
所の廃ガスよシ数百から数千ppmの濃度で大気中に多
量に排出されるが、このNOを除去する方法としては、
現在では主にアンモニアなどの還元ガスを廃ガス中に混
合し、触媒と接触させることで娠害な窒素ガスに還元す
る方法が用いられている。例えば、300ppmのNO
と450 ppmのアンモニアを含む混合ガスを250
°Cでアルミナ−酸化銅−チタニア系触媒に空間速度2
0000h−1で接触させると試料ガス中に含まれるN
oの60%が除去可能である。これは、窒素酸化物をア
ンモニアで還元して窒素ガスとするものであるが、アン
モニアを必要とすることおよび温和な条件では完全な窒
素酸化物の除去が困難であることなどの欠点を有する。
No. 9, an air pollutant, is normally emitted into the atmosphere in large amounts from waste gas from thermal power plants and steel mills at concentrations ranging from several hundred to several thousand ppm, but methods for removing this NO include:
Currently, the main method used is to mix reducing gas such as ammonia into waste gas and bring it into contact with a catalyst to reduce the waste gas to harmful nitrogen gas. For example, 300 ppm NO
and 250 ppm of ammonia.
space velocity of 2 for alumina-copper oxide-titania catalyst at °C.
When contacted at 0000h-1, the N contained in the sample gas
60% of o is removable. This method reduces nitrogen oxides with ammonia to produce nitrogen gas, but has drawbacks such as requiring ammonia and difficulty in completely removing nitrogen oxides under mild conditions.

また、過剰のアンモニアを使用すると、NOの還元率を
上げることができるが、この場合には、有害な過剰のア
ンモニアを大気中に放出しないために、アンモニア除去
設備も必要となるなどの難点がある。また上記の方法は
NOの除去を目的としたもので9分離回収を目的とした
ものではない。
Additionally, using excess ammonia can increase the NO reduction rate, but in this case, there are drawbacks such as the need for ammonia removal equipment to prevent harmful excess ammonia from being released into the atmosphere. be. Furthermore, the above method is aimed at removing NO, not at separating and recovering it.

また、自動車排気中の窒素酸化物の除去のためには、燃
料ガンリンの不完全燃焼で発生する一酸化炭素を還元剤
として白金−銅一コージェライト系触媒と接触させて、
窒素酸化物を窒素ガスにし。
In addition, in order to remove nitrogen oxides from automobile exhaust, carbon monoxide generated by incomplete combustion of fuel Ganlin is brought into contact with a platinum-copper-cordierite catalyst as a reducing agent.
Converts nitrogen oxides into nitrogen gas.

かつ−酸化炭素を二酸化炭素にして無害化する方法が用
いられているが、触媒接触後の放出ガス中の一酸化炭素
と窒素酸化物の濃度をともに低く押さえるためには、燃
料に対する空気の混合比などの燃焼条件を厳密に整える
などの困難を伴い、また完全な無害化が不可能であるな
どの欠点を有する。不法もNOの分離回収を目的とした
ものではない。
- A method is used to convert carbon oxide into carbon dioxide and make it harmless, but in order to keep the concentrations of both carbon monoxide and nitrogen oxides in the gas released after catalyst contact low, it is necessary to mix air with the fuel. It is difficult to strictly control the combustion conditions such as the ratio, and it also has drawbacks such as the impossibility of complete detoxification. Even though it is illegal, it is not aimed at separating and recovering NO.

Zhurnal Pr1kladnoi Khimi 
i 誌、 l 958年発行、第31巻、138頁には
、活性炭がNoの吸着能を持つことが記載されている。
Zhurnal Pr1kladnoi Khimi
I magazine, published in 1958, volume 31, page 138, states that activated carbon has the ability to adsorb No.

しかしその吸着能力は低く、筆者らの追試によると、1
1000ppのNOを含む窒素ガス6dm3と1.6 
dm3@min”の速度で活性炭10gと接触させたと
ころ。
However, its adsorption capacity is low, and according to the authors' additional tests, 1
6 dm3 and 1.6 nitrogen gas containing 1000 pp NO
Contact with 10g of activated carbon at a rate of dm3@min''.

90分経過しても仕込みのNOの37チ程度しか吸着せ
ず、実用に適した吸着能力を有していない。
Even after 90 minutes, only about 37 g of NO was adsorbed, which does not have adsorption capacity suitable for practical use.

Industrial and Engineerin
g Chem’1stry。
Industrial and Engineering
g Chem'1try.

Process Design and Develo
pment誌1980年発行、第19巻、377頁には
、鉄(11)−EDTA(エチレンジアミン四酢酸)錯
体および亜硫酸ナトリウムの水溶液が、NOを吸収する
ことが記載されている。しかしこの吸収剤では、吸収さ
れたNoは反応してナトリウムイミドビス硫酸などを生
成するので、Noを分離回収することはできない。また
鉄([)−EDTA錯体水溶液のみを吸収剤として用い
た場合、NOを分離回収することは可能であるが、混入
する酸素で容易に中心金属の鉄(U)  イオンが3価
に酸化され吸収剤が劣化する。
Process Design and Development
pment magazine, published in 1980, volume 19, page 377, describes that an aqueous solution of iron(11)-EDTA (ethylenediaminetetraacetic acid) complex and sodium sulfite absorbs NO. However, with this absorbent, the absorbed No reacts to produce sodium imidobis sulfate and the like, so it is not possible to separate and recover No. Furthermore, when only an aqueous solution of iron ([)-EDTA complex is used as an absorbent, it is possible to separate and recover NO, but the central metal iron (U) ion is easily oxidized to trivalent by the mixed oxygen. Absorbent deteriorates.

また水溶液系であるため回収したNOに溶媒である水の
蒸気が混合するなどの欠点を有する。
Furthermore, since it is an aqueous solution system, it has drawbacks such as water vapor, which is a solvent, mixing with the recovered NO.

Industrial and Engineerin
g Chemistry。
Industrial and Engineering
g Chemistry.

Product Re5earch and Deve
lopment誌、1984年発行、第23巻、417
頁には、亜硫酸ナトリウム、亜硫酸水素リチウムおよび
酸化バナジウムよりなる溶融塩が、NOを除去すること
が記載されている。しかしこの方法ではアンモニアを必
要とし、NOは窒素となるもので、NOを分離回収する
ものではない。またNoの除去法さしても。
Product Research and Development
lopment magazine, published in 1984, Volume 23, 417
The page states that molten salts consisting of sodium sulfite, lithium bisulfite and vanadium oxide remove NO. However, this method requires ammonia and NO is converted into nitrogen, and NO is not separated and recovered. Also, how to remove No.

溶融塩に耐性のある容器材料に問題がある。There are problems with container materials that are resistant to molten salts.

日本化学会誌、1985年発行、2315頁には、活性
炭素繊維(活性炭ではない)に鉄の酸化物であるα−F
ed(OH)を沈着させて得られるNOの吸着剤につい
て記載されている。しかしこの系では、Fed(OH)
の表面酸素とNOの結合が強固であるため脱着回収が容
易でない。またα−Pea(Ot−1)の生成条件、お
よびこの結晶の活性炭素繊維への沈着過程が微妙である
ため、吸着剤の調製が困難であるという欠点を有する。
Journal of the Chemical Society of Japan, published in 1985, page 2315, states that α-F, an iron oxide, is added to activated carbon fiber (not activated carbon).
An adsorbent for NO obtained by depositing ed(OH) is described. However, in this system, Fed(OH)
Because the bond between surface oxygen and NO is strong, desorption and recovery are not easy. Furthermore, since the conditions for producing α-Pea (Ot-1) and the process of depositing this crystal onto activated carbon fibers are delicate, it has the disadvantage that it is difficult to prepare an adsorbent.

その他9種々の吸着剤および分離除去法が提案されてい
るが、混合ガスよりNOを分離除去する方法には、まだ
完全に満足すべきものはない。
Although nine other types of adsorbents and separation/removal methods have been proposed, there is still no method that is completely satisfactory for separating and removing NO from a mixed gas.

本申請者らは、官能基を有する架橋ポリスチレン樹脂V
C2価の鉄塩を担持した高分子錯体を用いることにより
、希薄なNoを吸着除去することに既に成功している。
The present applicants have proposed that cross-linked polystyrene resin V having functional groups
By using a polymer complex supporting a C2-valent iron salt, we have already succeeded in adsorbing and removing dilute No.

この研究結果に基づき、高分子樹脂より経済性の高い担
体を鋭意模索した結果。
Based on the results of this research, we worked hard to find a carrier that was more economical than polymer resins.

活性炭を担体として使用し、2価あるいは3価の鉄塩を
担持することによシ9本申請者らが既に開発した高分子
樹脂担持鉄(旧錯体に匹敵する高活性の吸着剤の開発に
成功した。
By using activated carbon as a carrier and supporting divalent or trivalent iron salts, the authors have already developed polymer resin-supported iron (for the development of a highly active adsorbent comparable to the old complex). Successful.

本発明における吸着剤は、活性炭と2価あるいは3価の
鉄塩とを、溶媒中で攪拌混合した後、溶媒を加熱あるい
は減圧下で留去して得られる固体である。
The adsorbent in the present invention is a solid obtained by stirring and mixing activated carbon and a divalent or trivalent iron salt in a solvent, and then distilling off the solvent under heating or reduced pressure.

本発明に用いられる鉄塩は9例えば硫酸鉄(II)。The iron salt used in the present invention is 9, for example, iron(II) sulfate.

塩化鉄(旧、硫酸鉄(旧アンモニウム(モール塩)。Iron chloride (formerly, iron sulfate (formerly ammonium (Mohr's salt)).

硫酸鉄(■)、塩化鉄(■)、酢酸鉄([1)など2価
あるいは3価の鉄の塩である。加える鉄塩の量は。
It is a divalent or trivalent iron salt such as iron sulfate (■), iron chloride (■), and iron acetate ([1). How much iron salt to add?

特に問わないが、好ましくは活性炭10gに対して1g
〜100gである。
Although not particularly important, preferably 1g per 10g of activated carbon.
~100g.

明細書に記載する活性炭とは、炭素を主成分とする原料
を炭化した後、賦活処理した物質である。
The activated carbon described in the specification is a material obtained by carbonizing a raw material containing carbon as a main component and then subjecting it to activation treatment.

本吸着剤調製の除用いる活性炭の形状は、特に問わず、
その粒径は0.01〜50簾、好ましくは0.1〜5m
である。
The shape of the activated carbon used in this adsorbent preparation is not particularly limited.
Its particle size is 0.01-50m, preferably 0.1-5m
It is.

加える溶媒の量は、活性炭10gに対し、1cm3〜1
0000m3好ましくは10〜1000m3.攪拌時間
は、10分〜1日好ましくは1時間〜5時間。
The amount of solvent to be added is 1 cm3 to 1 cm3 to 10 g of activated carbon.
0000m3 preferably 10-1000m3. The stirring time is 10 minutes to 1 day, preferably 1 hour to 5 hours.

溶媒留去の際の温度は、10〜300’C,好ましくは
50〜100°Cである。
The temperature during solvent distillation is 10 to 300°C, preferably 50 to 100°C.

本吸着剤調製は、空気下でも可能であるが、2価の鉄塩
を用いる場合のみ、窒素下で行なうことが好ましい。
This adsorbent preparation can be carried out under air, but it is preferable to carry out under nitrogen only when divalent iron salts are used.

本発明の吸着剤を使用すれば、30%〜I I)I)m
のNOを含む混合ガスよシ9選択的にNoを吸着するこ
とができる。この吸着は、常圧下で、−4000〜12
0°C9好ましくは0〜100°Cで行なうことができ
る。また加圧下で吸着を行なうことにより、より迅速に
かつ多量に吸着させることが可能である。NOを吸着し
た吸着剤を50〜200℃に昇温するか、あるいは、N
Oの分圧を10−3〜100 rrmHg 、好ましく
は0.1〜10 mmHgに下げることにより、吸着さ
れたNOを脱着させることができる。NOの脱着は、吸
着剤を昇温しながらNOの分圧を下げることによっても
実施可能である。この脱着操作によシ吸着剤を再生し、
再びNOの吸着に使用できる。また、このNOの吸着と
脱着の組み合わせにより、低濃度のNoを含有する混合
ガスから、NOを高濃度に濃縮回収することが可能とな
る。従来、NOは廃棄または無害化することのみが行な
われてきたが9本発明により高濃度NOとしての回収が
可能となるので、このNOを化学原料として9例えば亜
硝酸および硝酸の製造も可能となる。
If the adsorbent of the present invention is used, 30% to I I) I) m
A mixed gas containing NO can selectively adsorb NO. This adsorption is -4000~12 under normal pressure.
It can be carried out at 0°C, preferably 0 to 100°C. Furthermore, by performing adsorption under pressure, it is possible to adsorb more quickly and in large amounts. Either raise the temperature of the adsorbent that has adsorbed NO to 50 to 200°C, or
Adsorbed NO can be desorbed by lowering the partial pressure of O to 10-3 to 100 rrmHg, preferably 0.1 to 10 mmHg. Desorption of NO can also be carried out by lowering the partial pressure of NO while increasing the temperature of the adsorbent. This desorption operation regenerates the adsorbent,
It can be used again to adsorb NO. Moreover, this combination of adsorption and desorption of NO makes it possible to concentrate and recover NO to a high concentration from a mixed gas containing a low concentration of NO. Conventionally, NO has only been disposed of or made harmless9, but the present invention makes it possible to recover it as highly concentrated NO, making it possible to use this NO as a chemical raw material9 to produce, for example, nitrous acid and nitric acid. Become.

実施例1 塩化鉄(It)・4.59水和物は、関東化学株式会社
製、特級試薬をそのまま使用した。活性炭は。
Example 1 Iron chloride (It) 4.59 hydrate was a special grade reagent manufactured by Kanto Kagaku Co., Ltd., and was used as it was. Activated carbon.

呉羽化学工業株式会社製、BAC,G−7ORを約20
0°Cで5時間、  5mrrJ(g以下の減圧処理を
ほどこした後に使用した。水は蒸留水を使用した。
Manufactured by Kureha Chemical Industry Co., Ltd., BAC, G-7OR, approximately 20
It was used after being subjected to a vacuum treatment of 5 mrrJ (g or less) for 5 hours at 0°C. Distilled water was used.

11000ppのNOを含む窒素ガスは、高千穂化学工
業株式会社製のボンベガスをそのまま使用した。
As the nitrogen gas containing 11,000 pp of NO, a cylinder gas manufactured by Takachiho Chemical Industry Co., Ltd. was used as it was.

’!、 ス200 cm3の2ツロナス型フラスコ中に
上述の活性炭Log、塩化鉄・4.59水和物1.04
g (5mmol )および蒸留水500m3を加え、
窒素雰囲気に置換後、3時間磁気攪拌子を用いて撹拌す
る。この活性炭と塩化鉄(n)水溶液の混合物を80°
C減圧下に置くことにより、溶媒である水を留去し、吸
着剤を調製した。この吸着剤を用いて以下のように吸着
実験を行なった。まず内径11=のガラス製のカラムに
吸着剤をいれ、閉鎖循環系反応装置に設置し、系内を脱
気した後常温常圧で11000ppのNOを含む窒素ガ
ス6dm3を導入した。このガスをl、 5 dm3・
m1n−’の速度で装置内を循環させ、カラム内の吸着
剤と接触させた。
'! , In a 200 cm3 two-turon type flask, the above activated carbon Log, iron chloride 4.59 hydrate 1.04
g (5 mmol) and distilled water 500 m3,
After replacing the atmosphere with nitrogen, the mixture is stirred using a magnetic stirrer for 3 hours. This mixture of activated carbon and iron chloride (n) aqueous solution was heated at 80°
By placing the mixture under reduced pressure, water as a solvent was distilled off to prepare an adsorbent. Adsorption experiments were conducted using this adsorbent as follows. First, an adsorbent was placed in a glass column with an inner diameter of 11, which was placed in a closed circulation reactor, and after the system was degassed, 6 dm3 of nitrogen gas containing 11,000 pp of NO was introduced at room temperature and normal pressure. This gas is 1, 5 dm3・
It was circulated through the apparatus at a speed of m1n-' and brought into contact with the adsorbent in the column.

Noの濃度は試料ガスを23.8 cm3適宜光路長1
001&の石英セルにサンプリングし226.5nmの
吸光度により測定し、継時変化を観察した。その結果、
試料ガスとの接触開始後35分で仕込みのNOのほぼ全
量(100%)を吸着して平衡に達し、その後も劣化は
観察されなかった。この後ガスの循環を一旦停止し、マ
ントルヒーターで。
The concentration of No. is 23.8 cm3 and the optical path length is 1.
Samples were taken in a 001& quartz cell, and absorbance was measured at 226.5 nm to observe changes over time. the result,
Thirty-five minutes after the start of contact with the sample gas, almost the entire amount (100%) of the charged NO was adsorbed and equilibrium was reached, and no deterioration was observed thereafter. After this, stop the gas circulation and use the mantle heater.

NOを吸着した吸着剤の温度を120’Cに加温して再
びガスを循環させたところ、吸着したNoの28チを1
5分で脱着した。
When the temperature of the adsorbent that had adsorbed NO was heated to 120'C and the gas was circulated again, 28 of the adsorbed No.
It took 5 minutes to put on and take off.

実施例2 硫酸鉄(n)・7水和物(小宗化学薬品株式会社製特級
試薬)1.39g(5mmol)を加え、さらに溶媒と
して水500m3を加え、このあと実施例1と同様の方
法で吸着剤を調製し実施例1と同様に吸着実験を行なっ
たところ、吸着実験開始後15分で仕込みのNOに対し
て84%を吸着したが。
Example 2 1.39 g (5 mmol) of iron sulfate (n) heptahydrate (special grade reagent manufactured by Koso Chemical Co., Ltd.) was added, and further 500 m3 of water was added as a solvent, followed by the same method as in Example 1. When an adsorbent was prepared and an adsorption experiment was conducted in the same manner as in Example 1, 84% of the NO charged was adsorbed 15 minutes after the start of the adsorption experiment.

その後吸着剤の劣化が起こり、吸着したNOの気相への
再放出が観察された。
Deterioration of the adsorbent then occurred and re-release of adsorbed NO into the gas phase was observed.

実施例3 担持する塩化鉄(n)の量を4.18g(20mmol
)に増加させ、実施例1と同じ方法で吸着剤を調製し、
実施例1と同様に吸着実験を行なったところ。
Example 3 The amount of iron chloride (n) supported was 4.18 g (20 mmol
), the adsorbent was prepared in the same manner as in Example 1,
An adsorption experiment was conducted in the same manner as in Example 1.

35分で仕込みのNoをほぼ100チ吸着して平衡に達
した。
Approximately 100 units of No. were adsorbed in 35 minutes and equilibrium was reached.

実施例4 活性炭Logに塩化鉄(n)・4.59水和物656g
 (31,3mmol)を加え、溶媒としてエタノール
(甘糟化学産業株式会社製)500m3をさらに加えて
フラスコ内を窒素雰囲気にし、3時間磁気攪拌子で攪拌
した後、50°Cで12時間溶媒を減圧留去して吸着剤
を調製した。この吸着剤を用いて実施例1と同様に吸着
実験を行なったところ、55分で仕込みのNOの70俤
を吸着して平衡に達した・ 実施例5 10gの活性炭に、塩化鉄(Ill)・6水和物1.3
5g(5mmol、柳島製薬株式会社製1級試薬)を加
え、溶媒として水を加えて空気下で3時間攪拌混合の後
減圧下80°Cで溶媒を留去し、吸着剤を調製した。こ
の吸着剤を用いて実施例1と同様の方法で吸着実験を行
なったところ、試料ガスとの接触開始後15分で仕込み
のNOの95チを吸着して平衡に達した。
Example 4 656 g of iron chloride (n) 4.59 hydrate in activated carbon Log
(31.3 mmol) was added, and 500 m3 of ethanol (manufactured by Kanaka Kagaku Sangyo Co., Ltd.) was added as a solvent to create a nitrogen atmosphere in the flask. After stirring with a magnetic stirrer for 3 hours, the solvent was depressurized at 50°C for 12 hours. The adsorbent was prepared by distillation. When an adsorption experiment was conducted using this adsorbent in the same manner as in Example 1, it adsorbed 70 tons of charged NO in 55 minutes and reached equilibrium.Example 5 Iron chloride (Ill) was added to 10 g of activated carbon.・Hexahydrate 1.3
5 g (5 mmol, first class reagent manufactured by Yanagishima Pharmaceutical Co., Ltd.) was added, water was added as a solvent, and the mixture was stirred and mixed in air for 3 hours, and then the solvent was distilled off at 80° C. under reduced pressure to prepare an adsorbent. When an adsorption experiment was conducted using this adsorbent in the same manner as in Example 1, it adsorbed 95% of the charged NO and reached equilibrium 15 minutes after the start of contact with the sample gas.

実施例6 硫酸鉄(■)(小水化学薬品会社製特級試薬)t、40
g(鉄(III)にして5mmol)と活性炭10gを
用いて実施例1と同様に吸着実験を行なったところ、2
5分で仕込みのNOの73%を吸着して平衡に達した。
Example 6 Iron sulfate (■) (special grade reagent manufactured by Kosui Chemical Company) t, 40
When an adsorption experiment was conducted in the same manner as in Example 1 using 10 g of activated carbon and 5 mmol of iron (III), 2
In 5 minutes, 73% of the charged NO was adsorbed and equilibrium was reached.

比較例1 活性炭10gにエタノール50 cm3を加え、3時間
攪拌した後に50’Cで12時間溶媒を減圧留去して得
た活性炭について、実施例1と同じ方法で吸着実験を行
なった。その結果、試料ガスとの接触開始後25分で仕
込みのNOに対して15%。
Comparative Example 1 An adsorption experiment was conducted in the same manner as in Example 1 on activated carbon obtained by adding 50 cm3 of ethanol to 10 g of activated carbon, stirring for 3 hours, and then distilling the solvent off under reduced pressure at 50'C for 12 hours. As a result, 25 minutes after the start of contact with the sample gas, the NO was 15% compared to the charged NO.

90分で37チと、実施例1〜6いずれの系において調
製した吸着剤よりも、格段に低い吸着活性を示した。
The adsorption activity was 37 in 90 minutes, which was much lower than that of the adsorbents prepared in any of the systems of Examples 1 to 6.

Claims (1)

【特許請求の範囲】 1)活性炭と鉄塩とを溶媒中で混合し、しかる後に溶媒
を除去し乾燥することにより製造される一酸化窒素の吸
着剤。 2)1)項による吸着剤を用いて、混合ガスから一酸化
窒素を分離する方法。 3)1)項における溶媒が水である一酸化窒素の吸着剤
。 4)1)項における鉄塩が2価の鉄である場合の一酸化
窒素の吸着剤。 5)1)項における鉄塩が3価の鉄である場合の一酸化
窒素の吸着剤。 6)1)項における溶媒が炭素数1〜6のアルコールで
ある一酸化窒素の吸着剤。 7)1)項における溶媒が炭素数2〜8のシアノ化炭化
水素である一酸化窒素の吸着剤。 8)1)項における溶媒が炭素数1〜8のケトンである
一酸化窒素の吸着剤。
[Scope of Claims] 1) A nitric oxide adsorbent produced by mixing activated carbon and iron salt in a solvent, then removing the solvent and drying. 2) A method of separating nitrogen monoxide from a mixed gas using an adsorbent according to item 1). 3) An adsorbent for nitric oxide in which the solvent in item 1) is water. 4) An adsorbent for nitrogen monoxide when the iron salt in item 1) is divalent iron. 5) An adsorbent for nitrogen monoxide when the iron salt in item 1) is trivalent iron. 6) An adsorbent for nitrogen monoxide in which the solvent in item 1) is an alcohol having 1 to 6 carbon atoms. 7) An adsorbent for nitrogen monoxide in which the solvent in item 1) is a cyanated hydrocarbon having 2 to 8 carbon atoms. 8) An adsorbent for nitrogen monoxide in which the solvent in item 1) is a ketone having 1 to 8 carbon atoms.
JP62036353A 1987-02-19 1987-02-19 Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide Pending JPS63205140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62036353A JPS63205140A (en) 1987-02-19 1987-02-19 Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62036353A JPS63205140A (en) 1987-02-19 1987-02-19 Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide

Publications (1)

Publication Number Publication Date
JPS63205140A true JPS63205140A (en) 1988-08-24

Family

ID=12467472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036353A Pending JPS63205140A (en) 1987-02-19 1987-02-19 Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide

Country Status (1)

Country Link
JP (1) JPS63205140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434142C (en) * 2006-05-18 2008-11-19 上海交通大学 Process for realizing medium temperature dry-method direct denitration of flue gas by using ethanol
CN103521183A (en) * 2013-10-19 2014-01-22 山东大学 Adsorbent for treating acrylonitrile waste water as well as preparation method and application thereof
JP2018525208A (en) * 2015-07-02 2018-09-06 立維 黄 Nitrogen oxide removing method and nitrogen oxide removing apparatus
JP2020028831A (en) * 2018-08-21 2020-02-27 株式会社フジタ Manufacturing method of metal carrying carbide, and carbide manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434142C (en) * 2006-05-18 2008-11-19 上海交通大学 Process for realizing medium temperature dry-method direct denitration of flue gas by using ethanol
CN103521183A (en) * 2013-10-19 2014-01-22 山东大学 Adsorbent for treating acrylonitrile waste water as well as preparation method and application thereof
JP2018525208A (en) * 2015-07-02 2018-09-06 立維 黄 Nitrogen oxide removing method and nitrogen oxide removing apparatus
JP2020028831A (en) * 2018-08-21 2020-02-27 株式会社フジタ Manufacturing method of metal carrying carbide, and carbide manufacturing device

Similar Documents

Publication Publication Date Title
US4587114A (en) Method for separating carbon dioxide from mixed gas
US4708853A (en) Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams
US4210628A (en) Removal of nitrogen oxides
JP3411316B2 (en) Nitrogen adsorption and desorption composition and method for separating nitrogen
JPS641165B2 (en)
CN107519940B (en) Catalyst for removing arsenic and mercury in yellow phosphorus tail gas and preparation method thereof
CN115709056A (en) Regeneration method of waste activated carbon containing vanadium pentoxide
JPH0881210A (en) Carbon material having high specific surface area and its production
CN111229167A (en) Thiosemicarbazide modified magnetic graphene oxide adsorbent and preparation method and application thereof
EP0145539A2 (en) Mercury adsorbent carbons and carbon molecular sieves
US4018704A (en) Method for desorption of methyl bromide
JPS63205140A (en) Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide
CN113477245A (en) Metal or metal ion modified C-based ozone activation catalyst and preparation method and application thereof
US4259304A (en) Activation of coal
US4142874A (en) Separating gaseous nitrogen oxides from other gases by paramagnetic separation in a liquid media
US3632314A (en) Regeneration of sulfuric acid laden activated carbon
US3667908A (en) Removal and recovery of sulfur oxides from gases
JPH0232040A (en) Production of terephthalic acid
JPS6257648A (en) Adsorbent for nitrogen monoxide and separating and removing method
CN85102099A (en) The improvement oxidation catalyst
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
SU827132A1 (en) Method of cleaning oxygen-containing gases
CN114931930B (en) Ammonia adsorption oxidation material and application thereof
JPS6253223B2 (en)
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite