JP7090585B2 - Boil-off gas supply / recovery device and boil-off gas supply / recovery method - Google Patents

Boil-off gas supply / recovery device and boil-off gas supply / recovery method Download PDF

Info

Publication number
JP7090585B2
JP7090585B2 JP2019136365A JP2019136365A JP7090585B2 JP 7090585 B2 JP7090585 B2 JP 7090585B2 JP 2019136365 A JP2019136365 A JP 2019136365A JP 2019136365 A JP2019136365 A JP 2019136365A JP 7090585 B2 JP7090585 B2 JP 7090585B2
Authority
JP
Japan
Prior art keywords
lubricating oil
boil
gas
adsorption
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019136365A
Other languages
Japanese (ja)
Other versions
JP2021021403A (en
Inventor
直樹 八田
裕太郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Machinery Co Ltd
Original Assignee
Mitsui E&S Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Machinery Co Ltd filed Critical Mitsui E&S Machinery Co Ltd
Priority to JP2019136365A priority Critical patent/JP7090585B2/en
Publication of JP2021021403A publication Critical patent/JP2021021403A/en
Application granted granted Critical
Publication of JP7090585B2 publication Critical patent/JP7090585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液化ガスを貯留するタンクから気化した液化ガスのボイルオフガスの一部を所定の装置に供給しながら、ボイルオフガスの一部を液化してタンクに回収するボイルオフガス供給・回収装置及びボイルオフガス供給・回収方法に関する。 The present invention is a boil-off gas supply / recovery device that liquefies a part of the boil-off gas and recovers it to the tank while supplying a part of the boil-off gas of the liquefied gas vaporized from the tank for storing the liquefied gas to a predetermined device. Boil-off gas supply / recovery method.

液化ガスを貯留するタンクから気化した液化ガスのボイルオフガスを、例えば内燃機関の燃料として用いることが行われている。このとき内燃機関が要求する燃料の供給圧力になるように、内燃機関に供給されるボイルオフガスは、事前に圧縮機により加圧される場合が多い。内燃機関としては、例えば、船舶においては、エネルギー効率が一般に高く、多様な燃料が使用できるディーゼルエンジンが用いられることが多い。特に大型の船舶においては、エネルギー効率が特に高く、低速での出力が可能であり、プロペラに直結して駆動することができる、2ストロークサイクルの低速ディーゼルエンジンが多く用いられる。 Boil-off gas of liquefied gas vaporized from a tank for storing liquefied gas is used, for example, as fuel for an internal combustion engine. At this time, the boil-off gas supplied to the internal combustion engine is often pressurized in advance by the compressor so that the fuel supply pressure required by the internal combustion engine is reached. As the internal combustion engine, for example, in a ship, a diesel engine having high energy efficiency and being able to use various fuels is often used. Especially in large ships, two-stroke cycle low-speed diesel engines are often used because they are particularly energy efficient, can output at low speeds, and can be driven by being directly connected to a propeller.

高いエネルギー効率が要求される船舶等に用いる2ストロークサイクルの低速ディーゼルエンジンでは、エンジンのシリンダ内に燃料として供給されるボイルオフガスの圧力は、例えば、30MPa以上の高圧に加圧することが要求される。このため、ボイルオフガスの加圧のためには、要求される高圧に適合し得る形式の圧縮機が用いられる。その際、ボイルオフガスを加圧する可動部における潤滑特性の向上と、可動部におけるボイルオフガスのリーク量の低減の点から、一般に、潤滑油を圧縮機の可動部に供給しながらボイルオフガスの加圧を行う場合が多い。この場合、加圧されたボイルオフガスには潤滑油が混入し易い。これは、メタンを主成分とする天然ガスのボイルオフガスが、圧縮機による加圧に伴い、潤滑油を相分離する低温の気体状態から、昇温された高圧の超臨界流体状態に変化することによって、潤滑油を容易に溶解し得る性状になるためである。 In a two-stroke cycle low-speed diesel engine used for ships and the like that require high energy efficiency, the pressure of the boil-off gas supplied as fuel in the cylinder of the engine is required to be pressurized to a high pressure of, for example, 30 MPa or more. .. Therefore, for pressurizing the boil-off gas, a compressor of a type that can meet the required high pressure is used. At that time, from the viewpoint of improving the lubrication characteristics of the moving part that pressurizes the boil-off gas and reducing the leakage amount of the boil-off gas in the moving part, generally, the boil-off gas is pressurized while supplying the lubricating oil to the moving part of the compressor. Is often done. In this case, lubricating oil is likely to be mixed in the pressurized boil-off gas. This is because the boil-off gas, which is a natural gas containing methane as the main component, changes from a low-temperature gas state in which the lubricating oil is phase-separated to a high-pressure supercritical fluid state in which the temperature is raised as the compressor pressurizes. This is because the lubricating oil has a property of being easily dissolved.

一般に、超臨界流体は、高い物質の溶解性と拡散性を併せ持つことが知られており、こうした超臨界流体の性質は、例えば、超臨界COによるコーヒー豆中のカフェインの抽出など、産業界で広く利用されている。臨界温度および臨界圧力がそれぞれ約-83℃および約4.6MPaの非極性有機物であるメタンも、該臨界温度および臨界圧力を超える超臨界状態においては、一般に非極性ないし低極性の有機物である潤滑油をよく溶解し、均一化する。このため、超臨界メタン中においては、混入した潤滑油は、集塵的な分離操作によって分離採取できるような「液滴」としては残らない。また、同様に臨界状態になり易く非極性のエタン(臨界温度約-32℃、臨界圧力約4.9MPa)やエチレン(臨界温度約、約-9℃、約5.0MPa)も、圧縮機による加圧によって臨界近傍ないし超臨界状態に変化し、このため潤滑油を溶解し易い。これらの成分の混合物である天然ガスは、その混合組成に対応した臨界温度・臨界圧力を超える超臨界状態においては、互いに混和しながら潤滑油をよく溶解し、全体として一様な超臨界流体のように振舞う。
しかし、このような潤滑油が混入したボイルオフガスを再液化のために冷却する場合は、潤滑油がボイルオフガスから相分離して粘稠化あるいは固化するため、冷却装置として用いる熱交換器の内壁に潤滑油が付着し易い。この付着により、配管内壁や機器内部は汚染され、熱交換器の熱交換能力が低下する。また、熱交換器から液化ガスのタンクに至る再液化・回収ラインの配管および弁などが、粘稠化あるいは固化した潤滑油によって閉塞するおそれも生じる。更に、タンク内の液化ガスも、回収されたボイルオフガス中に残存する潤滑油によって汚染され得る。
In general, supercritical fluids are known to have both high solubility and diffusivity of substances, and the properties of these supercritical fluids include, for example, the extraction of caffeine in coffee beans by supercritical CO 2 . Widely used in the world. Methane, which is a non-polar organic substance with a critical temperature and critical pressure of about -83 ° C and about 4.6 MPa, respectively, is also generally a non-polar or low-polarity organic substance in a supercritical state exceeding the critical temperature and critical pressure. Dissolve the oil well and homogenize it. Therefore, in supercritical methane, the mixed lubricating oil does not remain as "droplets" that can be separated and collected by a dust-collecting separation operation. Similarly, non-polar ethane (critical temperature of about −32 ° C., critical pressure of about 4.9 MPa) and ethylene (critical temperature of about -9 ° C., about 5.0 MPa), which are likely to be in a critical state, are also produced by the compressor. Pressurization changes the state to near critical or supercritical, which makes it easier to dissolve the lubricating oil. Natural gas, which is a mixture of these components, dissolves lubricating oil well while mixing with each other in a supercritical state exceeding the critical temperature and critical pressure corresponding to the mixed composition, and is a uniform supercritical fluid as a whole. Behave like.
However, when the boil-off gas mixed with such lubricating oil is cooled for reliquefaction, the lubricating oil phase-separates from the boil-off gas and becomes thickened or solidified, so that the inner wall of the heat exchanger used as a cooling device is used. Lubricating oil easily adheres to. Due to this adhesion, the inner wall of the pipe and the inside of the equipment are contaminated, and the heat exchange capacity of the heat exchanger is reduced. In addition, the piping and valves of the reliquefaction / recovery line from the heat exchanger to the liquefied gas tank may be blocked by the thickened or solidified lubricating oil. Further, the liquefied gas in the tank can also be contaminated with the lubricating oil remaining in the recovered boil-off gas.

このような背景に対して、圧縮機で加圧されたボイルオフガスを、内燃機関・発電機の等の主供給先の装置に供給する際、供給ライン上で、ボイルオフガスを、ボイルオフガス内に混入する潤滑油を吸着させるための「吸着フィルター」、好ましくは、活性炭フィルターに通過させて、ボイルオフガスから潤滑油を除去するボイルオフガス回収システムに関する技術が知られている(特許文献1)。 Against this background, when the boil-off gas pressurized by the compressor is supplied to the main supply destination device such as an internal combustion engine or a generator, the boil-off gas is introduced into the boil-off gas on the supply line. A technique relating to a "adsorption filter" for adsorbing a mixed lubricating oil, preferably a boil-off gas recovery system for removing the lubricating oil from the boil-off gas by passing it through an activated carbon filter is known (Patent Document 1).

特開2018-128039号公報Japanese Unexamined Patent Publication No. 2018-128039

上記技術によれば、熱交換器の熱交換性能の低下を抑制することができる。しかし、上記技術では、圧縮器で加圧されたボイルオフガスの全量の中に含まれる潤滑油の全量を「吸着フィルター」で除去した後に、その大部分が内燃機関あるいは発電機用の燃料に用いられ、残りのボイルオフガスの一部が再液化によってタンクに回収される構成である。このため、「吸着フィルター」で吸着除去する必要のない、内燃機関・発電機の等の主供給先の装置に供給するボイルオフガス中の潤滑油も除去するので、「吸着フィルター」の吸着特性は、短時間に低下し易い。このため、「吸着フィルター」の取替え頻度は多くなり、ボイルオフガス回収システムの維持管理が煩雑になり易い。なお、「吸着フィルター」は、好ましくは活性炭フィルターである。 According to the above technique, it is possible to suppress deterioration of the heat exchange performance of the heat exchanger. However, in the above technology, after removing the entire amount of lubricating oil contained in the total amount of boil-off gas pressurized by the compressor with an "adsorption filter", most of it is used as fuel for internal combustion engines or generators. Then, a part of the remaining boil-off gas is recovered in the tank by reliquefaction. For this reason, the lubricating oil in the boil-off gas supplied to the main supply destination equipment such as internal combustion engines and generators, which does not need to be adsorbed and removed by the "adsorption filter", is also removed, so the adsorption characteristics of the "adsorption filter" are , Easy to drop in a short time. Therefore, the frequency of replacement of the "adsorption filter" increases, and the maintenance of the boil-off gas recovery system tends to be complicated. The "adsorption filter" is preferably an activated carbon filter.

また、上記技術では、具体的に、「吸着フィルター」を通過した後のボイルオフガスを、活性炭などの吸着剤が含まれない「セパレータ」に通し、「セパレータ」の分離操作により分離されて溜まる潤滑油の量を監視する監視手段が設けられる(特許文献1の明細書の段落0056~0059参照)。この監視手段は、分離操作により分離されて溜まる潤滑油の量、すなわち、潤滑油の蓄積量を確認するだけであり、現在流れているボイルオフガスにどの程度の濃度で潤滑油が含まれているか否かを監視することはできない。しかも、前述のように、圧縮機で加圧された後のボイルオフガスは超臨界状態にあり、混入した潤滑油は、超臨界状態のボイルオフガス中に均一に溶解してしまうため、上記のような分離操作では、潤滑油を分離採取することはできない。このため、上記技術では、「吸着フィルター」の吸着特性や、吸着の進行に伴う現在の吸着特性の低下を確実に監視することはできず、「吸着フィルター」の取替え時期を判断することも困難である。 Further, in the above technique, specifically, the boil-off gas after passing through the "adsorption filter" is passed through a "separator" that does not contain an adsorbent such as activated carbon, and lubrication that is separated and accumulated by the separation operation of the "separator". A monitoring means for monitoring the amount of oil is provided (see paragraphs 0056 to 0059 of the specification of Patent Document 1). This monitoring means only confirms the amount of lubricating oil separated and accumulated by the separation operation, that is, the accumulated amount of lubricating oil, and what concentration of lubricating oil is contained in the boil-off gas currently flowing. It is not possible to monitor whether or not. Moreover, as described above, the boil-off gas after being pressurized by the compressor is in a supercritical state, and the mixed lubricating oil is uniformly dissolved in the boil-off gas in the supercritical state, as described above. Lubricating oil cannot be separated and collected by a proper separation operation. Therefore, with the above technique, it is not possible to reliably monitor the adsorption characteristics of the "adsorption filter" and the deterioration of the current adsorption characteristics as the adsorption progresses, and it is also difficult to determine when to replace the "adsorption filter". Is.

そこで、本発明は、高圧に加圧されたボイルオフガスから潤滑油を吸着除去する吸着除去器内の吸着剤を更新する頻度を抑え、潤滑油の吸着の進行に伴う吸着除去器内の吸着剤の吸着特性の低下を確実に監視し、低下した吸着剤の吸着特性を復活させる処理を適時・適切に施すことにより、装置の維持管理を容易に行うことができるボイルオフガス供給・回収装置及びボイルオフガス供給・回収方法を提供することを目的とする。 Therefore, the present invention suppresses the frequency of renewing the adsorbent in the adsorbent remover that adsorbs and removes the lubricating oil from the boil-off gas pressurized to high pressure, and the adsorbent in the adsorbent remover as the adsorption of the lubricating oil progresses. Boil-off gas supply / recovery device and boil-off that can easily maintain and manage the device by reliably monitoring the deterioration of the adsorption characteristics of the adsorbent and performing the treatment to restore the adsorption characteristics of the deteriorated adsorbent in a timely and appropriate manner. The purpose is to provide a gas supply / recovery method.

本発明の一態様は、液化ガスを貯蔵するタンクから気化した液化ガスのボイルオフガスの一部を供給先の装置に供給しながら、前記ボイルオフガスの一部を液化して回収するボイルオフガス供給・回収装置である。当該ボイルオフガス供給・回収装置は、
液化ガスを貯蔵するタンクと、
前記タンク内の前記液化ガスから気化したボイルオフガスを供給先の装置に導くボイルオフガス供給ラインと、
前記ボイルオフガス供給ライン内に設けられ、前記ボイルオフガスを加熱する熱交換器と、
前記ボイルオフガス供給ライン内に設けられ、前記熱交換器で加熱された前記ボイルオフガスを、潤滑油を供給しながら加圧して超臨界状態の流体にする圧縮機と、
前記圧縮機から加圧吐出された前記ボイルオフガスの一部を前記ボイルオフガス供給ラインから分岐する分岐部と、
前記分岐されたボイルオフガスを前記熱交換器で冷却し、前記ボイルオフガスの一部を再液化して前記タンクに回収するための再液化回収ラインと、
前記再液化回収ライン内の、前記分岐部と前記熱交換器の間に設けられ、前記加圧後の超臨界状態の前記ボイルオフガスに溶解して前記ボイルオフガス中に混入した前記潤滑油を該ボイルオフガスから除去する潤滑油除去部と、を備える。
前記潤滑油除去部は、前記再液化回収ラインにある前記ボイルオフガス中に混入した前記潤滑油を吸着して前記潤滑油を該ボイルオフガスから分離除去する吸着剤を内包する第1潤滑油吸着除去器を含み、
前記吸着剤は、2~10nmの細孔径分布範囲における累積細孔容積が、該吸着剤1g当たり0.1cm 以上である、活性炭又はメソポーラスカーボンである、ことが好ましい。
One aspect of the present invention is to supply a boil-off gas that liquefies and recovers a part of the boil-off gas while supplying a part of the boil-off gas of the liquefied gas vaporized from the tank for storing the liquefied gas to the supply destination device. It is a recovery device. The boil-off gas supply / recovery device is
A tank for storing liquefied gas and
A boil-off gas supply line that guides the boil-off gas vaporized from the liquefied gas in the tank to the supply destination device, and
A heat exchanger provided in the boil-off gas supply line to heat the boil-off gas,
A compressor provided in the boil-off gas supply line and pressurizing the boil-off gas heated by the heat exchanger while supplying lubricating oil to make a fluid in a supercritical state .
A branch portion that branches a part of the boil-off gas pressure-discharged from the compressor from the boil-off gas supply line, and
A reliquefaction recovery line for cooling the branched boil-off gas with the heat exchanger, reliquefying a part of the boil-off gas, and recovering the boil-off gas in the tank.
The lubricating oil provided between the branch portion and the heat exchanger in the reliquefaction recovery line , dissolved in the boil-off gas in a supercritical state after pressurization, and mixed in the boil-off gas is used. It is provided with a lubricating oil removing unit for removing from boil-off gas.
The lubricating oil removing unit is a first lubricating oil adsorbent removing agent containing an adsorbent that adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line and separates and removes the lubricating oil from the boil-off gas. Including the vessel
The adsorbent is preferably activated carbon or mesoporous carbon having a cumulative pore volume of 0.1 cm 3 or more per 1 g of the adsorbent in the pore diameter distribution range of 2 to 10 nm.

前記再液化回収ライン内の、前記第1潤滑油吸着除去器と前記熱交換器の間の前記ボイルオフガス中に残留する前記潤滑油の濃度を評価する濃度評価手段を含む残留濃度評価部を備える、ことが好ましい。 A residual concentration evaluation unit including a concentration evaluation means for evaluating the concentration of the lubricating oil remaining in the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger in the reliquefaction recovery line is provided. , Is preferable.

前記残留濃度評価部は、前記再液化回収ライン内の前記第1潤滑油吸着除去器と前記熱交換器との間にある前記ボイルオフガスの一部をサンプリングするために、前記再液化回収ライン内の前記第1潤滑油吸着除去器と前記熱交換器との間から分岐する吸着除去後サンプリングラインを備え、
前記残留濃度評価部は、前記第1潤滑油吸着除去器と前記熱交換器との間にある前記ボイルオフガス中に残留する前記潤滑油の濃度を評価する、ことが好ましい。
The residual concentration evaluation unit is in the reliquefaction recovery line in order to sample a part of the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger in the reliquefaction recovery line. A sampling line after adsorption removal that branches from between the first lubricating oil adsorption remover and the heat exchanger is provided.
It is preferable that the residual concentration evaluation unit evaluates the concentration of the lubricating oil remaining in the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger.

前記再液化回収ライン内の、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中の前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備える、ことも好ましい。 A pre-adsorption / removal concentration evaluation unit including a concentration evaluation means for evaluating the concentration of the lubricating oil in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in the reliquefaction recovery line is provided. , Is also preferable.

前記吸着除去前濃度評価部は、前記再液化回収ライン内の前記分岐部と前記第1潤滑油吸着除去器との間にある前記ボイルオフガスの一部をサンプリングするために、前記分岐部と前記第1潤滑油吸着除去器との間から分岐する吸着除去前サンプリングラインを備え、
前記吸着除去前濃度評価部は、前記ボイルオフガス中の前記吸着除去前の前記潤滑油の濃度を評価する、ことが好ましい。
The pre-adsorption / removal concentration evaluation unit uses the branch portion and the branch portion to sample a part of the boil-off gas between the branch portion in the reliquefaction recovery line and the first lubricating oil adsorption / remover. Equipped with a pre-adsorption sampling line that branches off from the first lubricating oil adsorption remover.
It is preferable that the concentration evaluation unit before adsorption removal evaluates the concentration of the lubricating oil in the boil-off gas before removal of adsorption.

前記再液化回収ライン内の、前記残留濃度評価部の他に、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中に混入する前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備え、
前記残留濃度評価部と前記吸着除去前濃度評価部は、互いに同じ機材を共有する、ことが好ましい。
Concentration evaluation for evaluating the concentration of the lubricating oil mixed in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in addition to the residual concentration evaluation unit in the reliquefaction recovery line. Equipped with a concentration evaluation unit before adsorption removal including means,
It is preferable that the residual concentration evaluation unit and the concentration evaluation unit before adsorption removal share the same equipment with each other.

共有する前記機材は、前記潤滑油の濃度を評価する濃度評価手段を含む、ことが好ましい。 It is preferable that the equipment to be shared includes a concentration evaluation means for evaluating the concentration of the lubricating oil.

前記再液化回収ライン内の、前記残留濃度評価部の他に、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中に混入する前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備え、
前記吸着除去前濃度評価部は、前記再液化回収ライン内の前記分岐部と前記第1潤滑油吸着除去器との間にある前記ボイルオフガスの一部をサンプリングするために、前記分岐部と前記第1潤滑油吸着除去器との間から分岐する吸着除去前サンプリングラインを備え、
前記吸着除去前濃度評価部は、前記吸着除去前サンプリングラインから分岐したボイルオフガス中の前記吸着除去前の前記潤滑油の濃度を評価し、
前記吸着除去後サンプリングラインと前記吸着除去前サンプリングラインのそれぞれは、共通の濃度評価手段に接続される共通サンプリングラインと接続されるように構成され、
前記吸着除去後サンプリングラインと前記吸着除去前サンプリングラインのそれぞれが前記共通サンプリングラインとに接続する接続部には、前記吸着除去後サンプリングラインと接続するか、前記吸着除去前サンプリングラインと接続するかを切り替える切替弁が設けられる、ことが好ましい。
Concentration evaluation for evaluating the concentration of the lubricating oil mixed in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in addition to the residual concentration evaluation unit in the reliquefaction recovery line. Equipped with a concentration evaluation unit before adsorption removal including means,
The pre-adsorption / removal concentration evaluation unit uses the branch portion and the branch portion to sample a part of the boil-off gas between the branch portion in the reliquefaction recovery line and the first lubricating oil adsorption / remover. Equipped with a pre-adsorption sampling line that branches off from the first lubricating oil adsorption remover.
The pre-adsorption / removal concentration evaluation unit evaluates the concentration of the lubricating oil in the boil-off gas branched from the pre-adsorption / removal sampling line before the adsorption / removal.
Each of the sampling line after adsorption removal and the sampling line before adsorption removal is configured to be connected to a common sampling line connected to a common concentration evaluation means.
Whether the connection portion where the sampling line after adsorption removal and the sampling line before adsorption removal are connected to the common sampling line is connected to the sampling line after adsorption removal or the sampling line before adsorption removal. It is preferable that a switching valve for switching between the two is provided.

前記濃度評価手段は、
採取された所定量の前記ボイルオフガス中に含まれる前記潤滑油の全量を、所定の抽出溶媒に溶解させ、ボイルオフガスを前記潤滑油が溶解した前記抽出溶媒から分離する第1処理装置と、
前記抽出溶媒を蒸発させることにより、前記抽出溶媒中の溶解した前記潤滑油を抽出する第2処理装置と、
前記ボイルオフガスと前記抽出溶媒とを除去した前記潤滑油の量を測定する測定器と、を含む、ことが好ましい。
The concentration evaluation means is
A first treatment apparatus that dissolves the entire amount of the lubricating oil contained in the collected predetermined amount of the boil-off gas in a predetermined extraction solvent and separates the boil-off gas from the extraction solvent in which the lubricating oil is dissolved.
A second processing apparatus that extracts the dissolved lubricating oil in the extraction solvent by evaporating the extraction solvent.
It is preferable to include a measuring instrument for measuring the amount of the lubricating oil from which the boil-off gas and the extraction solvent have been removed.

前記第1処理装置による処理後、前記測定器による前記潤滑油の量の測定を妨害しない濃度評価用溶媒を所定量添加して、前記測定器による定量が可能な濃度域に前記潤滑油を調整する第3処理装置を備える、ことが好ましい。 After the treatment by the first processing apparatus, a predetermined amount of a concentration evaluation solvent that does not interfere with the measurement of the amount of the lubricating oil by the measuring instrument is added to adjust the lubricating oil to a concentration range that can be quantified by the measuring instrument. It is preferable to have a third processing apparatus.

前記濃度評価手段は、例えば、前記潤滑油を検出し定量し得る、赤外吸収分光装置、ガスクロマトグラフ装置、質量分析装置、及び前記潤滑油の質量の秤量器の内の少なくとも一つの測定機器を含む。 The concentration evaluation means includes, for example, at least one measuring device among an infrared absorption spectroscope, a gas chromatograph device, a mass spectrometer, and a mass weigher for the lubricating oil, which can detect and quantify the lubricating oil. include.

前記残留濃度評価部における前記濃度評価手段により評価した前記ボイルオフガスに残留した前記潤滑油の濃度の評価結果に基づいて、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部を備える、ことが好ましい。 Adsorption characteristic determination unit for determining the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent based on the evaluation result of the concentration of the lubricating oil remaining in the boil-off gas evaluated by the concentration evaluation means in the residual concentration evaluation unit. It is preferable to provide.

前記吸着除去前濃度評価部は、前記分岐部から分岐され、前記再液化回収ライン内を通る前記ボイルオフガスの積算流量を測定する再液化回収ライン流量計を備え、
前記吸着除去前濃度評価部により評価した前記潤滑油の吸着除去前濃度と、前記ボイルオフガスの積算流量の測定結果とから、前記再液化回収ライン内を通った前記潤滑油の積算量の情報を算出し、前記潤滑油の積算量の算出結果に基づいて、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部を備える、ことが好ましい。
The concentration evaluation unit before adsorption removal includes a reliquefaction recovery line flow meter that is branched from the branch portion and measures the integrated flow rate of the boil-off gas that passes through the reliquefaction recovery line.
From the pre-adsorption / removal concentration of the lubricating oil evaluated by the pre-adsorption / removal concentration evaluation unit and the measurement result of the integrated flow rate of the boil-off gas, information on the integrated amount of the lubricating oil that has passed through the reliquefaction recovery line is obtained. It is preferable to include an adsorption characteristic determination unit that calculates and determines the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent based on the calculation result of the integrated amount of the lubricating oil.

前記圧縮機に供給される前記潤滑油の供給量を測定する潤滑油量測定装置と、
前記ボイルオフガス供給ラインから前記再液化回収ラインに供給される前記ボイルオフガスの分配比率を評価する比率評価装置と、
前記潤滑油量測定装置による前記潤滑油の供給量の測定結果と、前記比率評価装置による前記分岐比率の評価結果とから、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部とを備える、ことも好ましい。
A lubricating oil amount measuring device for measuring the supply amount of the lubricating oil supplied to the compressor, and
A ratio evaluation device that evaluates the distribution ratio of the boil-off gas supplied from the boil-off gas supply line to the reliquefaction recovery line, and a ratio evaluation device.
From the measurement result of the supply amount of the lubricating oil by the lubricating oil amount measuring device and the evaluation result of the branching ratio by the ratio evaluation device, the adsorption characteristic determination for determining the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent. It is also preferable to have a unit.

前記第1潤滑油吸着除去器は、前記吸着剤の加熱により、前記吸着剤に吸着した前記潤滑油を外部に気化排気することにより前記吸着剤の吸着特性を復活させるために、前記吸着剤を加熱する加熱装置を備え、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記加熱装置による加熱により前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する、ことが好ましい。
The first lubricating oil adsorbent remover uses the adsorbent in order to restore the adsorption characteristics of the adsorbent by vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to the outside by heating the adsorbent. Equipped with a heating device to heat
When the adsorption characteristic determining unit determines that the adsorption characteristic has deteriorated, it is preferable that the lubricating oil adsorbed on the adsorbent is vaporized and exhausted by heating by the heating device to regenerate the adsorbent.

前記第1潤滑油吸着除去器は、前記吸着剤に吸着した前記潤滑油を外部に気化排気させることにより前記吸着剤の吸着特性を復活させるために、前記吸着剤の収納される空間内を減圧する減圧装置を備え、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記減圧装置による前記空間内の減圧により前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する、ことも好ましい。
The first lubricating oil adsorbent remover decompresses the space in which the adsorbent is stored in order to restore the adsorption characteristics of the adsorbent by vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to the outside. Equipped with a decompression device
When the adsorption characteristic determination unit determines that the adsorption characteristic has deteriorated, the lubricating oil adsorbed on the adsorbent is vaporized and exhausted by the decompression in the space by the decompression device to regenerate the adsorbent. Is also preferable.

前記第1潤滑油吸着除去器は、前記吸着剤を取替え可能に構成され、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記第1潤滑油吸着除去器が、吸着特性を有する新たな潤滑油吸着除去器に取替えられるか、または前記第1潤滑油吸着除去器に内包される前記吸着剤が、吸着特性を有する新たな吸着剤に取替えられる、ことが好ましい。
The first lubricating oil adsorbent remover is configured so that the adsorbent can be replaced.
When the adsorption characteristic determination unit determines that the adsorption characteristic has deteriorated, the first lubricating oil adsorption remover is replaced with a new lubricating oil adsorption remover having adsorption characteristics, or the first lubricating oil is removed. It is preferable that the adsorbent contained in the adsorbent remover is replaced with a new adsorbent having adsorption characteristics.

前記再液化回収ラインには、前記分岐部と前記第1潤滑油除去器との間、および前記第1潤滑油除去器と前記熱交換器との間に、前記ボイルオフガスの流れを遮断する遮断弁が設けられる、ことが好ましい。 In the reliquefaction recovery line, the flow of the boil-off gas is cut off between the branch portion and the first lubricating oil remover, and between the first lubricating oil remover and the heat exchanger. It is preferable that a valve is provided.

前記潤滑油除去部は、前記第1潤滑油吸着除去器の他に、前記再液化回収ラインにある前記ボイルオフガス中に混入した前記潤滑油を吸着して該ボイルオフガスから分離除去する吸着剤を内包する第2潤滑油吸着除去器を含み、
前記第1潤滑油吸着除去器と前記第2潤滑油吸着除去器は、前記再液化回収ラインに並列配置されている、ことが好ましい。
In addition to the first lubricating oil adsorption remover, the lubricating oil removing unit adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line and separates and removes the lubricating oil from the boil-off gas. Includes a second lubricating oil adsorption remover to be included
It is preferable that the first lubricating oil adsorption remover and the second lubricating oil adsorption remover are arranged in parallel with the reliquefaction recovery line.

前記再液化回収ラインには、前記ボイルオフガスを、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器のいずれか一方に流すための切替弁が、並列配置した前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の前後に1対設けられている、ことが好ましい。 In the reliquefaction recovery line, the first lubricating oil in which a switching valve for flowing the boil-off gas to either the first lubricating oil adsorption remover or the second lubricating oil adsorption remover is arranged in parallel. It is preferable that a pair is provided before and after the adsorption remover and the second lubricating oil adsorption remover.

前記切替弁により、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器のいずれか一方に前記ボイルオフガスを流し、他方には、前記ボイルオフガスを流すことなく、前記吸着剤に吸着した前記潤滑油を気化排気して、前記吸着剤を再生する処理を行うように制御する、ことが好ましい。 By the switching valve, the boil-off gas is flowed to either one of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover, and the other is adsorbed to the adsorbent without flowing the boil-off gas. It is preferable to control so as to vaporize and exhaust the lubricating oil to regenerate the adsorbent.

本発明の他の一態様は、ボイルオフガス供給・回収方法である。当該ボイルオフガス供給・回収方法は、
液化ガスを貯蔵するタンクから気化した液化ガスのボイルオフガスを熱交換器により加熱した後、ボイルオフガスの供給先の装置に供給するために、潤滑油を供給しながら圧縮機で加圧して超臨界状態の流体にするステップと、
加圧した前記ボイルオフガスの一部を前記装置に供給する供給ラインから分岐ラインに分岐させ、分岐した前記ボイルオフガスを、吸着剤を内包する第1潤滑油吸着除去器及び第2潤滑油吸着除去器が前記分岐ラインに並列に配列された潤滑油除去部に通過させることにより、超臨界状態の前記ボイルオフガスに溶解して前記ボイルオフガス中に混入した前記潤滑油を前記第1潤滑油吸着除去器または前記第2潤滑油吸着除去器により除去するステップであって、前記吸着剤は、2~10nmの細孔径分布範囲における累積細孔容積が、該吸着剤1g当たり0.1cm 以上である、活性炭又はメソポーラスカーボンである、ステップと、
前記潤滑油除去後の前記ボイルオフガスを前記熱交換器に通して冷却した後に再液化させて、前記タンク内に戻すステップと、を備え、
前記潤滑油除去部で前記潤滑油を前記ボイルオフガスから除去する際、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の内の一方に前記ボイルオフガスを流すことにより、前記ボイルオフガス中に混入した前記潤滑油を前記ボイルオフガスから除去し、かつ、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の内の他方には、前記ボイルオフガスを流すことなく、前記潤滑油除去部の前記潤滑油の吸着特性を復活させる処理を行う。
Another aspect of the present invention is a boil-off gas supply / recovery method. The boil-off gas supply / recovery method is
After heating the boil-off gas of the liquefied gas vaporized from the tank that stores the liquefied gas with a heat exchanger, pressurize it with a compressor while supplying lubricating oil to supply it to the device to which the boil-off gas is supplied. Steps to make the fluid in a critical state ,
A part of the pressurized boil-off gas is branched from the supply line supplied to the apparatus to a branch line, and the branched boil-off gas is removed by the first lubricating oil adsorption remover and the second lubricating oil adsorption remover containing an adsorbent. By passing the vessel through the lubricating oil removing section arranged in parallel with the branch line, the lubricating oil dissolved in the boil-off gas in the supercritical state and mixed in the boil-off gas is adsorbed and removed from the first lubricating oil. In the step of removing with a device or the second lubricating oil adsorbent remover, the adsorbent has a cumulative pore volume of 0.1 cm 3 or more per 1 g of the adsorbent in a pore diameter distribution range of 2 to 10 nm. , Activated carbon or mesoporous carbon, with steps ,
The boil-off gas after removing the lubricating oil is passed through the heat exchanger to be cooled, and then reliquefied and returned to the inside of the tank.
When the lubricating oil is removed from the boil-off gas by the lubricating oil removing unit, the boil-off is caused by flowing the boil-off gas through one of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover. The lubricating oil mixed in the gas is removed from the boil-off gas, and the boil-off gas is not flowed to the other of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover. A process is performed to restore the adsorption characteristics of the lubricating oil in the lubricating oil removing portion.

前記吸着剤による吸着特性を復活させる処理は、前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する処理、あるいは、新たな吸着剤に取替える処理である、ことが好ましい。 The treatment for restoring the adsorption characteristics of the adsorbent is preferably a treatment of vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to regenerate the adsorbent, or a treatment of replacing the lubricating oil with a new adsorbent.

前記潤滑油を気化排気して前記吸着剤を再生する処理は、前記潤滑油が吸着した前記吸着剤を加熱すること、及び前記吸着剤を配置した周囲環境を減圧すること、の少なくとも一方を含む、ことが好ましい。 The process of vaporizing and exhausting the lubricating oil to regenerate the adsorbent includes at least one of heating the adsorbent to which the lubricating oil is adsorbed and depressurizing the surrounding environment in which the adsorbent is placed. , Is preferred.

上述のボイルオフガス供給・回収装置及びボイルオフガス供給・回収方法によれば、高圧に加圧されたボイルオフガスから潤滑油を吸着除去する吸着除去器内の吸着剤を更新する頻度を抑え、潤滑油の吸着の進行に伴う吸着除去器内の吸着剤の吸着特性の低下を確実に監視し、低下した吸着剤の吸着特性を復活させる処理を適時・適切に施すことが可能になり、装置の維持管理を容易に行うことができる。 According to the above-mentioned boil-off gas supply / recovery device and boil-off gas supply / recovery method, the frequency of renewing the adsorbent in the adsorbent remover that adsorbs and removes the lubricating oil from the boil-off gas pressurized to high pressure is suppressed, and the lubricating oil is used. It is possible to reliably monitor the deterioration of the adsorption characteristics of the adsorbent in the adsorption remover as the adsorption progresses, and to perform the treatment to restore the reduced adsorption characteristics of the adsorbent in a timely and appropriate manner, and maintain the device. It can be easily managed.

一実施形態に係るボイルオフガス供給・回収装置A1の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A1 which concerns on one Embodiment. 一実施形態に係るボイルオフガス供給・回収装置A1における第1潤滑油吸着除去器の交換可能な構成の一例を示す図である。It is a figure which shows an example of the exchangeable structure of the 1st lubricating oil adsorption remover in the boil-off gas supply / recovery apparatus A1 which concerns on one Embodiment. 一実施形態に係るボイルオフガス供給・回収装置A1における残留濃度評価部の構成の一例を示す図である。It is a figure which shows an example of the structure of the residual concentration evaluation part in the boil-off gas supply / recovery apparatus A1 which concerns on one Embodiment. 一実施形態のボイルオフガス供給・回収装置A2の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A2 of one Embodiment. 一実施形態のボイルオフガス供給・回収装置A3の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A3 of one Embodiment. 一実施形態のボイルオフガス供給・回収装置A4の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A4 of one Embodiment. 一実施形態のボイルオフガス供給・回収装置A5の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A5 of one Embodiment. 一実施形態のボイルオフガス供給・回収装置A6の構成を示す図である。It is a figure which shows the structure of the boil-off gas supply / recovery apparatus A6 of one Embodiment.

以下、一実施形態に係るボイルオフガス供給・回収装置及びボイルオフガス供給・回収方法を図面に基づいて説明する。なお、以下説明する実施形態では、液化天然ガスを航行用燃料として用いる船舶(運搬する液化天然ガスを航行用燃料として用いるLNG船も含まれる)における内燃機関に適用する場合を例として説明するが、この他に、液化天然ガスの構成成分の各種液化ガス、ないしはそれらと同様に低い液化温度および低い臨界温度を持つ可燃性の液化ガス、例えば液化メタン、液化エタン、液化エチレン、液化一酸化炭素、液化水素等の液化ガス、およびこれらのいずれか同士の混合物の液化ガス等を運搬しながら、該液化ガスを航行用燃料として用いる内燃機関に適用できる。さらには、陸上施設における内燃機関、例えば、液化天然ガス等を発電用燃料として用いる火力発電所における内燃機関や、液化天然ガスの貯蔵基地等におけるボイルオフガス輸送のための昇圧機の駆動用発電設備で使用する内燃機関にも適用することができる。 Hereinafter, the boil-off gas supply / recovery device and the boil-off gas supply / recovery method according to the embodiment will be described with reference to the drawings. In the embodiment described below, a case where the application is applied to an internal combustion engine in a ship using liquefied natural gas as a navigation fuel (including an LNG ship using the liquefied natural gas to be carried as a navigation fuel) will be described as an example. In addition, various liquefied gases that are constituents of liquefied natural gas, or flammable liquefied gases with similar low liquefaction and low critical temperatures, such as liquefied methane, liquefied ethane, liquefied ethylene, liquefied carbon monoxide. It can be applied to an internal combustion engine that uses the liquefied gas as a navigation fuel while carrying a liquefied gas such as liquefied hydrogen and a liquefied gas of a mixture of any of these. Furthermore, internal combustion engines in onshore facilities, such as internal combustion engines in thermal power plants that use liquefied natural gas as fuel for power generation, and power generation equipment for driving boosters for boil-off gas transportation in liquefied natural gas storage bases, etc. It can also be applied to the internal combustion engine used in.

図1は、一実施形態に係るボイルオフガス供給・回収装置A1の構成を示す図である。
ボイルオフガス供給・回収装置A1は、液化ガスを貯蔵するタンクから気化した液化ガスのボイルオフガスの一部を供給先の装置、例えば、内燃機関に供給しながら、さらにボイルオフガスの一部を液化してタンクに回収する装置である。
ボイルオフガス供給・回収装置A1は、タンク1と、ボイルオフガス供給ライン2と、熱交換器3と、圧縮機4と、分岐部5と、再液化回収ライン6と、潤滑油除去部7と、を主に備える。
FIG. 1 is a diagram showing a configuration of a boil-off gas supply / recovery device A1 according to an embodiment.
The boil-off gas supply / recovery device A1 supplies a part of the boil-off gas of the liquefied gas vaporized from the tank for storing the liquefied gas to the supply destination device, for example, an internal combustion engine, and further liquefies a part of the boil-off gas. It is a device that collects gas in a tank.
The boil-off gas supply / recovery device A1 includes a tank 1, a boil-off gas supply line 2, a heat exchanger 3, a compressor 4, a branch section 5, a reliquefaction recovery line 6, a lubricating oil removing section 7, and the like. Mainly prepared for.

タンク1は、液化ガスを貯蔵する。対象となる液化ガスは、例えば液化天然ガスである。しかし、およそ-70℃程度以下の常圧時液化温度(沸点)、およびおよそ50℃程度以下の臨界温度を有し、そのボイルオフガスが圧縮機により内燃機関に供給され、内燃機関の燃料として用いられ得るような可燃性の液化ガスであれば、液化天然ガスに制限されない。液化天然ガスの他には、液化天然ガスの構成成分の各種液化ガスや、それらと同様に低い液化温度および低い臨界温度を有する可燃性の液化ガス、例えば液化メタン、液化エタン、液化エチレン、あるいは液化一酸化炭素、液化水素、またはこれらのいずれかを含む混合物の液化ガス等であってもよい。
ボイルオフガス供給ライン2は、タンク1からボイルオフガスの供給先の装置まで延びており、タンク1内の液化ガスから気化したボイルオフガスを供給先の装置に導く。
The tank 1 stores liquefied gas. The target liquefied gas is, for example, liquefied natural gas. However, it has a liquefied temperature (boiling point) at normal pressure of about -70 ° C or less and a critical temperature of about 50 ° C or less, and its boil-off gas is supplied to the internal combustion engine by a compressor and used as fuel for the internal combustion engine. Any flammable liquefied gas that can be used is not limited to liquefied natural gas. In addition to liquefied natural gas, various liquefied gases that are constituents of liquefied natural gas and flammable liquefied gases that also have low liquefaction and low critical temperatures, such as liquefied methane, liquefied ethane, liquefied ethylene, or It may be a liquefied gas of liquefied carbon monoxide, liquefied hydrogen, or a mixture containing any of these.
The boil-off gas supply line 2 extends from the tank 1 to the device to which the boil-off gas is supplied, and guides the boil-off gas vaporized from the liquefied gas in the tank 1 to the device to which the boil-off gas is supplied.

熱交換器3は、ボイルオフガス供給ライン2内に設けられ、ボイルオフガスを加熱する。ここで、ボイルオフガスを加熱する熱源は、後述する圧縮機4による加圧に伴って昇温され、ボイルオフガス供給ライン2から分岐した後にタンク1に還流する再液化回収ライン6を流れるボイルオフガスである。
圧縮機4は、ボイルオフガス供給ライン2内に設けられ、熱交換器3で加熱されたボイルオフガスを加圧する。圧縮機4は、供給先の装置が要求する圧力に対応するように加圧する。例えば、供給先の装置が、高いエネルギー効率が要求される船舶等に用いる2ストロークサイクルの低速ディーゼルエンジンである場合、ボイルオフガスの圧力は、低くても15~20MPa程度、高い場合は30~40MPaあるいは40MPa以上に加圧することが要求される。このため、ボイルオフは、図1に示すように、例えば5基程度の複数の圧縮機が直列に接続されて、要求される圧力近くまで加圧される構成とされることが多い。圧縮機4は、例えば具体的には、ピストンの吸引動作によりシリンダ内に吸引されたボイルオフガスをピストンの吐出動作により所定の圧力まで加圧して吐出する往復式ピストンを有するレシプロ型圧縮機である。このとき、加圧の程度が高くなる程レシプロ型圧縮機には負荷がかかり、ピストンとシリンダーライナの間に介在するピストンリング、ライダーリング、及びロッドパッキン等の摺動部材の摩擦に伴う磨耗が激しくなると共に、摺動部材の間隙からのボイルオフガスのリーク量も増加し易い。こうした摩耗やボイルオフガスのリーク量を低減するため、摺動部材に潤滑油を供給しながら加圧するように構成される。
また、複数の圧縮機の直列接続構成を採用する場合、その内で加圧の程度が低い初段ないし前半部分の圧縮機には、上記のレシプロ型圧縮機に替えて、ケーシング内に吸引されたボイルオフガスを、例えばスクリュー、螺旋体、回転ピストンなどの回転体の旋回動作に伴うケーシング内の容積変化により所定の圧力まで加圧して吐出する、スクリュー式、スクロール式、ないしロータリー式などの旋回型圧縮機等を用いる場合もある。これらの圧縮機においても、回転体とケーシングの間隙におけるボイルオフガスのリークを阻止するため、潤滑油が供給される場合が多い。
The heat exchanger 3 is provided in the boil-off gas supply line 2 and heats the boil-off gas. Here, the heat source for heating the boil-off gas is the boil-off gas flowing through the reliquefaction recovery line 6 which is heated by the pressurization by the compressor 4 described later, branches from the boil-off gas supply line 2, and then returns to the tank 1. be.
The compressor 4 is provided in the boil-off gas supply line 2 and pressurizes the boil-off gas heated by the heat exchanger 3. The compressor 4 pressurizes so as to correspond to the pressure required by the device at the supply destination. For example, when the device to be supplied is a 2-stroke cycle low-speed diesel engine used for a ship or the like that requires high energy efficiency, the pressure of the boil-off gas is about 15 to 20 MPa at the lowest, and 30 to 40 MPa at the highest. Alternatively, it is required to pressurize to 40 MPa or more. Therefore, as shown in FIG. 1, the boil-off is often configured such that, for example, a plurality of compressors of about 5 units are connected in series and pressurized to near the required pressure. The compressor 4 is, for example, a reciprocating compressor having a reciprocating piston that pressurizes and discharges the boil-off gas sucked into the cylinder by the suction operation of the piston to a predetermined pressure by the discharge operation of the piston. .. At this time, as the degree of pressurization increases, a load is applied to the reciprocating compressor, and wear due to friction of sliding members such as the piston ring, rider ring, and rod packing interposed between the piston and the cylinder liner is caused. As it becomes more intense, the amount of boil-off gas leaking from the gaps between the sliding members tends to increase. In order to reduce such wear and the amount of leakage of boil-off gas, the sliding member is configured to be pressurized while supplying lubricating oil.
Further, when a series connection configuration of a plurality of compressors is adopted, the compressor in the first stage or the first half of the compressor, in which the degree of pressurization is low, is sucked into the casing instead of the above-mentioned reciprocating type compressor. Swirling type compression such as screw type, scroll type, or rotary type that pressurizes and discharges boil-off gas to a predetermined pressure by changing the volume in the casing due to the swirling operation of a rotating body such as a screw, spiral body, or rotating piston. In some cases, a machine or the like is used. Even in these compressors, lubricating oil is often supplied in order to prevent leakage of boil-off gas in the gap between the rotating body and the casing.

分岐部5は、圧縮機4から加圧吐出されたボイルオフガスの一部をボイルオフガス供給ライン2から分岐する部分である。分岐部5には、ボイルオフガス供給ライン2から再液化回収ライン6にボイルオフガスを分配する弁を備えた分岐ユニット5aが設けられている。
再液化回収ライン6は、分岐されたボイルオフガスを熱交換器3で冷却し、ボイルオフガスの一部を再液化してタンク1に回収するためのラインである。
再液化回収ライン6内には、潤滑油除去部7が設けられている。潤滑油除去部7は、分岐部5と熱交換器3の間に設けられ、圧縮機4による加圧によって加圧後のボイルオフガス中に混入した潤滑油をボイルオフガスから除去する。
具体的には、潤滑油除去部7は、再液化回収ライン6にあるボイルオフガス中に混入した潤滑油を吸着してボイルオフガスから分離除去する吸着剤9aを内包する第1潤滑油吸着除去器9を含む。さらに、潤滑油除去部7は、第1潤滑油吸着除去器9に対して、分岐部5の側に設けられたフィルタ8を含む。フィルタ8は、ボイルオフガス内に混入する微粒子等の固形の異物を集塵的に分離除去し、第1潤滑油吸着除去器9およびその下流の再液化回収ライン6への流入を防ぐための網目状フィルタである。ボイルオフガスに混入する潤滑油は、超臨界状態のボイルオフガスに溶解しており、フィルタ8を通過する。
吸着剤9aは、第1潤滑油吸着除去器9の容器内に、その所要量が収容されている。第1潤滑油吸着除去器9の容器内における吸着剤9aの収容形態には、容易に流動するような粒状に成型された多数個の吸着剤粒子が充填される形態や、ボイルオフガスの流路になる間隙を有する、粗い多孔体フィルタ状、ないしハニカムブロック状に成型された吸着剤が挿入される形態などがある。前者の粒状の吸着剤の充填の場合は、第1潤滑油吸着除去器9内の吸着剤がボイルオフガスに随伴して移動ないし流出しないよう、第1潤滑油吸着除去器9の内部の少なくとも下流側一端に、吸着剤粒子径よりやや小さな貫通孔を多数有する多孔板の目皿(図示されない)、または吸着剤粒子径よりやや小さな目空きの網状の目皿(図示されない)などが設けられる。
The branch portion 5 is a portion where a part of the boil-off gas pressure-discharged from the compressor 4 is branched from the boil-off gas supply line 2. The branch portion 5 is provided with a branch unit 5a provided with a valve for distributing the boil-off gas from the boil-off gas supply line 2 to the reliquefaction recovery line 6.
The reliquefaction recovery line 6 is a line for cooling the branched boil-off gas with the heat exchanger 3, re-liquefying a part of the boil-off gas, and recovering it in the tank 1.
A lubricating oil removing unit 7 is provided in the reliquefaction recovery line 6. The lubricating oil removing portion 7 is provided between the branch portion 5 and the heat exchanger 3, and removes the lubricating oil mixed in the boil-off gas after pressurization by the pressurization by the compressor 4 from the boil-off gas.
Specifically, the lubricating oil removing unit 7 is a first lubricating oil adsorption removing device containing an adsorbent 9a that adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line 6 and separates and removes it from the boil-off gas. Includes 9. Further, the lubricating oil removing unit 7 includes a filter 8 provided on the side of the branching portion 5 with respect to the first lubricating oil adsorption removing device 9. The filter 8 collects and removes solid foreign substances such as fine particles mixed in the boil-off gas, and prevents the inflow to the first lubricating oil adsorption remover 9 and the reliquefaction recovery line 6 downstream thereof. It is a state filter. The lubricating oil mixed in the boil-off gas is dissolved in the boil-off gas in the supercritical state and passes through the filter 8.
The required amount of the adsorbent 9a is contained in the container of the first lubricating oil adsorption remover 9. The adsorbent 9a in the container of the first lubricating oil adsorbent remover 9 is filled with a large number of granularly molded adsorbent particles so as to easily flow, and a flow path of boil-off gas. There is a form in which an adsorbent molded into a coarse porous filter shape or a honeycomb block shape is inserted. In the case of filling the former granular adsorbent, at least downstream of the inside of the first lubricating oil adsorbent remover 9 so that the adsorbent in the first lubricating oil adsorbent remover 9 does not move or flow out with the boil-off gas. At one end of the side, a perforated plate having a large number of through holes slightly smaller than the adsorbent particle size (not shown), or a mesh-like mesh plate having a space slightly smaller than the adsorbent particle size (not shown) is provided.

さらに、再液化回収ライン6内には、潤滑油除去部7と熱交換器3との間に残留濃度評価部10aが設けられている。残留濃度評価部10aは、再液化回収ライン6から分岐した吸着除去後サンプリングライン14aと接続され、再液化回収ライン6を流れるボイルオフガスの一部を抜き取って、第1潤滑油吸着除去器10aを通過したボイルオフガス中に残留する潤滑油の濃度を評価する部分であり、濃度評価ユニット(濃度評価手段)103を含む。
再液化回収ライン6内には、熱交換器3が設けられている。熱交換器3では、再液化回収ライン6を流れるボイルオフガスは、ボイルオフガス供給ライン2を流れるボイルオフガスを加熱するための加熱源となり、一方、ボイルオフガス供給ライン2を流れるボイルオフガスは、再液化回収ライン6を流れるボイルオフガスを冷却するための冷熱源となる。したがって、再液化回収ライン6を流れるボイルオフガスは熱交換器3で冷却される。熱交換器3での冷却によってボイルオフガス温度が臨界温度より低くなった場合には、熱交換される前までの超臨界流体状態から、臨界圧力を超える高圧域に存在する圧縮性液体(compressibleliquid)の状態に変化する。
再液化回収ライン6内には、さらに、減圧弁12及び気液分離槽13が設けられている。減圧弁12によって、熱交換器3で冷却されたボイルオフガスは、タンク1の内圧付近まで減圧され、断熱的に膨張することにより一層冷却されると共に、気体および液体の二相共存状態に変化する。
気液分離槽13は、液化したボイルオフガスと、気体状態になったボイルオフガスを分離する槽である。液化したボイルオフガス13は、再液化回収ライン6を介してタンク1に回収される。一方、気体状態になったボイルオフガスは、加圧前のボイルオフガスとしてボイルオフガス供給ライン2に供給される。
図1に示すボイルオフガス供給ライン2及び再液化回収ライン6には、ボイルオフガスの流量を制御する制御弁等の図示が省略されているが、それらの制御弁は適宜設定される。
Further, in the reliquefaction recovery line 6, a residual concentration evaluation unit 10a is provided between the lubricating oil removing unit 7 and the heat exchanger 3. The residual concentration evaluation unit 10a is connected to a sampling line 14a after adsorption removal branched from the reliquefaction recovery line 6, and a part of the boil-off gas flowing through the reliquefaction recovery line 6 is extracted to obtain a first lubricating oil adsorption remover 10a. It is a part for evaluating the concentration of the lubricating oil remaining in the boil-off gas that has passed through, and includes a concentration evaluation unit (concentration evaluation means) 103.
A heat exchanger 3 is provided in the reliquefaction recovery line 6. In the heat exchanger 3, the boil-off gas flowing through the reliquefaction recovery line 6 serves as a heating source for heating the boil-off gas flowing through the boil-off gas supply line 2, while the boil-off gas flowing through the boil-off gas supply line 2 is reliquefied. It serves as a cold heat source for cooling the boil-off gas flowing through the recovery line 6. Therefore, the boil-off gas flowing through the reliquefaction recovery line 6 is cooled by the heat exchanger 3. When the boil-off gas temperature becomes lower than the critical temperature due to cooling in the heat exchanger 3, the compressible liquid exists in the high pressure region exceeding the critical pressure from the supercritical fluid state before the heat exchange. It changes to the state of.
A pressure reducing valve 12 and a gas-liquid separation tank 13 are further provided in the reliquefaction recovery line 6. The boil-off gas cooled by the heat exchanger 3 is decompressed to the vicinity of the internal pressure of the tank 1 by the pressure reducing valve 12, and is further cooled by expanding adiabatically, and changes to a two-phase coexistence state of gas and liquid. ..
The gas-liquid separation tank 13 is a tank that separates the liquefied boil-off gas and the boil-off gas in a gaseous state. The liquefied boil-off gas 13 is recovered in the tank 1 via the reliquefaction recovery line 6. On the other hand, the boil-off gas in a gaseous state is supplied to the boil-off gas supply line 2 as the boil-off gas before pressurization.
Although the control valves for controlling the flow rate of the boil-off gas and the like are omitted in the boil-off gas supply line 2 and the reliquefaction recovery line 6 shown in FIG. 1, these control valves are appropriately set.

再液化回収ライン6における、潤滑油除去部7の入口側及び出口側には、遮断弁20、21が設けられている。残留濃度評価部10aにおける潤滑油の濃度の評価結果に応じて、遮断弁20および21を閉じて、第1潤滑油吸着除去器9またはその内部の吸着剤9、あるいはフィルタ8を交換できるように構成されている。
図2は、一例として、第1潤滑油吸着除去器9の交換可能な構成を示す図である。第1潤滑油吸着除去器9の入口側及び出口側には、吸着剤交換機構40が設けられ、両側の吸着剤交換機構40の一部と、第1潤滑油吸着除去器9とが一体となって、脱着交換可能になっている。なお、交換時には、予め第1潤滑油吸着除去器9の内部に充満している高圧のボイルオフガスを、再液化回収ライン6の排出口6bから外部あるいは処理装置(図示されない)に排出させた後、再液化回収ライン6の供給口6aから窒素ガスを第1潤滑油吸着除去器9内に流して、排出口6bから第1潤滑油吸着除去器9内部の残留したボイルオフガスを外部あるいは処理装置(図示されない)に払い出すことにより、第1潤滑油吸着除去器9内部を窒素ガスに置換した後、第1潤滑油吸着除去器9を新品の第1潤滑油吸着除去器と取り替える。
In the reliquefaction recovery line 6, shutoff valves 20 and 21 are provided on the inlet side and the outlet side of the lubricating oil removing portion 7. Depending on the evaluation result of the concentration of the lubricating oil in the residual concentration evaluation unit 10a, the shutoff valves 20 and 21 can be closed so that the first lubricating oil adsorption remover 9 or the adsorbent 9 inside the first lubricating oil adsorption remover 9 or the filter 8 can be replaced. It is configured.
FIG. 2 is a diagram showing, as an example, a replaceable configuration of the first lubricating oil adsorption remover 9. Adsorbent exchange mechanisms 40 are provided on the inlet side and the outlet side of the first lubricating oil adsorption remover 9, and a part of the adsorbent exchange mechanisms 40 on both sides and the first lubricating oil adsorption remover 9 are integrated. It is now removable and replaceable. At the time of replacement, the high-pressure boil-off gas previously filled inside the first lubricating oil adsorption remover 9 is discharged to the outside or a processing device (not shown) from the discharge port 6b of the reliquefaction recovery line 6. , Nitrogen gas is flowed into the first lubricating oil adsorption remover 9 from the supply port 6a of the reliquefaction recovery line 6, and the residual boil-off gas inside the first lubricating oil adsorption remover 9 is discharged from the discharge port 6b to the outside or a treatment device. After the inside of the first lubricating oil adsorption remover 9 is replaced with nitrogen gas by paying out to (not shown), the first lubricating oil adsorption remover 9 is replaced with a new first lubricating oil adsorption remover.

図2に示す吸着剤交換機構40は、第1潤滑油吸着除去器9を新品の第1潤滑油吸着除去器と取り替える構成であり、第1潤滑油吸着除去器9および再液化回収ライン6の双方の端面に設けられたフランジ同士をボルトおよびナットで固定するような単純な接合/脱着機構が含まれるが、外部に設けられた高圧プレスによる圧着や、カップリングジョイント等を用いる接合等により、確実かつ簡便に接合/脱着が行える構成であることが好ましい。第1潤滑油吸着除去器9を再液化回収ライン6から取り外した後、新品の第1潤滑油吸着除去器を新たに再液化回収ライン6に接合するか、または第1潤滑油吸着除去器9の内部の吸着剤9aを抜き出して新品の吸着剤と交換した後、第1潤滑油吸着除去器9を再液化回収ライン6に再度接合する。 The adsorbent exchange mechanism 40 shown in FIG. 2 has a configuration in which the first lubricating oil adsorption remover 9 is replaced with a new first lubricating oil adsorption remover, and the first lubricating oil adsorption remover 9 and the reliquefaction recovery line 6 are configured. It includes a simple joining / detaching mechanism that fixes the flanges provided on both end faces with bolts and nuts, but by crimping with an external high-pressure press or joining using a coupling joint, etc. It is preferable that the configuration is such that joining / detaching can be performed reliably and easily. After removing the first lubricating oil adsorption remover 9 from the reliquefaction recovery line 6, a new first lubricating oil adsorption remover is newly joined to the reliquefaction recovery line 6, or the first lubricating oil adsorption remover 9 is used. After the adsorbent 9a inside the above is taken out and replaced with a new adsorbent, the first lubricating oil adsorbent remover 9 is rejoined to the reliquefaction recovery line 6.

図2に示す吸着剤交換機構40は上述のように構成されるが、吸着剤交換機構40は、この他に、第1潤滑油吸着除去器9の内部の吸着剤9aを抜き出して新品の吸着剤と交換する構成を用いることもできる。
例えば、吸着剤9aが容易に流動するような粒子状の形状を持つ場合には、吸着剤交換機構40の一例として、図示は省略するが、第1潤滑油吸着除去器9の吸着剤充填範囲の鉛直方向上端および下端の2箇所に、第1潤滑油吸着除去器9の内部の高圧に適合した蓋ないし栓を備えた窓部を設ける構成が挙げられる。この窓部は、第1潤滑油吸着除去器の内外を貫通し吸着剤9aを出し入れできる形状および口径を有する。この構成では、鉛直方向上端および下端の少なくとも2箇所に窓部が設けられる。鉛直方向下端の窓部の蓋ないし栓を開けることで、内部の吸着剤9aの自重による落下を利用し、第1潤滑油吸着除去器9の下端の窓部から外部に吸着剤9aを排出する。その後、下端の窓部の蓋ないし栓を閉じ、鉛直方向上端の窓部から新品の吸着剤を内部に入れ、上端の窓部の蓋ないし栓を再度閉じることにより、第1潤滑油吸着除去器9を再液化回収ライン6から取り外すことなく、吸着剤9aを交換できる。
The adsorbent exchange mechanism 40 shown in FIG. 2 is configured as described above, but the adsorbent exchange mechanism 40 also extracts the adsorbent 9a inside the first lubricating oil adsorption remover 9 to adsorb a new product. A configuration that replaces the agent can also be used.
For example, when the adsorbent 9a has a particle-like shape that easily flows, as an example of the adsorbent exchange mechanism 40, although not shown, the adsorbent filling range of the first lubricating oil adsorption remover 9 is omitted. There is a configuration in which a window portion having a lid or a stopper suitable for high pressure inside the first lubricating oil adsorption remover 9 is provided at two locations, the upper end and the lower end in the vertical direction. This window portion has a shape and a diameter that allows the adsorbent 9a to be taken in and out through the inside and outside of the first lubricating oil adsorption remover. In this configuration, windows are provided at least at two locations, the upper end and the lower end in the vertical direction. By opening the lid or plug of the window at the lower end in the vertical direction, the adsorbent 9a is discharged to the outside from the window at the lower end of the first lubricating oil adsorption remover 9 by utilizing the drop of the adsorbent 9a inside due to its own weight. .. After that, the first lubricating oil adsorption remover is closed by closing the lid or plug of the window at the lower end, putting a new adsorbent inside from the window at the upper end in the vertical direction, and closing the lid or plug of the window at the upper end again. The adsorbent 9a can be replaced without removing the 9 from the reliquefaction recovery line 6.

また、上記と同様に吸着剤9aが容易に流動するような粒子状の形状を持つ場合に、吸着剤交換機構40の他の一例として、図示は省略するが、第1潤滑油吸着除去器9の吸着剤充填範囲の鉛直方向上端の1箇所に、第1潤滑油吸着除去器9の内部の高圧に適合した蓋ないし栓を備えた窓部を設ける構成が挙げられる。この窓部は、第1潤滑油吸着除去器の内外を貫通し吸着剤9aを出し入れできる形状および口径を有する。この窓部から、第1潤滑油吸着除去器9内の吸着剤を、掃除機様の吸引機を用いて外部に吸引排出できるようにするように構成される。この場合は、第1潤滑油吸着除去器9の上端の窓部の蓋ないし栓を開けてフレキシブルノズルを内部に挿入し、外部に置いた吸引機を用い、フレキシブルノズルを通して第1潤滑油吸着除去器9内部の吸着剤9aを外部に吸引排出した後、窓部から新品の吸着剤を内部に入れ、蓋ないし栓を再度閉じることにより、前述の例と同様、第1潤滑油吸着除去器9を再液化回収ライン6から取り外すことなく、吸着剤9aの交換ができる。 Further, as in the case of having a particle-like shape in which the adsorbent 9a easily flows as described above, as another example of the adsorbent exchange mechanism 40, although not shown, the first lubricating oil adsorption remover 9 At one of the upper ends of the adsorbent filling range in the vertical direction, there is a configuration in which a window portion having a lid or a stopper suitable for high pressure inside the first lubricating oil adsorption remover 9 is provided. This window portion has a shape and a diameter that allows the adsorbent 9a to be taken in and out through the inside and outside of the first lubricating oil adsorption remover. From this window portion, the adsorbent in the first lubricating oil adsorption remover 9 is configured to be sucked and discharged to the outside by using a vacuum cleaner-like suction machine. In this case, open the lid or plug of the window at the upper end of the first lubricating oil adsorption remover 9, insert the flexible nozzle inside, and use the suction machine placed outside to remove the first lubricating oil adsorption through the flexible nozzle. After sucking and discharging the adsorbent 9a inside the vessel 9 to the outside, a new adsorbent is put inside from the window and the lid or stopper is closed again. The adsorbent 9a can be replaced without removing the liquefied recovery line 6.

以上の吸着剤交換機構40を利用して第1潤滑油吸着除去器9またはその内部の吸着剤9aを新品に交換した後は、再液化回収ライン6の供給口6aから窒素ガスを第1潤滑油吸着除去器9内に流し、排出口6bから第1潤滑油吸着除去器9内部の空気を排出させた後に、ボイルオフガスの流通を再開する。 After replacing the first lubricating oil adsorption remover 9 or the adsorbent 9a inside the first lubricating oil adsorption remover 9 with a new one by using the above-mentioned adsorbent exchange mechanism 40, the nitrogen gas is first lubricated from the supply port 6a of the reliquefaction recovery line 6. After flowing into the oil adsorption remover 9 and discharging the air inside the first lubricating oil adsorption remover 9 from the discharge port 6b, the flow of the boil-off gas is restarted.

図3は、残留濃度評価部10aの構成の一例を示す図である。
残留濃度評価部10aは、再液化回収ライン6から分岐した吸着除去後サンプリングライン14aと接続され、所定の時間間隔(例えば、半日~1日)毎に、再液化回収ライン6を流れるボイルオフガスの一部を抜き取って、第1潤滑油吸着除去器9を通過したボイルオフガス中に残留する潤滑油の濃度を評価する。
FIG. 3 is a diagram showing an example of the configuration of the residual concentration evaluation unit 10a.
The residual concentration evaluation unit 10a is connected to the adsorption-removal sampling line 14a branched from the re-liquefaction recovery line 6, and of the boil-off gas flowing through the re-liquefaction recovery line 6 at predetermined time intervals (for example, half a day to one day). A part of the lubricating oil is removed to evaluate the concentration of the lubricating oil remaining in the boil-off gas that has passed through the first lubricating oil adsorption remover 9.

残留濃度評価部10aは、濃度評価ユニット(濃度評価手段)103を備える。
具体的には、濃度評価ユニット103は、吸着除去後サンプリングライン14a上に、採取用1次減圧弁100と、ライン加熱器101と、採取用2次減圧弁102と、潤滑油捕集容器104と、積算流量計105と、送液ユニット106と、調整器107と、加熱器108と、を備え、さらに、評価判定ユニット11aを備える。評価判定ユニット11aは、測定器80a及び吸着特性判定部82aを含む。図3には、吸着除去後サンプリングライン14a、測定器80a、及び吸着特性判定部82aの他に、以降で説明するボイルオフガス供給・回収装置A4,A5で用いられる、吸着除去前サンプリングライン14,14b、測定器80,80b、及び吸着特性判定部82,82bが括弧書きで示されている。吸着除去前サンプリングライン14,14b、測定器80,80b、及び吸着特性判定部82,82bは、ボイルオフガス供給・回収装置A4,A5を説明する際に説明される。
The residual concentration evaluation unit 10a includes a concentration evaluation unit (concentration evaluation means) 103.
Specifically, the concentration evaluation unit 103 has a primary pressure reducing valve 100 for sampling, a line heater 101, a secondary pressure reducing valve 102 for sampling, and a lubricating oil collection container 104 on the sampling line 14a after adsorption removal. , The integrated flow meter 105, the liquid feeding unit 106, the regulator 107, the heater 108, and further, the evaluation determination unit 11a. The evaluation determination unit 11a includes a measuring instrument 80a and an adsorption characteristic determination unit 82a. In FIG. 3, in addition to the adsorption removal sampling line 14a, the measuring instrument 80a, and the adsorption characteristic determination unit 82a, the adsorption removal pre-sampling line 14, which is used in the boil-off gas supply / recovery devices A4 and A5 described below, is shown. 14b, measuring instruments 80, 80b, and adsorption characteristic determination units 82, 82b are shown in parentheses. The sampling lines 14, 14b before adsorption removal, the measuring instruments 80, 80b, and the adsorption characteristic determination units 82, 82b will be described when the boil-off gas supply / recovery devices A4 and A5 are described.

吸着除去後サンプリングライン14aを流れるボイルオフガスは、採取用1次減圧弁100で減圧され、次に採取用2次減圧弁102でさらに常圧付近まで減圧された後、抽出溶媒注入口104aから所定の抽出溶媒が予め注入された潤滑油捕集容器104に導入される。潤滑油捕集容器104内において、導入されたボイルオフガスが抽出溶媒中でバブリングすることにより、ボイルオフガス中の潤滑油が抽出溶媒中に溶解し、抽出される。以上の過程において、採取用1次減圧弁100および採取用2次減圧弁102での2段階の減圧の際に起こる、ボイルオフガスの断熱的膨張に伴う急激な自己冷却により、含まれる潤滑油が吸着除去後サンプリングライン14aの内壁に凍り着くことを防ぐため、吸着除去後サンプリングライン14aは、ライン加熱器101で適宜加熱される。ライン加熱器101は、電気加熱ヒーターや、吸着除去後サンプリングライン14aを二重管として流動熱媒体を間隙に流す熱交換器などが用いられる。 The boil-off gas flowing through the sampling line 14a after adsorption removal is decompressed by the primary pressure reducing valve 100 for sampling, then further depressurized to near normal pressure by the secondary pressure reducing valve 102 for sampling, and then predetermined from the extraction solvent injection port 104a. The extraction solvent of the above is introduced into the lubricating oil collecting container 104 which has been injected in advance. In the lubricating oil collecting container 104, the introduced boil-off gas is bubbled in the extraction solvent, so that the lubricating oil in the boil-off gas is dissolved in the extraction solvent and extracted. In the above process, the lubricating oil contained is due to the rapid self-cooling caused by the adiabatic expansion of the boil-off gas that occurs during the two-step depressurization of the sampling primary pressure reducing valve 100 and the sampling secondary pressure reducing valve 102. In order to prevent the sampling line 14a from freezing on the inner wall of the sampling line 14a after the adsorption removal, the sampling line 14a after the adsorption removal is appropriately heated by the line heater 101. As the line heater 101, an electric heater, a heat exchanger in which a sampling line 14a is used as a double tube after adsorption removal, and a heat exchanger in which a fluidized heat medium is passed through a gap are used.

潤滑油捕集容器104内は常圧付近にあるため、ボイルオフガスは抽出溶媒に僅かしか溶けないので、潤滑油が溶解した抽出溶媒から気体として分離される。分離したボイルオフガスは、積算流量計105を通過してボイルオフガス排出口105aから外部あるいは処理装置(図示されない)に排出される。積算流量計105は、ボイルオフガスの流量を測定し、残留濃度評価部10aに採り込んだボイルオフガスの積算量を求める。求めた積算量の情報は、吸着特性判定部82aに逐次送信される。 Since the inside of the lubricating oil collecting container 104 is near normal pressure, the boil-off gas is only slightly soluble in the extraction solvent, so that it is separated as a gas from the extraction solvent in which the lubricating oil is dissolved. The separated boil-off gas passes through the integrated flow meter 105 and is discharged to the outside or a processing device (not shown) from the boil-off gas discharge port 105a. The integrated flow meter 105 measures the flow rate of the boil-off gas, and obtains the integrated amount of the boil-off gas taken into the residual concentration evaluation unit 10a. The obtained integrated amount information is sequentially transmitted to the adsorption characteristic determination unit 82a.

採取用1次減圧弁100を閉じて、残留濃度評価部10aへのボイルオフガスの採り込みを終えた後、減圧弁102を全開とし、上流の抽出溶媒注入口100aから所定の抽出溶媒を導入し、ボイルオフガスを潤滑油捕集容器104に流入させる。これにより、吸着除去後サンプリングライン14aをボイルオフガスが通過した際に管内壁に付着した潤滑油も洗い流され、潤滑油捕集容器104内の抽出溶媒に合流することで、残留濃度評価部10aに採り込んだボイルオフガス中の潤滑油の全量が、抽出溶媒中に捕集される。 After closing the primary pressure reducing valve 100 for collection and finishing the collection of boil-off gas into the residual concentration evaluation unit 10a, the pressure reducing valve 102 is fully opened and a predetermined extraction solvent is introduced from the upstream extraction solvent injection port 100a. , The boil-off gas is made to flow into the lubricating oil collecting container 104. As a result, the lubricating oil adhering to the inner wall of the pipe when the boil-off gas passes through the sampling line 14a after removal of adsorption is also washed away and merged with the extraction solvent in the lubricating oil collection container 104, thereby causing the residual concentration evaluation unit 10a. The entire amount of the lubricating oil in the taken-in boil-off gas is collected in the extraction solvent.

潤滑油が溶解した抽出溶媒は、送液ユニット106により、調整器107に送られる。調整器107は、潤滑油が溶解した抽出溶媒を加熱器108により徐々に加熱して抽出溶媒および抽出溶媒に少量溶存していたボイルオフガスを蒸発させ、排出口107bから外部あるいは処理装置(図示されない)に排出させて、潤滑油のみを調整器107内に残留させる。一般に潤滑油は、高沸点を有し揮発しにくいので、潤滑油は調整器107内に残留する。調整器107は、さらに、必要に応じて濃度評価用溶媒が投入口107aから添加され、所定量の濃度評価用溶媒に潤滑油全量が一様に溶けた状態になるように調整される。以上により、後述する潤滑油量の定量が可能になる。 The extraction solvent in which the lubricating oil is dissolved is sent to the regulator 107 by the liquid feeding unit 106. The regulator 107 gradually heats the extraction solvent in which the lubricating oil is dissolved by the heater 108 to evaporate the boil-off gas dissolved in the extraction solvent and the extraction solvent in a small amount, and externally or from the discharge port 107b (not shown). ), And only the lubricating oil remains in the regulator 107. Generally, the lubricating oil has a high boiling point and is hard to volatilize, so that the lubricating oil remains in the regulator 107. Further, the regulator 107 is adjusted so that the concentration evaluation solvent is added from the charging port 107a as needed, and the entire amount of the lubricating oil is uniformly dissolved in a predetermined amount of the concentration evaluation solvent. As a result, the amount of lubricating oil described later can be quantified.

なお、上述の抽出溶媒として、定量評価を行う常温常圧付近では揮発がしにくく、潤滑油がほとんど気化しない程度の加熱によって容易に揮発除去されるもので、潤滑油をよく溶解する非極性ないし低極性の溶媒が用いられる。
また、上述の濃度評価用溶媒には、上述の抽出溶媒の上記性状に加えて、後述する測定器80aによる潤滑油の定量評価の際に、評価を妨害しない溶媒が用いられる。例えば、後述する測定器80aが赤外吸収分光装置である場合は、潤滑油成分の分子中に多数存在して吸光度が大きい、メチル基およびメチレン基のC-H結合の伸縮振動に基づく赤外吸収の強度を評価することにより、潤滑油の定量を行うことが多い。その際に用いる濃度評価用溶媒としては、潤滑油の定量を妨害するC-H結合を分子内に持たない非プロトン性の溶媒であることが必要であり、例えば、四塩化炭素(CCl)などが好適に用いられる。
As the above-mentioned extraction solvent, it is difficult to volatilize near normal temperature and pressure for quantitative evaluation, and it is easily volatilized and removed by heating to the extent that the lubricating oil hardly vaporizes. A low polar solvent is used.
Further, as the above-mentioned concentration evaluation solvent, in addition to the above-mentioned properties of the above-mentioned extraction solvent, a solvent that does not interfere with the evaluation during the quantitative evaluation of the lubricating oil by the measuring instrument 80a described later is used. For example, when the measuring instrument 80a described later is an infrared absorption spectroscope, infrared rays based on expansion and contraction vibration of CH bonds of methyl group and methylene group, which are present in large numbers in the molecules of the lubricating oil component and have high absorbance. Lubricating oil is often quantified by evaluating the absorption intensity. The concentration evaluation solvent used at that time needs to be an aprotic solvent having no C—H bond in the molecule, which interferes with the quantification of the lubricating oil. For example, carbon tetrachloride (CCl 4 ). Etc. are preferably used.

抽出溶媒には、濃度評価用溶媒と同一のものを用いてもよい。抽出溶媒が、後述する測定器80aによる潤滑油の定量評価を妨害する場合には、上述したように、抽出溶媒を完全に蒸発除去した後、残留する潤滑油に濃度評価用溶媒を添加して溶解させ、定量評価を行うことが好ましい。
また、ボイルオフガスの残留も、潤滑油の定量評価の際の誤差を拡大する場合がある。例えば、測定器80aが赤外吸収分光装置であり、ボイルオフガスが残留した場合、ボイルオフガスの成分であるメタン、エタン、エチレン等の分子中に多量に存在するC-H結合により、潤滑油量の過大評価につながるため、上述した操作手順により、潤滑油の定量評価の前に、抽出溶媒と共に除去されることが好ましい。
The same extraction solvent as the concentration evaluation solvent may be used. When the extraction solvent interferes with the quantitative evaluation of the lubricating oil by the measuring instrument 80a described later, as described above, after completely evaporating and removing the extraction solvent, the concentration evaluation solvent is added to the remaining lubricating oil. It is preferable to dissolve and perform quantitative evaluation.
The residual boil-off gas may also increase the error in the quantitative evaluation of the lubricating oil. For example, when the measuring instrument 80a is an infrared absorption spectroscope and the boil-off gas remains, the amount of lubricating oil is due to the CH bond present in a large amount in molecules such as methane, ethane, and ethylene, which are components of the boil-off gas. It is preferable that the lubricating oil is removed together with the extraction solvent before the quantitative evaluation of the lubricating oil by the above-mentioned operating procedure, because it leads to an overestimation of the lubricating oil.

調整された抽出溶媒は、測定器80aに送られ、測定器80aは、抽出溶媒に溶けた潤滑油の量を測定する。測定された潤滑油の量の情報は、吸着特性判定部82aに逐次送信される。吸着特性判定部82aは、積算流量計105から送信されたボイルオフガスの積算量の情報と、測定器80aから送信された潤滑油の量とを用いて、ボイルオフガスに残留した潤滑油の濃度を算出する。さらに、吸着特性判定部82aは、送信されたボイルオフガスに残留した潤滑油の濃度の評価結果に基づいて、吸着剤9aによる潤滑油の吸着が飽和し、吸着除去器9を通過した後のボイルオフガス中の潤滑油の濃度が増加し始める状態(破過)を検知することにより、吸着剤9aによる潤滑油の吸着特性の低下を判定する。具体的には、潤滑油の濃度の評価結果が予め定めた上限値(例えば、質量濃度において0.1ないし1ppm程度)を超えた場合、吸着特性判定部82aは、潤滑油の吸着特性が低下したと判定する。 The prepared extraction solvent is sent to the measuring instrument 80a, and the measuring instrument 80a measures the amount of the lubricating oil dissolved in the extraction solvent. Information on the measured amount of lubricating oil is sequentially transmitted to the adsorption characteristic determination unit 82a. The adsorption characteristic determination unit 82a uses the information on the integrated amount of the boil-off gas transmitted from the integrated flow meter 105 and the amount of the lubricating oil transmitted from the measuring instrument 80a to determine the concentration of the lubricating oil remaining in the boil-off gas. calculate. Further, the adsorption characteristic determination unit 82a saturates the adsorption of the lubricating oil by the adsorbent 9a based on the evaluation result of the concentration of the lubricating oil remaining in the transmitted boil-off gas, and boil-off after passing through the adsorption remover 9. By detecting a state (breakthrough) in which the concentration of the lubricating oil in the gas begins to increase, it is determined that the adsorption characteristic of the lubricating oil is deteriorated by the adsorbent 9a. Specifically, when the evaluation result of the concentration of the lubricating oil exceeds a predetermined upper limit value (for example, about 0.1 to 1 ppm in mass concentration), the adsorption characteristic determination unit 82a deteriorates the adsorption characteristics of the lubricating oil. It is determined that the product has been used.

すなわち、濃度評価ユニット103は、採取された所定量のボイルオフガス中に含まれる潤滑油の全量を、所定の抽出溶媒に溶解させ、潤滑油が溶解した抽出溶媒からボイルオフガスの大半を分離する第1処理装置、すなわち、ライン加熱器101、採取用2次減圧弁102、及び潤滑油捕集容器104を備える。
また、第1処理装置による処理後、測定器80aによる潤滑油の量の測定を妨害しない濃度評価用溶媒を所定量(濃度評価可能な量)添加して、測定器80aによる定量が可能な濃度域に潤滑油を調整する第2処理装置(図3に示す例では調整器107)と、測定器80ato,を備える。このため、潤滑油の量を、確実に測定することができる。
That is, the concentration evaluation unit 103 dissolves the entire amount of the lubricating oil contained in the collected predetermined amount of boil-off gas in a predetermined extraction solvent, and separates most of the boil-off gas from the extraction solvent in which the lubricating oil is dissolved. 1 Processing device, that is, a line heater 101, a secondary pressure reducing valve 102 for sampling, and a lubricating oil collection container 104 are provided.
Further, after the treatment by the first processing apparatus, a predetermined amount (amount capable of evaluating the concentration) of a concentration evaluation solvent that does not interfere with the measurement of the amount of lubricating oil by the measuring instrument 80a is added, and the concentration can be quantified by the measuring instrument 80a. A second processing device (regulator 107 in the example shown in FIG. 3) for adjusting the lubricating oil in the region and a measuring instrument 80 atto are provided. Therefore, the amount of lubricating oil can be reliably measured.

吸着特性判定部82aが、吸着剤9aの吸着特性が低下したと判定した場合、この判定結果に応じて、吸着特性判定部82aは、遮断弁20および21が閉じるように制御する。分岐部5と第1潤滑油吸着除去器9との間の遮断弁20を閉じることにより、ボイルオフガスが、ボイルオフガス供給ライン2から第1潤滑油吸着除去器9に流れ込むことを阻止できる。このため、ボイルオフガスが外部に漏れることなく、第1潤滑油吸着除去器9またはその内部の吸着剤9aの取替えを行うことができる。また、第1潤滑油吸着除去器9と熱交換器3との間の遮断弁21を閉じることにより、吸着特性が低下した第1潤滑油吸着除去器9内の吸着剤9aを通過した、潤滑油が十分吸着除去されないボイルオフガスが熱交換器3に流入することも阻止できる。これにより、熱交換器3において、潤滑油が残留したボイルオフガスが冷却されて粘稠化あるいは固化した潤滑油が熱交換器3の内壁に付着し、熱交換器3の熱交換能力を低下させるような事態を阻止できる。また、熱交換器3から液化ガスのタンク1に至る再液化回収ライン6上の配管および弁などが、粘稠化あるいは固化した潤滑油によって閉塞するおそれも回避できる。更に、タンク1内のボイルオフガスの潤滑油による汚染も回避される。
さらに、吸着特性判定部82aは、吸着剤9aの吸着特性が低下したと判定した場合、第1潤滑油吸着除去器9を、新品の吸着剤を内包した潤滑油吸着除去器に交換するか、または、第1潤滑油吸着除去器9に内包されていた吸着剤9aを新品の吸着剤に交換する。
このように、吸着特性判定部82aを設けることにより、吸着剤9aの吸着特性を把握することができるので、熱交換器3やタンク1内の液化ガスの汚染を抑制すると共に、第1潤滑油吸着除去器9または吸着剤9aの交換時期を適切に判断することができる。
When the adsorption characteristic determination unit 82a determines that the adsorption characteristic of the adsorbent 9a has deteriorated, the adsorption characteristic determination unit 82a controls the isolation valves 20 and 21 to close according to the determination result. By closing the isolation valve 20 between the branch portion 5 and the first lubricating oil adsorption remover 9, it is possible to prevent the boil-off gas from flowing from the boil-off gas supply line 2 into the first lubricating oil adsorption remover 9. Therefore, the first lubricating oil adsorption remover 9 or the adsorbent 9a inside the first lubricating oil adsorption remover 9 can be replaced without the boil-off gas leaking to the outside. Further, by closing the shutoff valve 21 between the first lubricating oil adsorption remover 9 and the heat exchanger 3, the lubrication passed through the adsorbent 9a in the first lubricating oil adsorption remover 9 whose adsorption characteristics were deteriorated. It is also possible to prevent the boil-off gas from which the oil is not sufficiently adsorbed and removed from flowing into the heat exchanger 3. As a result, in the heat exchanger 3, the boil-off gas in which the lubricating oil remains is cooled, and the thickened or solidified lubricating oil adheres to the inner wall of the heat exchanger 3, reducing the heat exchange capacity of the heat exchanger 3. Such a situation can be prevented. Further, it is possible to avoid the possibility that the pipes and valves on the reliquefaction recovery line 6 from the heat exchanger 3 to the liquefied gas tank 1 are blocked by the thickened or solidified lubricating oil. Further, contamination of the boil-off gas in the tank 1 by the lubricating oil is avoided.
Further, when the adsorption characteristic determination unit 82a determines that the adsorption characteristic of the adsorbent 9a has deteriorated, the first lubricating oil adsorption remover 9 may be replaced with a lubricating oil adsorption remover containing a new adsorbent. Alternatively, the adsorbent 9a contained in the first lubricating oil adsorbent remover 9 is replaced with a new adsorbent.
By providing the adsorption characteristic determination unit 82a in this way, the adsorption characteristics of the adsorbent 9a can be grasped, so that the contamination of the liquefied gas in the heat exchanger 3 and the tank 1 can be suppressed, and the first lubricating oil can be suppressed. The replacement time of the adsorbent remover 9 or the adsorbent 9a can be appropriately determined.

測定器80aは、潤滑油を検出し定量し得る装置である限り特に制限されないが、例えば、赤外吸収分光装置、ガスクロマトグラフ装置、質量分析装置、及び潤滑油の質量の秤量器の内の少なくとも一つの測定機器を含むことが好ましい。 The measuring device 80a is not particularly limited as long as it is a device capable of detecting and quantifying the lubricating oil, but for example, at least among an infrared absorption spectroscope, a gas chromatograph device, a mass spectrometer, and a mass weigher for the lubricating oil. It is preferable to include one measuring instrument.

この内、赤外吸光分光装置は、対象物質分子の構成原子間の結合の伸縮・変角振動による照射赤外光のエネルギー吸収に基づき、物質の定性・定量分析を行う装置である。舶用ディーゼルエンジンへの燃料ボイルオフガス供給用圧縮機に用いられる潤滑油には、鎖状炭化水素系の鉱物油が一般に用いられ、潤滑油の炭化水素鎖を構成するメチル基およびメチレン基中のC-H結合に基づく強い赤外吸収を示す。このため、潤滑油のC-H結合の伸縮振動強度に基づいて、前述したように、ボイルオフガス中に溶存している潤滑油の量を同装置で評価することができる。 Of these, the infrared absorption spectroscope is a device that performs qualitative and quantitative analysis of a substance based on the energy absorption of irradiation infrared light due to expansion and contraction of bonds between constituent atoms of the target substance molecule and variable angle vibration. Chain hydrocarbon-based mineral oil is generally used as the lubricating oil used in the compressor for supplying fuel boil-off gas to the marine diesel engine, and C in the methyl group and methylene group constituting the hydrocarbon chain of the lubricating oil. -Shows strong infrared absorption based on H bond. Therefore, as described above, the amount of the lubricating oil dissolved in the boil-off gas can be evaluated by the same device based on the expansion / contraction vibration strength of the CH bond of the lubricating oil.

ガスクロマトグラフ装置は、複数の対象物質を保持させた固定相に気体の移動相を通過させる過程で、複数の対象物質を、それぞれの移動相および固定相との間の相互作用の差異により分離する装置である。潤滑油の定量に用いる移動相としては、窒素、ヘリウム等の不活性ガスが、固定相には、例えば、ジメチルポリシロキサン等の非極性の液相カラムが用いられる。潤滑油を溶解した所定量の濃度評価用溶媒をカラム入口に導入後、所定の昇温条件で昇温しながら移動相の不活性ガスをカラムに流す際、主に固定相・移動相間の潤滑油と濃度評価用溶媒の分配性の差異により保持時間に差が生じ、初期に流出する濃度評価用溶媒から、遅れて流出する潤滑油が分離される。分離されカラムから流出する不活性ガス中の潤滑油は、例えば水素炎イオン化検出器または後述する質量分析装置等により検出・定量される。 The gas chromatograph device separates a plurality of target substances by the difference in interaction between the respective mobile phase and the stationary phase in the process of passing the mobile phase of the gas through the stationary phase holding the plurality of target substances. It is a device. An inert gas such as nitrogen or helium is used as the mobile phase used for quantification of the lubricating oil, and a non-polar liquid phase column such as dimethylpolysiloxane is used as the stationary phase. After introducing a predetermined amount of solvent for concentration evaluation in which lubricating oil is dissolved into the column inlet, when the inert gas of the mobile phase is flowed through the column while raising the temperature under the predetermined temperature rise condition, the lubrication between the stationary phase and the mobile phase is mainly performed. The holding time differs due to the difference in the distributability between the oil and the concentration evaluation solvent, and the lubricating oil that flows out later is separated from the concentration evaluation solvent that flows out at the initial stage. The lubricating oil in the inert gas that is separated and flows out from the column is detected and quantified by, for example, a hydrogen flame ionization detector or a mass spectrometer described later.

質量分析装置は、対象物質を加熱気化させ、電子衝撃イオン化等のイオン化手法によりその分子をイオン化し、四重極質量フィルタや電場・磁場印加等による電磁気的作用等により、質量電荷比に応じてイオンを真空中で分離し、得られた質量スペクトルの検出強度から検量線に基づき対象物質を同定・定量する装置である。質量分析装置単独により潤滑油を定量する場合には、前述の潤滑油捕集容器104より抜き出した潤滑油を含む抽出溶媒を、前述の調整器107において加熱器108により加熱し、ボイルオフガスを揮発させて濃縮した後、質量分析装置に装着する試料管中(図示しない)に全量注入し、濃度調整溶媒を添加することなく(即ち添加量ゼロ)、更に加熱して乾燥させ、定量に供する。
また、測定器80aが「潤滑油の質量の秤量器」である場合にも、上記の質量分析装置単独での定量の場合と同様に、濃度評価用溶媒は添加せず、抽出溶媒の蒸発後に残留した潤滑油のみを秤量する。
The mass spectrometer heats and vaporizes the target substance, ionizes the molecule by an ionization method such as electron impact ionization, and uses a quadrupole mass filter or an electromagnetic action by applying an electric or magnetic field, depending on the mass-to-charge ratio. It is a device that separates ions in a vacuum and identifies and quantifies the target substance based on the calibration line from the detection intensity of the obtained mass spectrum. When the lubricating oil is quantified by the mass analyzer alone, the extraction solvent containing the lubricating oil extracted from the above-mentioned lubricating oil collection container 104 is heated by the heater 108 in the above-mentioned regulator 107 to volatilize the boil-off gas. After concentrating, the whole amount is injected into a sample tube (not shown) mounted on a mass analyzer, and the mixture is further heated to dry without adding a concentration adjusting solvent (that is, the addition amount is zero), and subjected to quantification.
Further, even when the measuring instrument 80a is a "mass weighing instrument for lubricating oil", the concentration evaluation solvent is not added and after the extraction solvent is evaporated, as in the case of the above-mentioned quantification by the mass spectrometer alone. Weigh only the residual lubricating oil.

このように、ボイルオフガス供給・回収装置A1は、再液化回収ライン6内の、分岐部5と熱交換器3の間に、吸着剤9aを内包する第1潤滑油吸着除去器9を含む潤滑油除去部7が設けられており、分岐部5で分岐され、再液化回収ライン6を通るボイルオフガスのみについて、熱交換器3に流れる前に、含まれる潤滑油を吸着剤9aに吸着させてボイルオフガスから潤滑油を分離除去することができる。従って、吸着除去する必要のない、内燃機関・発電機等の主供給先の装置に供給するボイルオフガス中の潤滑油は除去しないため、吸着剤の吸着特性を長く持続できるので、吸着剤を更新する頻度を抑えられる。さらに、潤滑油吸着の飽和に伴う吸着特性の低下を確実に監視し、吸着特性が低下した吸着剤の更新を適時・適切に施すことが可能になり、ボイルオフガス回収システムの維持管理を容易に行うことができる。 As described above, the boil-off gas supply / recovery device A1 is lubricated by including the first lubricating oil adsorption / removal device 9 containing the adsorbent 9a between the branch portion 5 and the heat exchanger 3 in the reliquefaction recovery line 6. An oil removing section 7 is provided, and only the boil-off gas that is branched at the branch section 5 and passes through the reliquefaction recovery line 6 is adsorbed by the adsorbent 9a before flowing into the heat exchanger 3. The lubricating oil can be separated and removed from the boil-off gas. Therefore, since the lubricating oil in the boil-off gas supplied to the main supply destination equipment such as the internal combustion engine and generator, which does not need to be adsorbed and removed, is not removed, the adsorption characteristics of the adsorbent can be maintained for a long time, so the adsorbent is updated. You can reduce the frequency of doing so. Furthermore, it is possible to reliably monitor the deterioration of the adsorption characteristics due to the saturation of the lubricating oil adsorption, and to update the adsorbent with the deteriorated adsorption characteristics in a timely and appropriate manner, facilitating the maintenance and management of the boil-off gas recovery system. It can be carried out.

なお、ボイルオフガス内に混入する潤滑油の分子のサイズは、所定の範囲内に分布することから、このサイズに適した吸着剤を用いることが好ましい。液化天然ガスのボイルオフガス供給用の圧縮機に一般に用いられる鉱物油系潤滑油の動的分子径は、およそ2~5nm程度と見做される。鉱物油系潤滑油は一般に非極性ないし低極性であり、そのような潤滑油の分子の吸着はロンドン分散力が主に支配し、これは、細孔内の吸着表面との距離が近いほど増大する。このため、吸着剤としては、潤滑油と同様に非極性ないし低極性で、かつ潤滑油分子の動的分子径と同等か少し大きい程度、即ち2~10nm程度の細孔径を多く持つ多孔質体が適する。非極性ないし低極性の吸着剤としては、活性炭が一般的である。また近年、細孔サイズが意図的に制御され、所定の狭い細孔径分布範囲の細孔のみを持つような合成多孔質炭素材も開発されており、特に2~50nmのメソ孔領域の細孔をもつものは「メソポーラスカーボン」と一般に称される。以上から、用いる吸着剤は、2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり0.1cm以上である、活性炭又はメソポーラスカーボンであることが、ボイルオフガスの吸着特性を高める上で好ましい。ここで、2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり0.1cm以上の範囲が好ましいのは、累積細孔容積がそれより小さい場合、吸着剤としては実質的に十分な効力を示さないためである(後述する実施例1、2および比較例1を参照)。なお、上記累積細孔容積が、吸着剤1g当たり2cmを超える場合、吸着剤自体の機械的強度が不足し、高圧のボイルオフガス中での吸着処理の際に、形状の破壊などが起こることがある。このため、吸着剤1g当たりの累積細孔容積の上限は、2cmであることが好ましい。
なお、圧縮機に用いられる潤滑油には、鉱物油系以外のパラフィン系合成油や、ポリエチレングリコールなどの比較的極性が高いポリアルキレングリコール系合成油が用いられる場合もある。これらの合成系潤滑油の動的分子径も概ね前記の2~5nm程度の範囲にあり、上述の活性炭またはメソポーラスカーボンは、これらに対しても十分な吸着特性を示すため、合成系潤滑油も、非極性ないし低極性である鉱物油系潤滑油と同様に、良好に用いることができる。
Since the size of the lubricating oil molecules mixed in the boil-off gas is distributed within a predetermined range, it is preferable to use an adsorbent suitable for this size. The dynamic molecular diameter of mineral oil-based lubricating oil generally used in compressors for supplying boil-off gas of liquefied natural gas is considered to be about 2 to 5 nm. Mineral oil-based lubricants are generally non-polar or low-polar, and the adsorption of molecules of such lubricants is dominated by the London dispersion force, which increases as the distance from the adsorption surface in the pores increases. do. Therefore, the adsorbent is a porous body that is non-polar or low-polar like the lubricating oil and has a large pore diameter of about 2 to 10 nm, which is equal to or slightly larger than the dynamic molecular diameter of the lubricating oil molecule. Is suitable. Activated carbon is generally used as a non-polar or low-polarity adsorbent. Further, in recent years, synthetic porous carbon materials having a pore size intentionally controlled and having only pores having a predetermined narrow pore diameter distribution range have been developed, and in particular, pores in a mesoporous region of 2 to 50 nm have been developed. Those with are commonly referred to as "mesoporous carbon". From the above, the adsorbent used is activated carbon or mesoporous carbon having a cumulative pore volume of 0.1 cm 3 or more per 1 g of the adsorbent in the pore diameter distribution range of 2 to 10 nm. It is preferable to enhance it. Here, the cumulative pore volume in the pore diameter distribution range of 2 to 10 nm is preferably in the range of 0.1 cm 3 or more per 1 g of the adsorbent, when the cumulative pore volume is smaller than that, it is substantially as an adsorbent. This is because it does not show sufficient efficacy (see Examples 1 and 2 and Comparative Example 1 described later). If the cumulative pore volume exceeds 2 cm 3 per 1 g of the adsorbent, the mechanical strength of the adsorbent itself is insufficient, and the shape may be destroyed during the adsorption process in the high-pressure boil-off gas. There is. Therefore, the upper limit of the cumulative pore volume per 1 g of the adsorbent is preferably 2 cm 3 .
As the lubricating oil used in the compressor, a paraffin-based synthetic oil other than the mineral oil-based oil or a polyalkylene glycol-based synthetic oil having a relatively high polarity such as polyethylene glycol may be used. The dynamic molecular diameters of these synthetic lubricating oils are also generally in the range of about 2 to 5 nm, and the above-mentioned activated carbon or mesopolar carbon also exhibits sufficient adsorption characteristics for these, so synthetic lubricating oils are also available. Similar to non-polar or low-polarity mineral oil-based lubricating oils, it can be used satisfactorily.

再液化回収ライン6内には、第1潤滑油吸着除去器9と熱交換器3の間のボイルオフガス中に残留する潤滑油の濃度を評価する濃度評価ユニット(濃度評価手段)103を含む残留濃度評価部10aが設けられ、再液化回収ライン6内の第1潤滑油吸着除去器9と熱交換器3との間にあるボイルオフガスの一部をサンプリングすることにより、その中に残留する潤滑油の濃度を効率よく測定することができるため、吸着特性判定部82aはこれに基づいて、第1潤滑油吸着除去器9の潤滑油の吸着特性、および吸着の飽和によるその低下を判定することができる。このため、第1潤滑油吸着除去器9またはその中の吸着剤9aの更新時期を知ることができ、ボイルオフガス回収システムの維持管理を容易に行うことができる。 Residual including a concentration evaluation unit (concentration evaluation means) 103 for evaluating the concentration of the lubricating oil remaining in the boil-off gas between the first lubricating oil adsorption remover 9 and the heat exchanger 3 in the reliquefaction recovery line 6. A concentration evaluation unit 10a is provided, and by sampling a part of the boil-off gas between the first lubricating oil adsorption remover 9 and the heat exchanger 3 in the reliquefaction recovery line 6, the lubrication remaining in the boil-off gas is sampled. Since the oil concentration can be efficiently measured, the adsorption characteristic determination unit 82a determines the adsorption characteristic of the lubricating oil of the first lubricating oil adsorption remover 9 and its decrease due to the saturation of adsorption based on this. Can be done. Therefore, the renewal time of the first lubricating oil adsorption remover 9 or the adsorbent 9a in the first lubricating oil adsorption remover 9 can be known, and the maintenance and management of the boil-off gas recovery system can be easily performed.

上述の一連の残留濃度評価部10aによるボイルオフガス中の残留潤滑油の濃度の評価の終了後には、抽出溶媒注入口104aから抽出溶媒を注入して、潤滑油捕集容器104から送液ユニット106を経て調整容器107に至る経路の内部を洗浄し、調整容器107の底部のドレン排出口(図示しない)から外部に排出することにより、残留の可能性がある潤滑油を除去することで、潤滑油の残留による次回の濃度評価の際の誤差の発生を防止する。
なお、残留濃度評価部10aの別の一例として、上述の図3に示したような、抽出溶媒を予め入れた潤滑油捕集容器104を用い、溶媒抽出によりボイルオフガス中の潤滑油を捕集する構成に代えて、内部に抽出溶媒を入れず、液化窒素などの冷媒によって外表面を冷却した潤滑油捕集容器104にボイルオフガスを導入して急冷し、潤滑油捕集容器104の内面にボイルオフガス中の潤滑油を固化付着させることで、潤滑油を捕集するような構成を用いることができる。この場合の構成部材・機器等は、図3に示す構成と共通であるので、この構成の図示は省略される。
After the evaluation of the concentration of the residual lubricating oil in the boil-off gas by the above-mentioned series of residual concentration evaluation units 10a is completed, the extraction solvent is injected from the extraction solvent injection port 104a, and the liquid feeding unit 106 is injected from the lubricating oil collection container 104. Lubricating by removing the lubricating oil that may remain by cleaning the inside of the path leading to the adjusting container 107 and discharging it to the outside from the drain discharge port (not shown) at the bottom of the adjusting container 107. Prevents the occurrence of errors in the next concentration evaluation due to residual oil.
As another example of the residual concentration evaluation unit 10a, the lubricating oil in the boil-off gas is collected by solvent extraction using the lubricating oil collecting container 104 containing the extraction solvent in advance as shown in FIG. Boil-off gas is introduced into the lubricating oil collecting container 104 whose outer surface is cooled by a refrigerant such as liquefied nitrogen without putting an extraction solvent inside, and the boil-off gas is rapidly cooled to the inner surface of the lubricating oil collecting container 104. By solidifying and adhering the lubricating oil in the boil-off gas, a configuration that collects the lubricating oil can be used. Since the constituent members / devices and the like in this case are the same as the configuration shown in FIG. 3, the illustration of this configuration is omitted.

図4は、図1に示すボイルオフガス供給・回収装置A1と異なる構成を有する、一実施形態のボイルオフガス供給・回収装置A2の構成を示す図である。
ボイルオフガス供給・回収装置A2の構成に関して、ボイルオフガス供給・回収装置A1と相違する部分は、潤滑油除去部7の構成があげられる。これ以外の部分の構成は、ボイルオフガス供給・回収装置A1と同じであるので、その説明は省略する。
FIG. 4 is a diagram showing the configuration of the boil-off gas supply / recovery device A2 of one embodiment, which has a configuration different from that of the boil-off gas supply / recovery device A1 shown in FIG.
Regarding the configuration of the boil-off gas supply / recovery device A2, the configuration of the lubricating oil removing unit 7 is different from the boil-off gas supply / recovery device A1. Since the configuration of the other parts is the same as that of the boil-off gas supply / recovery device A1, the description thereof will be omitted.

図4に示すようにボイルオフガス供給・回収装置A2の潤滑油除去部7には、第1潤滑油吸着除去器9と第2潤滑油吸着除去器9が並列して設けられている。再液化回収ライン6が並列配置される第1潤滑油吸着除去器9と第2潤滑油吸着除去器9に対応して一対の並列ラインが設けられ、この並列ラインの分岐/合流する分岐部及び合流部には、一対の切替弁30が設けられている。切替弁30は、ボイルオフガスを第1潤滑油吸着除去器9に流すか、あるいは第2潤滑油吸着除去器9に流すかを選択的に切り替える。例えば、濃度評価ユニット80aにより算出された潤滑油の濃度の評価結果から、吸着特性判定部82aが、第1潤滑油吸着除去器9の吸着剤9aの吸着特性が低下したと判定した場合、ボイルオフガスを流す対象を第1潤滑油吸着除去器9の吸着剤9aから、第2潤滑油吸着除去器9の吸着剤9aに切り替えて、潤滑油吸着除去器9の吸着剤9aにボイルオフガスを流して潤滑油を除去する。この期間中に、第1潤滑油吸着除去器9を再液化回収ライン6から取外すか、または第1潤滑油吸着除去器9中の吸着剤9aを抜き出して、潤滑油吸着除去器9またはその中の吸着剤9aを新たな潤滑油吸着除去器または吸着剤に取り替える。同様に、評価判定ユニット11aにより算出された潤滑油の濃度の評価結果から、吸着特性判定部82aが、第2潤滑油吸着除去器9の吸着剤9aの吸着特性が低下したと判定した場合、ボイルオフガスを流す対象を第2潤滑油吸着除去器9の吸着剤9aから、第1潤滑油吸着除去器9の吸着剤9aに切り替えて、第1潤滑油吸着除去器9の吸着剤9aにボイルオフガスを流して、潤滑油を除去する。この期間中に、第2潤滑油吸着除去器9またはその中の吸着剤9aを、新たな潤滑油吸着除去器または吸着剤に取り替える。このように、並列配置した第1潤滑油吸着除去器9と第2潤滑油吸着除去器9のいずれか一方を潤滑油の除去に使用し、他方の使用しない潤滑油吸着除去器またはその中の吸着剤を新たな潤滑油吸着除去器または吸着剤に取り替える。すなわち、他方の使用しない潤滑油吸着除去器に対して、吸着特性を復活させる処理を施す。
このように、ボイルオフガス供給・回収装置A2の潤滑油除去部7は、第1潤滑油吸着除去器9の他に、再液化回収ライン6にあるボイルオフガス中に混入した潤滑油を吸着してボイルオフガスから分離除去する吸着剤9aを内包する第2潤滑油吸着除去器9を含む。このため、第1潤滑油吸着除去器9を吸着除去に使用して第2潤滑油吸着除去器9について潤滑油の除去を行うか、第2潤滑油吸着除去器9を吸着除去に使用して第1潤滑油吸着除去器9に対して潤滑油の除去を行うかを、選択することができる。
As shown in FIG. 4, the lubricating oil removing unit 7 of the boil-off gas supply / recovery device A2 is provided with a first lubricating oil adsorption removing device 9 and a second lubricating oil adsorption removing device 9 * in parallel. A pair of parallel lines are provided corresponding to the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * in which the reliquefaction recovery line 6 is arranged in parallel, and the branching / merging branch portion of the parallel lines is provided. A pair of switching valves 30 are provided at the confluence portion. The switching valve 30 selectively switches between flowing the boil-off gas through the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * . For example, when the adsorption characteristic determination unit 82a determines from the evaluation result of the concentration of the lubricating oil calculated by the concentration evaluation unit 80a that the adsorption characteristics of the adsorbent 9a of the first lubricating oil adsorption remover 9 have deteriorated, boil off. The target to which the gas flows is switched from the adsorbent 9a of the first lubricating oil adsorbent remover 9 to the adsorbent 9a * of the second lubricating oil adsorbent remover 9 * , and becomes the adsorbent 9a * of the lubricating oil adsorbent remover 9 * . Boil-off gas is flowed to remove the lubricating oil. During this period, the first lubricating oil adsorption remover 9 is removed from the reliquefaction recovery line 6, or the adsorbent 9a in the first lubricating oil adsorption remover 9 is extracted to the lubricating oil adsorption remover 9 or the inside thereof. Replace the adsorbent 9a with a new lubricating oil adsorbent remover or adsorbent. Similarly, from the evaluation result of the concentration of the lubricating oil calculated by the evaluation determination unit 11a, the adsorption characteristic determination unit 82a determined that the adsorption characteristic of the adsorbent 9a * of the second lubricating oil adsorption remover 9 * was deteriorated. In this case, the target for flowing the boil-off gas is switched from the adsorbent 9a * of the second lubricating oil adsorbent remover 9 * to the adsorbent 9a of the first lubricating oil adsorbent remover 9, and the adsorbent of the first lubricating oil adsorbent remover 9 is adsorbed. Boil-off gas is flowed through the agent 9a to remove the lubricating oil. During this period, the second lubricating oil adsorbent remover 9 * or the adsorbent 9a * in the second lubricating oil adsorbent remover 9 * is replaced with a new lubricating oil adsorbent remover or adsorbent. In this way, either one of the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * arranged in parallel is used for removing the lubricating oil, and the other unused lubricating oil adsorption remover or the inside thereof. Replace the adsorbent with a new lubricant adsorbent or adsorbent. That is, the other unused lubricating oil adsorption remover is subjected to a process of restoring the adsorption characteristics.
In this way, the lubricating oil removing unit 7 of the boil-off gas supply / recovery device A2 adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line 6 in addition to the first lubricating oil adsorption / removing device 9. It includes a second lubricating oil adsorption remover 9 * containing an adsorbent 9a * that separates and removes from the boil-off gas. Therefore, either the first lubricating oil adsorption remover 9 is used for adsorption removal to remove the lubricating oil from the second lubricating oil adsorption remover 9 * , or the second lubricating oil adsorption remover 9 * is used for adsorption removal. Then, it is possible to select whether to remove the lubricating oil from the first lubricating oil adsorption remover 9.

特に、再液化回収ライン6には、ボイルオフガスを、第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9のいずれか一方に流すための一対の切替弁30が、並列配置した第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9の前後に設けられるので、ボイルオフガスを供給先の装置に供給しながら、切替弁30を用いて、ボイルオフガスの一部を再液化する処理を、中断することなく継続して行うことができる。
なお、切替弁30が、第1潤滑油吸着除去器9および第2潤滑油吸着除去器9の両方に、ボイルオフガスを同時に流し得る開閉機能も併せ持つ場合には、何らかの異常によって多量の潤滑油がボイルオフガスに含まれるような事態が生じた場合などにおいて、両方の潤滑油除去器を同時に使用することにより、余裕を持って潤滑油の吸着除去の対応ができる。
In particular, in the reliquefaction recovery line 6, a pair of switching valves 30 for flowing boil-off gas to either the first lubricating oil adsorption remover 9 or the second lubricating oil adsorption remover 9 * are arranged in parallel. Since it is provided before and after the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * , a part of the boil-off gas is used by using the switching valve 30 while supplying the boil-off gas to the supply destination device. The process of reliquefaction can be continuously performed without interruption.
If the switching valve 30 also has an opening / closing function that allows boil-off gas to flow simultaneously in both the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * , a large amount of lubricating oil may occur due to some abnormality. By using both lubricating oil removers at the same time, when a situation occurs in which the lubricating oil is contained in the boil-off gas, it is possible to cope with the adsorption and removal of the lubricating oil with a margin.

なお、ボイルオフガス供給・回収装置A2における第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9またはそれらの中の吸着剤9a及び吸着剤9aは、新品の潤滑油吸着除去器または吸着剤に取替え可能な構成であるが、この構成を利用し、潤滑油の吸着の飽和に伴い吸着特性が低下した吸着剤9a(ないしは吸着剤9a)を抜き出して、オフラインで吸着特性を復活させる再生処理を行うことにより、吸着特性を復活させることもできる。例えば、吸着剤9aの再生処理として、吸着剤9aを加熱して吸着剤9aに吸着した潤滑油を気化させることにより、または、吸着剤9aの周囲環境(圧力)を減圧させることにより、あるいは、加熱と吸着剤の周囲環境(圧力)の減圧とを組み合わせることにより、吸着剤9aに吸着した潤滑油を気化させて、吸着特性を復活させることができる。すなわち、再生処理は、吸着剤を加熱する処理、及び、吸着剤の周囲環境(の圧力)を減圧する処理の少なくとも1つの処理を含む。ここで、鉱物油系潤滑油使用の場合の再生処理に要する加熱温度は、常圧環境においては450~600℃程度(加熱中は、窒素などの不活性ガスを流すことが好ましい)であり、減圧しながら加熱する場合は、より低温で再生できる。 The first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * or the adsorbent 9a and the adsorbent 9a * in them in the boil-off gas supply / recovery device A2 are new lubricating oil adsorption removers. Alternatively, it is a configuration that can be replaced with an adsorbent, but by using this configuration, the adsorbent 9a (or adsorbent 9a * ) whose adsorption characteristics have deteriorated due to the saturation of the adsorption of the lubricating oil can be extracted to improve the adsorption characteristics offline. The adsorption characteristics can also be restored by performing a regeneration process to restore the adsorption characteristics. For example, as a regeneration process of the adsorbent 9a, the adsorbent 9a is heated to vaporize the lubricating oil adsorbed on the adsorbent 9a, or the ambient environment (pressure) of the adsorbent 9a is reduced, or the adsorbent 9a is regenerated. By combining heating and depressurization of the ambient environment (pressure) of the adsorbent, the lubricating oil adsorbed on the adsorbent 9a can be vaporized to restore the adsorption characteristics. That is, the regeneration treatment includes at least one treatment of heating the adsorbent and reducing the pressure of the ambient environment (pressure) of the adsorbent. Here, the heating temperature required for the regeneration treatment when using a mineral oil-based lubricating oil is about 450 to 600 ° C. in a normal pressure environment (preferably, an inert gas such as nitrogen is flowed during heating). When heating while reducing the pressure, it can be regenerated at a lower temperature.

図5は、図4に示すボイルオフガス供給・回収装置A2と異なる構成を有する、一実施形態のボイルオフガス供給・回収装置A3の構成を示す図である。
ボイルオフガス供給・回収装置A3の構成に関して、ボイルオフガス供給・回収装置A2と相違する部分としては、潤滑油除去部7の構成が挙げられる。これ以外の部分の構成は、ボイルオフガス供給・回収装置A2と同じであるので、その説明は省略する。
FIG. 5 is a diagram showing the configuration of the boil-off gas supply / recovery device A3 of one embodiment, which has a configuration different from that of the boil-off gas supply / recovery device A2 shown in FIG.
Regarding the configuration of the boil-off gas supply / recovery device A3, a portion different from the boil-off gas supply / recovery device A2 is the configuration of the lubricating oil removing unit 7. Since the configuration of the other parts is the same as that of the boil-off gas supply / recovery device A2, the description thereof will be omitted.

ボイルオフガス供給・回収装置A3の潤滑油除去部7の第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9には、加熱装置50,50が設けられている。さらに、潤滑油除去部7には、第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9の容器内空間を減圧するための減圧排気装置60と、第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9のいずれか一方を選択して減圧するための切替弁70と、第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9の容器内空間と接続した排気管72と、が設けられている。
例えば、評価判定ユニット11aにより算出された潤滑油の濃度の評価結果から吸着特性判定部82aが、第1潤滑油吸着除去器9の吸着剤9aの吸着特性が低下したと判定した場合、第2潤滑油吸着除去器9の吸着剤9aにボイルオフガスの流通を切替えて、潤滑油を除去する。この期間中に、第1潤滑油吸着除去器9の吸着剤9aの吸着特性を復活させるために、吸着剤9aの再生処理を行って、吸着剤9aに吸着した潤滑油を気化させて外部あるいは回収容器(図示されない)に排気する。同様に、評価判定ユニット11aにより算出された潤滑油の濃度の評価結果から、吸着特性判定部82aが、第2潤滑油吸着除去器9の吸着剤9aの吸着特性が低下したと判定した場合、第1潤滑油吸着除去器9の吸着剤9aにボイルオフガスの流通を切替えて、潤滑油を除去する。この期間中に、第2潤滑油吸着除去器9の吸着剤9aの吸着特性を復活させるために、吸着剤9aの再生処理を行って、吸着剤9に吸着した潤滑油を気化させて外部あるいは処理装置(図示されない)に排気する。このように、並列配置した第1潤滑油吸着除去器9と第2潤滑油吸着除去器9のいずれか一方を潤滑油の除去に使用し、他方の使用しない潤滑油吸着除去器の吸着剤の吸着特性を復活させる再生処理を行う。このため、切替弁30と、加熱装置50、50、減圧排気装置60、切替弁70、及び排気管72とを用いて、新品の潤滑油吸着除去器ないし新品の吸着剤に取り替えることなく、潤滑油吸着除去器中の吸着剤を再生し、しかも、ボイルオフガスを供給先の装置に供給しながら、ボイルオフガスの一部を再液化する処理を中断することなく継続して行うことができる。
Heating devices 50 and 50 * are provided in the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * of the lubricating oil removing unit 7 of the boil-off gas supply / recovery device A3. Further, the lubricating oil removing unit 7 includes a decompression exhaust device 60 for reducing the pressure in the container space of the first lubricating oil adsorption removing device 9 and the second lubricating oil adsorption removing device 9 * , and a first lubricating oil adsorption removing device. A switching valve 70 for selecting one of 9 and the second lubricating oil adsorption remover 9 * to reduce the pressure, and the space inside the container of the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * . An exhaust pipe 72 connected to the oil pipe 72 is provided.
For example, when the adsorption characteristic determination unit 82a determines from the evaluation result of the concentration of the lubricating oil calculated by the evaluation determination unit 11a that the adsorption characteristic of the adsorbent 9a of the first lubricating oil adsorption remover 9 has deteriorated, the second The flow of boil-off gas is switched to the adsorbent 9a * of the lubricating oil adsorption remover 9 * to remove the lubricating oil. During this period, in order to restore the adsorption characteristics of the adsorbent 9a of the first lubricating oil adsorption remover 9, the adsorbent 9a is regenerated to vaporize the lubricating oil adsorbed on the adsorbent 9a to the outside or. Exhaust to a collection container (not shown). Similarly, from the evaluation result of the concentration of the lubricating oil calculated by the evaluation determination unit 11a, the adsorption characteristic determination unit 82a determined that the adsorption characteristic of the adsorbent 9a * of the second lubricating oil adsorption remover 9 * was deteriorated. In this case, the flow of the boil-off gas is switched to the adsorbent 9a of the first lubricating oil adsorption remover 9 to remove the lubricating oil. During this period, in order to restore the adsorption characteristics of the adsorbent 9a * of the second lubricating oil adsorption remover 9 * , the adsorbent 9a * is regenerated to vaporize the lubricating oil adsorbed on the adsorbent 9 * . And exhaust to the outside or to a processing device (not shown). In this way, either one of the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * arranged in parallel is used for removing the lubricating oil, and the adsorbent of the other unused lubricating oil adsorption remover. Regeneration processing is performed to restore the adsorption characteristics of. Therefore, the switching valve 30, the heating devices 50, 50 * , the decompression exhaust device 60, the switching valve 70, and the exhaust pipe 72 are used without replacing with a new lubricating oil adsorption remover or a new adsorbent. While the adsorbent in the lubricating oil adsorbent remover is regenerated and the boil-off gas is supplied to the supply destination device, the process of reliquefying a part of the boil-off gas can be continuously performed without interruption.

なお、上述のボイルオフガス供給・回収装置A3において、切替弁30と加熱装置50、50及び排気管72との組合せか、または、切替弁30と減圧排気装置60、切替弁70及び排気管72との組合せのいずれかを設け、加熱または減圧のいずれかのみを行うことによっても、吸着剤9aを再生できる。前者の加熱のみによる再生処理を行う場合は、前出の図2に示されるような再液化回収ライン6の供給口6a(図5ではその図示は省略されている)から窒素ガスを第1潤滑油吸着除去器9内に流しながら加熱を行い、排気管72から外部あるいは回収容器(図示されない)に排気することが好ましい。 In the above-mentioned boil-off gas supply / recovery device A3, the combination of the switching valve 30, the heating devices 50, 50 * and the exhaust pipe 72, or the switching valve 30, the pressure reducing exhaust device 60, the switching valve 70 and the exhaust pipe 72. The adsorbent 9a can also be regenerated by providing any of the combinations with and by performing either heating or depressurization. When the former regeneration process is performed only by heating, nitrogen gas is first lubricated from the supply port 6a (not shown in FIG. 5) of the reliquefaction recovery line 6 as shown in FIG. 2 above. It is preferable to heat the oil while flowing it into the oil adsorption remover 9 and exhaust it from the exhaust pipe 72 to the outside or a recovery container (not shown).

このような加熱装置50、減圧排気装置60、及び排気管72は、図1に示すボイルオフガス供給・回収装置A1における第1潤滑油吸着除去器9に設けられてもよい。すなわち、第1潤滑油吸着除去器9は、吸着剤9aの再生処理において、吸着剤9aに吸着した潤滑油を外部に気化排気することにより吸着剤9aの吸着特性を復活させるために、吸着剤9aを加熱する加熱装置50、及び/または減圧排気装置60及び排気管72を備えてもよい。吸着特性判定部82aが、吸着特性が低下したと判定した場合、加熱及び/または減圧により吸着剤9aを再生すればよい。
このように再生処理を行うことで、吸着剤9aの交換をすることなく、繰り返し同じ吸着剤9aを使用することができる。
Such a heating device 50, a decompression exhaust device 60, and an exhaust pipe 72 may be provided in the first lubricating oil adsorption remover 9 in the boil-off gas supply / recovery device A1 shown in FIG. That is, in the regeneration process of the adsorbent 9a, the first lubricating oil adsorbent remover 9 vaporizes and exhausts the lubricating oil adsorbed on the adsorbent 9a to the outside to restore the adsorbent characteristics of the adsorbent 9a. A heating device 50 for heating 9a and / or a decompression exhaust device 60 and an exhaust pipe 72 may be provided. When the adsorption characteristic determination unit 82a determines that the adsorption characteristic has deteriorated, the adsorbent 9a may be regenerated by heating and / or depressurizing.
By performing the regeneration treatment in this way, the same adsorbent 9a can be used repeatedly without exchanging the adsorbent 9a.

図6は、図1に示すボイルオフガス供給・回収装置A1と異なる構成を有する、一実施形態のボイルオフガス供給・回収装置A4の構成を示す図である。
ボイルオフガス供給・回収装置A4の構成に関して、ボイルオフガス供給・回収装置A1との相違として、潤滑油除去部7のボイルオフガスの出口側に残留濃度評価部10aが設けられることの他に、吸着除去前濃度評価部10bが潤滑油除去部7のボイルオフガスの入口側に設けられること、及び再液化回収ライン流量計15が設けられること、が挙げられる。これ以外の部分の構成は、ボイルオフガス供給・回収装置A1と同じであるので、その説明は省略する。
FIG. 6 is a diagram showing the configuration of the boil-off gas supply / recovery device A4 of one embodiment, which has a configuration different from that of the boil-off gas supply / recovery device A1 shown in FIG.
Regarding the configuration of the boil-off gas supply / recovery device A4, the difference from the boil-off gas supply / recovery device A1 is that the residual concentration evaluation unit 10a is provided on the outlet side of the boil-off gas of the lubricating oil removal unit 7, and adsorption removal is performed. The pre-concentration evaluation unit 10b is provided on the inlet side of the boil-off gas of the lubricating oil removing unit 7, and the reliquefaction recovery line flow meter 15 is provided. Since the configuration of the other parts is the same as that of the boil-off gas supply / recovery device A1, the description thereof will be omitted.

ボイルオフガス供給・回収装置A4は、吸着除去前濃度評価部10bを備える。吸着除去前濃度評価部10bは、再液化回収ライン6内の、分岐部5と、第1潤滑油吸着除去器9との間のボイルオフガス中の潤滑油の濃度を評価する評価判定ユニット11bを含む。
具体的には、吸着除去前濃度評価部10bは、再液化回収ライン6内の分岐部5と第1潤滑油吸着除去器9との間にあるボイルオフガスの一部をサンプリングするために、分岐部5と第1潤滑油吸着除去器9との間から分岐する吸着除去前サンプリングライン14bを備える。吸着除去前濃度評価部10bは、吸着除去前サンプリングラインにあるボイルオフガス中の吸着除去前の潤滑油の濃度を評価する。吸着除去前濃度評価部10bは、一例として、図3に示したような、前述の残留濃度評価部10aと同様の構成を備える。したがって、吸着除去前濃度評価部10bの測定器80b(図3参照)は、吸着剤9aを通過する前のボイルオフガスに混入する潤滑油の濃度を評価する。この濃度の評価結果は、吸着除去前濃度評価部10bの吸着特性判定部82bに送信される。この潤滑油の濃度の評価は、所定の時間間隔(例えば、半日~1日毎)で行われ、評価結果が得られる度に吸着特性判定部82bに送信される。
再液化回収ライン流量計15は、再液化回収ライン6内を流れるボイルオフガスの流量、および後述する所定時間内におけるその時間積分値である、積算流量の経時データを随時測定する。測定結果は、吸着特性判定部82bに送信される。
The boil-off gas supply / recovery device A4 includes a concentration evaluation unit 10b before adsorption removal. The concentration evaluation unit 10b before adsorption removal includes an evaluation determination unit 11b for evaluating the concentration of the lubricating oil in the boil-off gas between the branch portion 5 and the first lubricating oil adsorption / removal device 9 in the reliquefaction recovery line 6. include.
Specifically, the pre-adsorption / removal concentration evaluation unit 10b branches in order to sample a part of the boil-off gas between the branch portion 5 in the reliquefaction recovery line 6 and the first lubricating oil adsorption / remover 9. A pre-adsorption sampling line 14b branched from the portion 5 and the first lubricating oil adsorption remover 9 is provided. The concentration evaluation unit 10b before adsorption removal evaluates the concentration of the lubricating oil before adsorption removal in the boil-off gas in the sampling line before adsorption removal. As an example, the concentration evaluation unit 10b before adsorption removal has the same configuration as the residual concentration evaluation unit 10a described above, as shown in FIG. Therefore, the measuring instrument 80b (see FIG. 3) of the concentration evaluation unit 10b before adsorption removal evaluates the concentration of the lubricating oil mixed in the boil-off gas before passing through the adsorbent 9a. The evaluation result of this concentration is transmitted to the adsorption characteristic determination unit 82b of the concentration evaluation unit 10b before adsorption removal. The evaluation of the concentration of the lubricating oil is performed at predetermined time intervals (for example, every half day to one day), and each time an evaluation result is obtained, it is transmitted to the adsorption characteristic determination unit 82b.
The reliquefaction recovery line flow meter 15 constantly measures the flow rate of the boil-off gas flowing in the reliquefaction recovery line 6 and the time-dependent data of the integrated flow rate, which is the time-integrated value within a predetermined time described later. The measurement result is transmitted to the adsorption characteristic determination unit 82b.

吸着特性判定部82bは、上述したように、測定器80bから送信された、吸着剤9aを通過する前のボイルオフガス内に混入していた潤滑油の濃度に関する、所定の時間間隔毎の履歴データを取得する。さらに、吸着特性判定部82bは、再液化回収ライン流量計15から送信された、ボイルオフガスの積算流量の経時データを取得する。吸着特性判定部82bは、上記吸着除去前の潤滑油の濃度の履歴データと上記積算流量の経時データを用いて、以下のように、吸着剤9aに流入する潤滑油の積算量を見積もることができる。 As described above, the adsorption characteristic determination unit 82b has historical data for each predetermined time interval regarding the concentration of the lubricating oil mixed in the boil-off gas before passing through the adsorbent 9a transmitted from the measuring instrument 80b. To get. Further, the adsorption characteristic determination unit 82b acquires the time-dependent data of the integrated flow rate of the boil-off gas transmitted from the reliquefaction recovery line flow meter 15. The adsorption characteristic determination unit 82b can estimate the integrated amount of the lubricating oil flowing into the adsorbent 9a as follows by using the historical data of the concentration of the lubricating oil before the adsorption removal and the temporal data of the integrated flow rate. can.

所定の時間内における、再液化回収ライン6を通り潤滑油吸着除去器9内部の吸着剤9aに流入するボイルオフガス中の潤滑油の積算量は、ボイルオフガス中の吸着除去前の潤滑油の濃度とボイルオフガス流量の積を、所定の時間内の時間積分した値である。従って、吸着剤9aの新品への交換または再生処理後に、再液化回収ライン6へのボイルオフガスの流通を開始してから、測定器80bによる吸着除去前濃度の直近の測定時点までの時間内における、吸着剤9aに流入するボイルオフガス中の潤滑油の積算量(以下、「流通開始時からの潤滑油の積算量」と称する)は、ボイルオフガス中の吸着除去前の潤滑油濃度とボイルオフガス流量との積を、該時間内で時間積分することで求められる。この流通開始時からの潤滑油の積算量は、吸着特性判定部82bによって、例えば、以下の二つの方法により、近似的に算出される。 The integrated amount of the lubricating oil in the boil-off gas flowing into the adsorbent 9a inside the lubricating oil adsorption remover 9 through the reliquefaction recovery line 6 within a predetermined time is the concentration of the lubricating oil before the adsorption removal in the boil-off gas. It is a value obtained by integrating the product of the boil-off gas flow rate and the boil-off gas flow rate over a predetermined time. Therefore, within the time from the start of distribution of the boil-off gas to the reliquefaction recovery line 6 after the replacement of the adsorbent 9a with a new one or the regeneration treatment, to the time of the latest measurement of the concentration before adsorption removal by the measuring instrument 80b. The integrated amount of lubricating oil in the boil-off gas flowing into the adsorbent 9a (hereinafter referred to as "integrated amount of lubricating oil from the start of distribution") is the concentration of the lubricating oil before removal of adsorption in the boil-off gas and the boil-off gas. It is obtained by time-integrating the product with the flow rate within the time. The integrated amount of the lubricating oil from the start of distribution is approximately calculated by the adsorption characteristic determination unit 82b, for example, by the following two methods.

(1)測定器80bによる、ボイルオフガス中の吸着除去前の潤滑油濃度の測定値と、測定器80bによる濃度測定の時間間隔内における、再液化回収ライン流量計15によるボイルオフガスの積算流量の測定値との積を逐次計算し、再液化回収ライン6へのボイルオフガスの流通を開始してから、測定器80bによる吸着除去前濃度の直近の測定時点までの、前記積の累積和を求める方法。
(2)再液化回収ライン6へのボイルオフガスの流通を開始してから、測定器80bによる吸着除去前濃度の直近の測定時点までの時間内における、測定器80bによるボイルオフガス中の吸着除去前の潤滑油濃度の測定値の時間平均値と、同時間内における、再液化回収ライン流量計15によるボイルオフガスの積算流量(流量の時間積分値)の測定値との積を求める方法。
(1) The measured value of the lubricating oil concentration before removal of adsorption in the boil-off gas by the measuring instrument 80b and the integrated flow rate of the boil-off gas by the reliquefaction recovery line flow meter 15 within the time interval of the concentration measurement by the measuring instrument 80b. The product with the measured value is sequentially calculated, and the cumulative sum of the products is obtained from the start of distribution of the boil-off gas to the reliquefaction recovery line 6 to the latest measurement time of the concentration before adsorption removal by the measuring instrument 80b. Method.
(2) Before the adsorption and removal of the boil-off gas by the measuring instrument 80b within the time from the start of the distribution of the boil-off gas to the reliquefaction recovery line 6 to the time of the latest measurement of the concentration before the adsorption and removal by the measuring instrument 80b. A method for obtaining the product of the time average value of the measured value of the lubricating oil concentration and the measured value of the integrated flow rate (time integrated value of the flow rate) of the boil-off gas by the reliquefaction recovery line flow meter 15 within the same time.

一般に、ボイルオフガス中の吸着除去前の潤滑油濃度は、圧縮機4によるボイルオフガスの加圧の変動に伴って変動することが多いが、吸着剤9aを経ないため、その吸着特性の低下に伴う長期的な変動はない。このため、再液化回収ライン6へのボイルオフガスの流通を開始してから所定の時間内(例えば、10回程度の濃度測定に要する、4~10日間程度)の吸着除去前濃度の測定値の平均を求めて記録し、それを既定値として用いることができる。この平均値である既定値を用い、上記(2)の方法に従えば、流通開始時からの潤滑油の積算量を算出することができる。ボイルオフガスの積算流量の測定は、ボイルオフガス中の潤滑油濃度の測定に比べて格段に容易にできるため、上記(2)の方法は、上記の平均値である既定値の取得後は煩雑な潤滑油濃度の測定を逐一行う必要なく、流通開始時からの潤滑油の積算量を簡便に求めることができる点で好ましい。 In general, the concentration of lubricating oil in the boil-off gas before removal of adsorption often fluctuates with fluctuations in the pressurization of the boil-off gas by the compressor 4, but since it does not pass through the adsorbent 9a, its adsorption characteristics deteriorate. There are no long-term fluctuations that accompany it. Therefore, the measured value of the concentration before adsorption removal within a predetermined time (for example, about 4 to 10 days required for about 10 times of concentration measurement) after starting the circulation of the boil-off gas to the reliquefaction recovery line 6. The average can be calculated and recorded and used as the default value. By using the default value which is the average value and following the method (2) above, it is possible to calculate the integrated amount of the lubricating oil from the start of distribution. Since the measurement of the integrated flow rate of the boil-off gas can be made much easier than the measurement of the lubricating oil concentration in the boil-off gas, the method (2) above is complicated after obtaining the default value which is the above average value. It is preferable that the integrated amount of lubricating oil can be easily obtained from the start of distribution without having to measure the lubricating oil concentration one by one.

吸着特性判定部82bは、上記のようにして求めた流通開始時からの潤滑油の積算量と、同等のボイルオフガス中潤滑油濃度・ボイルオフガス流速・ボイルオフガス温度の条件下で予め実験的に求められた、吸着剤9aの最大潤滑油吸着量(即ち、吸着剤9aが同条件下で破過に達するまでの潤滑油の吸着可能量)とを比較する。前者が後者に達したか否かを判定し、達した場合、吸着剤9aの吸着特性は低下したと判定する。吸着特性判定部82bは、この判定を逐次行う他に、流通開始時からの潤滑油の積算量の経時変化に基づき、吸着剤9aの吸着特性が低下する時期を事前に予測することもできる。吸着剤9aの吸着特性が低下したと判定された場合、吸着特性判定部82bは、第1潤滑油吸着除去器9またはその中の吸着剤9aを更新するために、遮断弁20および21を閉じるように制御する。 The adsorption characteristic determination unit 82b is experimentally prepared in advance under the conditions of the accumulated amount of lubricating oil from the start of distribution obtained as described above, the same concentration of lubricating oil in the boil-off gas, the boil-off gas flow velocity, and the boil-off gas temperature. The determined maximum amount of lubricating oil adsorbed by the adsorbent 9a (that is, the amount of lubricating oil that can be adsorbed until the adsorbent 9a reaches breakthrough under the same conditions) is compared. It is determined whether or not the former has reached the latter, and if so, it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated. In addition to sequentially performing this determination, the adsorption characteristic determination unit 82b can predict in advance the time when the adsorption characteristic of the adsorbent 9a deteriorates based on the change over time in the integrated amount of the lubricating oil from the start of distribution. When it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated, the adsorption characteristic determination unit 82b closes the shutoff valves 20 and 21 in order to update the first lubricating oil adsorption remover 9 or the adsorbent 9a in the first lubricating oil adsorption remover 9. To control.

このように、ボイルオフガス供給・回収装置A4は、吸着除去前濃度評価部10bと再液化回収ライン流量計15とを備えるので、吸着除去前濃度評価部10bによる濃度の評価結果と再液化回収ライン流量計15による積算流量の評価結果とによって、吸着剤9aに流入した潤滑油の量に関する情報を精度よく取得することができる。 As described above, since the boil-off gas supply / recovery device A4 includes a concentration evaluation unit 10b before adsorption removal and a reliquefaction recovery line flow meter 15, the concentration evaluation result by the concentration evaluation unit 10b before adsorption removal and the reliquefaction recovery line Information on the amount of lubricating oil flowing into the adsorbent 9a can be accurately obtained based on the evaluation result of the integrated flow rate by the flow meter 15.

ボイルオフガス供給・回収装置A4が、図6に示すように、上述の吸着除去前濃度評価部10b(吸着特性判定部82bを含む)および再液化回収ライン流量計15との他に前出の残留濃度評価部10a(吸着特性判定部82aを含む)を備える形態の場合、残留濃度評価部10aによる吸着除去後のボイルオフガス中の潤滑油濃度の評価結果と、吸着除去前濃度評価部10bによる吸着除去前のボイルオフガス中の潤滑油濃度、および再液化回収ライン流量計15による積算流量の評価結果とを組み合わせることにより、吸着特性判定部82aおよび82bの両方の判定に基づいて、吸着剤9aの吸着特性の低下を精度よく判定できる。 As shown in FIG. 6, the boil-off gas supply / recovery device A4 includes the above-mentioned residue before adsorption removal concentration evaluation unit 10b (including adsorption characteristic determination unit 82b) and the reliquefaction recovery line flow meter 15. In the case of the form including the concentration evaluation unit 10a (including the adsorption characteristic determination unit 82a), the evaluation result of the lubricating oil concentration in the boil-off gas after the adsorption removal by the residual concentration evaluation unit 10a and the adsorption by the adsorption removal concentration evaluation unit 10b. By combining the concentration of lubricating oil in the boil-off gas before removal and the evaluation result of the integrated flow rate by the reliquefaction recovery line flow meter 15, the adsorbent 9a is determined based on the determination of both the adsorption characteristic determination units 82a and 82b. It is possible to accurately determine the deterioration of the adsorption characteristics.

また、以下のように、吸着特性判定部82aおよび82bの両方の判定に基づき、吸着剤9aの吸着特性の低下を、効率的に予測・判定することもできる。
まず、吸着除去前濃度評価部10bによる濃度、および再液化回収ライン流量計15による積算流量の評価結果から、吸着特性判定部82bは、例えば前述の(2)の方法により、上述の流通開始時からの潤滑油の積算量を近似的に簡便に算出する。吸着特性判定部82bは、流通開始時からの潤滑油の積算量と、予め実験的に求められた吸着剤9aの最大潤滑油吸着量とを比較し、該積算量の経時変化に基づいて、吸着剤9aの吸着特性が低下する時期を事前に予測する。
上記の予測によって、吸着剤9aの吸着特性の低下が近づいたと判断された時点(例えば、流通開始時からの潤滑油の積算量が、吸着剤9aの最大潤滑油吸着量のおよそ9割に達した時点)において、吸着特性の低下の判定手段を、ボイルオフガス供給・回収装置A1の吸着特性判定部82aに切替える。吸着特性判定部82aは、吸着剤9aによる吸着除去後の潤滑油の残留濃度の測定結果から、吸着剤9aの吸着特性の低下を判定する。吸着特性判定部82aによる判定は、吸着除去後の潤滑油の残留濃度の実測値に基づくので、その精度は高い。従って、以上の組み合わせにより、煩雑な潤滑油の濃度測定の回数をなるべく減らしながら、効率的かつ高精度に、吸着剤9aによる潤滑油の吸着特性の低下を予測・判定できる。
Further, as described below, it is possible to efficiently predict and determine the deterioration of the adsorption characteristics of the adsorbent 9a based on the determinations of both the adsorption characteristic determination units 82a and 82b.
First, from the evaluation results of the concentration by the concentration evaluation unit 10b before adsorption removal and the integrated flow rate by the reliquefaction recovery line flow meter 15, the adsorption characteristic determination unit 82b is, for example, by the method (2) described above, at the start of distribution. Approximately and easily calculate the integrated amount of lubricating oil from. The adsorption characteristic determination unit 82b compares the integrated amount of lubricating oil from the start of distribution with the maximum amount of lubricating oil adsorbed by the adsorbent 9a experimentally obtained in advance, and based on the change over time of the integrated amount, The time when the adsorption characteristics of the adsorbent 9a deteriorate is predicted in advance.
Based on the above prediction, when it is determined that the adsorption characteristics of the adsorbent 9a are about to deteriorate (for example, the accumulated amount of lubricating oil from the start of distribution reaches about 90% of the maximum amount of lubricating oil adsorbed by the adsorbent 9a. At that time, the means for determining the deterioration of the adsorption characteristics is switched to the adsorption characteristic determination unit 82a of the boil-off gas supply / recovery device A1. The adsorption characteristic determination unit 82a determines that the adsorption characteristic of the adsorbent 9a is deteriorated from the measurement result of the residual concentration of the lubricating oil after the adsorption is removed by the adsorbent 9a. Since the determination by the adsorption characteristic determination unit 82a is based on the measured value of the residual concentration of the lubricating oil after the adsorption removal, the accuracy is high. Therefore, by the above combination, it is possible to predict and determine the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent 9a efficiently and with high accuracy while reducing the number of complicated measurement of the concentration of the lubricating oil as much as possible.

図6に示すボイルオフガス供給・回収装置A4では、第1潤滑油吸着除去器9のみを用いる構成について説明したが、上述の吸着特性判定部82bによる吸着剤9aの吸着特性の低下の判定は、前出の残留濃度評価部10aにおける吸着特性判定部82aによる判定と同様に、図4および図5に示したような、並列して設けられた第1潤滑油吸着除去器9と第2潤滑油吸着除去器9を構成要素として含む、前出のボイルオフガス供給・回収装置A2およびA3に適用することもできる(これらの適用の図示は省略する)。ボイルオフガス供給・回収装置A2またはA3においては、吸着特性判定部82bは、吸着剤9aの吸着特性が低下したと判定した時に、並列して設けられた第1潤滑油吸着除去器9と第2潤滑油吸着除去器9の間でボイルオフガスの流通を切替えるように切替弁30を制御する。 In the boil-off gas supply / recovery device A4 shown in FIG. 6, a configuration using only the first lubricating oil adsorption / removal device 9 has been described. However, the above-mentioned adsorption characteristic determination unit 82b determines the deterioration of the adsorption characteristics of the adsorbent 9a. Similar to the determination by the adsorption characteristic determination unit 82a in the residual concentration evaluation unit 10a described above, the first lubricating oil adsorption remover 9 and the second lubricating oil provided in parallel as shown in FIGS. 4 and 5 It can also be applied to the above-mentioned boil-off gas supply / recovery devices A2 and A3 including the adsorption remover 9 * as a component (the illustration of these applications is omitted). In the boil-off gas supply / recovery device A2 or A3, when the adsorption characteristic determination unit 82b determines that the adsorption characteristic of the adsorbent 9a has deteriorated, the first lubricating oil adsorption remover 9 and the second are provided in parallel. The switching valve 30 is controlled so as to switch the flow of the boil-off gas between the lubricating oil adsorption remover 9 * .

残留濃度評価部10aと吸着除去前濃度評価部10bは、図3に示すような同一の構成にできるので、以下のように、1つの機器として統合することもできる。 Since the residual concentration evaluation unit 10a and the concentration evaluation unit 10b before adsorption removal can have the same configuration as shown in FIG. 3, they can be integrated as one device as described below.

図7は、図6に示すボイルオフガス供給・回収装置A4と異なる構成を有する、一実施形態のボイルオフガス供給・回収装置A5の構成を示す図である。
ボイルオフガス供給・回収装置A5の構成に関しては、ボイルオフガス供給・回収装置A4との相違として、残留濃度評価部10aと吸着除去前濃度評価部10bを、1つの濃度評価部10として統合したこと、統合した濃度評価部10に、吸着除去後サンプリングライン14aと吸着除去前サンプリングライン14bを接続させたこと、及び、吸着除去後サンプリングライン14aと吸着除去前サンプリングライン14bの接続部に切替弁16を設けたこと、切換弁16と濃度評価部10との間に共通サンプリングライン14を設けたこと、が挙げられる。統合した濃度評価部10は、判定評価ユニット11を備える。判定評価ユニット11は、ボイルオフガス中の潤滑油の吸着除去後の残留濃度と吸着除去前の濃度の両方を切替えて計測し、吸着剤9aの吸着特性の低下を判定する、共通の濃度評価ユニット(濃度評価手段)103(図3参照)を備え、濃度評価ユニット103は、図3に示すように、吸着特性判定部82を備える。
FIG. 7 is a diagram showing the configuration of the boil-off gas supply / recovery device A5 of one embodiment, which has a configuration different from that of the boil-off gas supply / recovery device A4 shown in FIG.
Regarding the configuration of the boil-off gas supply / recovery device A5, the difference from the boil-off gas supply / recovery device A4 is that the residual concentration evaluation unit 10a and the concentration evaluation unit 10b before adsorption removal are integrated as one concentration evaluation unit 10. The integrated concentration evaluation unit 10 is connected to the sampling line 14a after adsorption removal and the sampling line 14b before adsorption removal, and the switching valve 16 is connected to the connection portion between the sampling line 14a after adsorption removal and the sampling line 14b before adsorption removal. It is mentioned that the common sampling line 14 is provided between the switching valve 16 and the concentration evaluation unit 10. The integrated concentration evaluation unit 10 includes a determination evaluation unit 11. The determination evaluation unit 11 switches and measures both the residual concentration of the lubricating oil in the boil-off gas after the adsorption and removal and the concentration before the adsorption removal, and determines the deterioration of the adsorption characteristics of the adsorbent 9a, which is a common concentration evaluation unit. (Concentration evaluation means) 103 (see FIG. 3) is provided, and the concentration evaluation unit 103 includes an adsorption characteristic determination unit 82 as shown in FIG.

切替弁16が、吸着除去後サンプリングライン14aのボイルオフガスをサンプリングするか、吸着除去前サンプリングライン14bのボイルオフガスをサンプリングするか、を切り替えることにより、濃度評価部10において、第1潤滑油吸着除去器9を通過した後のボイルオフガスに残留する潤滑油の濃度を評価するか、第1潤滑油吸着除去器9を通過する前のボイルオフガス中の潤滑油の濃度を評価するか、を選択することができる。すなわち、判定評価ユニット11は、第1潤滑油吸着除去器9を通過した後のボイルオフガスに残留する潤滑油の濃度と、及び第1潤滑油吸着除去器9を通過する前のボイルオフガス中の潤滑油の濃度の両方を、切替えて評価することができる。
したがって、吸着特性判定部82(図3参照)は、吸着剤9aによる吸着除去前後の潤滑油の濃度に関する所定の時間間隔毎の履歴データを取得する。さらに、吸着特性判定部82は、再液化回収ライン流量計15から送信された所定の時間に流れるボイルオフガスの積算流量の経時データを取得する。これらにより、判定評価ユニット11の吸着特性判定部82は、上記吸着剤9aによる吸着除去前後の潤滑油の濃度の履歴データと上記ボイルオフガスの積算流量の経時データを用いて、吸着剤9aによる吸着除去後のボイルオフガス中に残留する潤滑油の濃度と、吸着剤9aに流入する潤滑油の積算量の両方を見積もることができる。
The switching valve 16 switches between sampling the boil-off gas of the sampling line 14a after adsorption removal and sampling the boil-off gas of the sampling line 14b before adsorption removal, so that the concentration evaluation unit 10 removes the adsorption of the first lubricating oil. Select whether to evaluate the concentration of the lubricating oil remaining in the boil-off gas after passing through the vessel 9 or the concentration of the lubricating oil in the boil-off gas before passing through the first lubricating oil adsorption remover 9. be able to. That is, the determination evaluation unit 11 has the concentration of the lubricating oil remaining in the boil-off gas after passing through the first lubricating oil adsorption remover 9 and the concentration of the lubricating oil in the boil-off gas before passing through the first lubricating oil adsorption remover 9. Both concentrations of lubricating oil can be switched and evaluated.
Therefore, the adsorption characteristic determination unit 82 (see FIG. 3) acquires historical data for each predetermined time interval regarding the concentration of the lubricating oil before and after the adsorption removal by the adsorbent 9a. Further, the adsorption characteristic determination unit 82 acquires time-dependent data of the integrated flow rate of the boil-off gas flowing at a predetermined time transmitted from the reliquefaction recovery line flow meter 15. As a result, the adsorption characteristic determination unit 82 of the determination evaluation unit 11 uses the history data of the concentration of the lubricating oil before and after the adsorption removal by the adsorbent 9a and the time-dependent data of the integrated flow rate of the boil-off gas to adsorb with the adsorbent 9a. Both the concentration of the lubricating oil remaining in the boil-off gas after removal and the integrated amount of the lubricating oil flowing into the adsorbent 9a can be estimated.

吸着特性判定部82は、濃度評価部10によって得られた、第1潤滑油吸着除去器9を通過したボイルオフガス中に残留した潤滑油の濃度に基づいて、吸着剤9aによる潤滑油の吸着特性の低下を判定する。具体的には、潤滑油の濃度の評価結果が予め定めた上限値(例えば、質量濃度において0.1ないし1ppm程度)を超えた場合、吸着剤9aの吸着特性は低下したと判定する。
さらに、吸着特性判定部82は、濃度評価部10により得られた吸着除去前のボイルオフガス中の潤滑油濃度の評価結果、および再液化回収ライン流量計15による積算流量の評価結果に基づいて、流通開始時からの潤滑油の積算量と、同等のボイルオフガス中潤滑油濃度・ボイルオフガス流速・ボイルオフガス温度の条件下で予め実験的に求められた、吸着剤9aの最大潤滑油吸着量とを比較する。前者が後者に達したか否かを判定し、達した場合、吸着剤9aの吸着特性は低下したと判定する。
これらの両方による判定に基づいて、吸着剤9aの吸着特性の低下を精度よく判定することができる。また、前出のボイルオフガス供給・回収装置A4の説明において記載したように、これらの両方による判定に基づいて、吸着剤9aの吸着特性の低下を、効率的に予測・判定することもできる。
吸着剤9aの吸着特性が低下したと判定された場合、吸着特性判定部82は、第1潤滑油吸着除去器9またはその中の吸着剤9aを更新するために、遮断弁20および21を閉じるように制御する。
The adsorption characteristic determination unit 82 has the adsorption characteristics of the lubricating oil by the adsorbent 9a based on the concentration of the lubricating oil remaining in the boil-off gas that has passed through the first lubricating oil adsorption remover 9 obtained by the concentration evaluation unit 10. Judge the decrease in. Specifically, when the evaluation result of the concentration of the lubricating oil exceeds a predetermined upper limit value (for example, about 0.1 to 1 ppm in mass concentration), it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated.
Further, the adsorption characteristic determination unit 82 is based on the evaluation result of the lubricating oil concentration in the boil-off gas before the adsorption removal obtained by the concentration evaluation unit 10 and the evaluation result of the integrated flow rate by the reliquefaction recovery line flow meter 15. The accumulated amount of lubricating oil from the start of distribution, and the maximum amount of lubricating oil adsorbed by the adsorbent 9a, which was experimentally obtained in advance under the conditions of the lubricating oil concentration in the boil-off gas, the boil-off gas flow velocity, and the boil-off gas temperature. To compare. It is determined whether or not the former has reached the latter, and if so, it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated.
Based on the determination by both of these, it is possible to accurately determine the deterioration of the adsorption characteristics of the adsorbent 9a. Further, as described in the above description of the boil-off gas supply / recovery device A4, it is possible to efficiently predict / determine the deterioration of the adsorption characteristics of the adsorbent 9a based on the determination by both of them.
When it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated, the adsorption characteristic determination unit 82 closes the shutoff valves 20 and 21 in order to update the first lubricating oil adsorption remover 9 or the adsorbent 9a in the first lubricating oil adsorption remover 9. To control.

以上で説明した、ボイルオフガス供給・回収装置A5においては、図7に示すように、吸着除去後サンプリングライン14aと吸着除去前サンプリングライン14bのそれぞれは、共通の濃度評価ユニット103に接続される共通サンプリングライン14と接続されるように構成され、吸着除去後サンプリングライン14aと吸着除去前サンプリングライン14bのそれぞれが共通サンプリングライン14とに接続する接続部には切替弁16が設けられているので、再液化処理に用いるボイルオフガス中の吸着除去前後における潤滑油の濃度を、1つの評価判定ユニット11により測定することができる。すなわち、ボイルオフガス供給・回収装置A5における濃度評価部10は、吸着除去前のボイルオフガス中の潤滑油の濃度を評価する残留濃度評価部と、吸着除去後のボイルオフガスに残留する潤滑油の濃度を評価する残留濃度評価部とが互いに同じ機材を共有するので、ボイルオフガス供給・回収装置A4における前述の効果を維持しながら、その構成を簡素化することができる。
特に、共有する機材は、潤滑油の濃度を評価する濃度評価ユニット(濃度評価手段)103を含むので、同じ測定装置により濃度の評価ができ、測定装置間の評価のばらつきを抑制することができる。
In the boil-off gas supply / recovery device A5 described above, as shown in FIG. 7, the sampling line 14a after adsorption removal and the sampling line 14b before adsorption removal are common to be connected to a common concentration evaluation unit 103. Since the switching valve 16 is provided at the connection portion which is configured to be connected to the sampling line 14 and which connects the sampling line 14a after adsorption removal and the sampling line 14b before adsorption removal to the common sampling line 14, respectively. The concentration of the lubricating oil before and after the adsorption removal in the boil-off gas used for the reliquefaction treatment can be measured by one evaluation determination unit 11. That is, the concentration evaluation unit 10 in the boil-off gas supply / recovery device A5 has a residual concentration evaluation unit that evaluates the concentration of the lubricating oil in the boil-off gas before adsorption removal and a concentration of the lubricating oil remaining in the boil-off gas after adsorption removal. Since the same equipment is shared with the residual concentration evaluation unit for evaluating the above, the configuration can be simplified while maintaining the above-mentioned effect in the boil-off gas supply / recovery device A4.
In particular, since the shared equipment includes a concentration evaluation unit (concentration evaluation means) 103 for evaluating the concentration of lubricating oil, the concentration can be evaluated by the same measuring device, and variation in evaluation between the measuring devices can be suppressed. ..

上述のボイルオフガス供給・回収装置A5では、第1潤滑油吸着除去器9のみを用いる構成について説明したが、図4および図5に示したような、第1潤滑油吸着除去器9及び第2潤滑油吸着除去器9を並列配置して構成した上述のボイルオフガス供給・回収装置A2およびA3にも、1つの濃度評価部10を用いた、吸着剤9aによる吸着除去前後の潤滑油の濃度を評価する上記構成を適用することができる(これらの適用の図示は省略する)。ボイルオフガス供給・回収装置A2およびA3に、図7に示す統合した濃度評価部10を適用する場合においても、濃度評価部10の吸着特性判定部82は、吸着剤9aの吸着特性が低下したと判定した時に、ボイルオフガス供給・回収装置A2またはA3において、並列して設けられた第1潤滑油吸着除去器9と第2潤滑油吸着除去器9の間でボイルオフガスの流通の切替えを行うために、切替弁30を制御する。 In the above-mentioned boil-off gas supply / recovery device A5, a configuration using only the first lubricating oil adsorption / removal device 9 has been described, but the first lubricating oil adsorption / removal device 9 and the second lubricating oil adsorption / removal device 9 and the second as shown in FIGS. 4 and 5 have been described. The above-mentioned boil-off gas supply / recovery devices A2 and A3, which are configured by arranging the lubricating oil adsorption remover 9 * in parallel, also use one concentration evaluation unit 10 to concentrate the lubricating oil before and after the adsorption removal by the adsorbent 9a. The above configurations for evaluating the above can be applied (the illustration of these applications is omitted). Even when the integrated concentration evaluation unit 10 shown in FIG. 7 is applied to the boil-off gas supply / recovery devices A2 and A3, the adsorption characteristic determination unit 82 of the concentration evaluation unit 10 states that the adsorption characteristics of the adsorbent 9a have deteriorated. When the determination is made, the boil-off gas flow is switched between the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * provided in parallel in the boil-off gas supply / recovery device A2 or A3. Therefore, the switching valve 30 is controlled.

図1及び図4~7に示すボイルオフガス供給・回収装置A1~A5は、いずれもボイルオフガスの一部をサンプリングして潤滑油の濃度を評価する構成を含むが、潤滑油の濃度を評価せず、圧縮機4の駆動に伴って消費された潤滑油の単位時間あたりの供給量の情報と、ボイルオフガス供給ライン2と再液化回収ライン6におけるボイルオフガスの流量の分配比率の情報とを用いて、吸着剤9aに流入した潤滑油の量を見積もり、それに基づいて、吸着剤9aの吸着特性の低下を予測・判定することもできる。 The boil-off gas supply / recovery devices A1 to A5 shown in FIGS. 1 and 4 to 7 include a configuration in which a part of the boil-off gas is sampled to evaluate the concentration of the lubricating oil, but the concentration of the lubricating oil should be evaluated. Instead, the information on the supply amount of the lubricating oil consumed by driving the compressor 4 per unit time and the information on the distribution ratio of the flow rate of the boil-off gas in the boil-off gas supply line 2 and the reliquefaction recovery line 6 are used. Therefore, the amount of the lubricating oil that has flowed into the adsorbent 9a can be estimated, and based on this, the deterioration of the adsorption characteristics of the adsorbent 9a can be predicted and determined.

図8は、図1及び図4~7に示すボイルオフガス供給・回収装置A1~A5と異なる構成を有する、一実施形態のボイルオフガス供給・回収装置A6の構成を示す図である。
ボイルオフガス供給・回収装置A6の構成に関して、ボイルオフガス供給・回収装置A1と相違する部分は、残留濃度評価部10aが設けられず、ボイルオフガス供給・回収装置A6では、潤滑油量測定装置120と、比率評価装置124と、吸着特性判定部126と、を備えることが挙げられる。これ以外の部分の構成は、ボイルオフガス供給・回収装置A1と同じであるので、その説明は省略する。
FIG. 8 is a diagram showing the configuration of the boil-off gas supply / recovery device A6 of one embodiment having a configuration different from that of the boil-off gas supply / recovery devices A1 to A5 shown in FIGS. 1 and 4 to 7.
Regarding the configuration of the boil-off gas supply / recovery device A6, the part different from the boil-off gas supply / recovery device A1 is not provided with the residual concentration evaluation unit 10a. , The ratio evaluation device 124 and the adsorption characteristic determination unit 126 are provided. Since the configuration of the other parts is the same as that of the boil-off gas supply / recovery device A1, the description thereof will be omitted.

潤滑油量測定装置120は、圧縮機4が駆動する際の、単位時間当たりの潤滑油の供給量を計測する。圧縮機4の可動部に供給される潤滑油は、可動部において、高圧に加圧され昇温したボイルオフガスに接触する。このとき、ボイルオフガスは、前述のように潤滑油を非常によく溶解する超臨界状態にあるため、圧縮機4の外部に漏洩する一部を除き、そのほぼ全量が、該ボイルオフガス中に混入、溶解する。このときの外部に漏洩するボイルオフガス量の割合を予め情報として取得しておき、単位時間当たりの潤滑油の供給量に(1-漏洩割合)を乗算するか、または、漏洩割合を近似的にゼロと看做すことにより、ボイルオフガスに混入する単位時間当たりの潤滑油の混入量の情報を得ることができる。この潤滑油の混入量の情報は、吸着特性判定部126に逐次送信される。 The lubricating oil amount measuring device 120 measures the supply amount of the lubricating oil per unit time when the compressor 4 is driven. The lubricating oil supplied to the moving portion of the compressor 4 comes into contact with the boil-off gas that has been pressurized to a high pressure and raised in temperature in the moving portion. At this time, since the boil-off gas is in a supercritical state in which the lubricating oil is dissolved very well as described above, almost all of the boil-off gas is mixed in the boil-off gas except for a part leaking to the outside of the compressor 4. , Dissolve. Obtain the ratio of the amount of boil-off gas leaking to the outside as information in advance at this time, and multiply the supply amount of lubricating oil per unit time by (1-leakage ratio), or approximate the leakage ratio. By regarding it as zero, it is possible to obtain information on the amount of lubricating oil mixed in the boil-off gas per unit time. Information on the amount of the lubricating oil mixed is sequentially transmitted to the adsorption characteristic determination unit 126.

比率評価装置124は、ボイルオフガス供給ラインから再液化回収ライン6に供給されるボイルオフガスの分配比率を評価する、すなわち、分配比率を求める。図8に示す例では、分岐後のボイルオフガス供給ライン2と再液化回収ライン6におけるボイルオフガスの流量を測定することにより分配比率の情報を求める。しかし、分配比率の取得は、上記形態には限定されない。例えば、圧縮機4が吐出するボイルオフガスの全吐出流量が、圧縮機4の駆動の情報から得られるので、この全吐出流量と、図6,7に示す再液化回収ライン流量計15で測定される再液化回収ライン6を流れるボイルオフガスの流量とを用いて、分配比率を評価することもできる。また、分配比率は、分岐部5の分岐ユニット5aに設けられた、ボイルオフガスの分配用の弁の設定開度と、ボイルオフガスの流量によってほぼ決まるので、予めこれらの関係を調べておき、分配比率を評価することもできる。この分配比率の情報は、吸着特性判定部126に送信される。 The ratio evaluation device 124 evaluates the distribution ratio of the boil-off gas supplied from the boil-off gas supply line to the reliquefaction recovery line 6, that is, obtains the distribution ratio. In the example shown in FIG. 8, information on the distribution ratio is obtained by measuring the flow rates of the boil-off gas in the boil-off gas supply line 2 and the reliquefaction recovery line 6 after branching. However, the acquisition of the distribution ratio is not limited to the above form. For example, since the total discharge flow rate of the boil-off gas discharged by the compressor 4 is obtained from the driving information of the compressor 4, this total discharge flow rate and the reliquefaction recovery line flow meter 15 shown in FIGS. 6 and 7 are measured. It is also possible to evaluate the distribution ratio by using the flow rate of the boil-off gas flowing through the reliquefaction recovery line 6. Further, the distribution ratio is almost determined by the set opening degree of the valve for distributing the boil-off gas provided in the branch unit 5a of the branch portion 5 and the flow rate of the boil-off gas. You can also evaluate the ratio. The information on the distribution ratio is transmitted to the adsorption characteristic determination unit 126.

吸着特性判定部126は、送信された分配比率の情報と、単位時間当たりの潤滑油の混入量の情報とから、両者を乗じることにより、吸着剤9aに流入する、単位時間当たりの潤滑油の流入量を算出する。さらに、吸着剤9aの新品への交換または再生処理後に、再液化回収ライン6へのボイルオフガスの流通を開始してから、前記情報の直近の送信時点までの潤滑油の積算流入量を、前記単位時間当たりの潤滑油の流入量を時間積分することによって求める。 The adsorption characteristic determination unit 126 multiplies both the transmitted distribution ratio information and the information on the amount of the lubricating oil mixed in per unit time, so that the lubricating oil flowing into the adsorbent 9a flows into the adsorbent 9a. Calculate the inflow. Further, after the adsorbent 9a is replaced with a new one or regenerated, the cumulative inflow amount of the lubricating oil from the start of distribution of the boil-off gas to the reliquefaction recovery line 6 to the time of the latest transmission of the information is calculated as described above. It is obtained by time-integrating the inflow of lubricating oil per unit time.

吸着特性判定部126は、上記によって求めた潤滑油の積算流入量と、同等のボイルオフガス中潤滑油濃度・ボイルオフガス流速・ボイルオフガス温度の条件下で予め実験的に求められた、吸着剤9aの最大潤滑油吸着量とを比較する。前者が後者に達したか否かを判定し、達した場合、吸着剤9aの吸着特性は低下したと判定する。
吸着特性判定部126は、この判定を逐次行う他に、流通開始時からの潤滑油の積算量の経時変化に基づき、吸着剤9aの吸着特性が低下する時期を事前に予測することもできる。吸着剤9aの吸着特性が低下したと判定された場合、吸着特性判定部126は、第1潤滑油吸着除去器9またはその中の吸着剤9aを更新するために、遮断弁20および21を閉じるように制御する。
The adsorbent 9a was experimentally obtained in advance by the adsorption characteristic determination unit 126 under the conditions of the integrated inflow amount of the lubricating oil obtained as described above, the lubricating oil concentration in the boil-off gas, the boil-off gas flow velocity, and the boil-off gas temperature. Compare with the maximum amount of lubricating oil adsorbed. It is determined whether or not the former has reached the latter, and if so, it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated.
In addition to sequentially performing this determination, the adsorption characteristic determination unit 126 can predict in advance the time when the adsorption characteristic of the adsorbent 9a deteriorates based on the change over time in the integrated amount of the lubricating oil from the start of distribution. When it is determined that the adsorption characteristics of the adsorbent 9a have deteriorated, the adsorption characteristic determination unit 126 closes the shutoff valves 20 and 21 in order to update the first lubricating oil adsorption remover 9 or the adsorbent 9a in the first lubricating oil adsorption remover 9. To control.

このように、ボイルオフガス供給・回収装置A6は、潤滑油量測定装置120と、比率評価装置124と、吸着特性判定部126と、を備えるので、潤滑油の濃度を測定により評価することなく、吸着剤9aの吸着特性の低下を判定することができる。
また、以上のボイルオフガス供給・回収装置A6では、第1潤滑油吸着除去器9のみを用いる構成について説明したが、上述の吸着特性判定部126による吸着剤9aの吸着特性の低下の判定は、図4および図5に示したような、並列して設けられた第1潤滑油吸着除去器9と第2潤滑油吸着除去器9を構成要素として含む、前出のボイルオフガス供給・回収装置A2およびA3に適用することもできる(これらの適用の図示は省略する)。
ボイルオフガス供給・回収装置A2およびA3に、図8に示す吸着特性判定部126による吸着剤9aの吸着特性の低下の判定を適用する場合においても、吸着特性判定部126は、吸着剤9aの吸着特性が低下したと判定した時に、ボイルオフガス供給・回収装置A2またはA3において、並列して設けられた第1潤滑油吸着除去器9と第2潤滑油吸着除去器9の間でボイルオフガスの流通の切替えを行うために、切替弁30を制御する。
As described above, since the boil-off gas supply / recovery device A6 includes the lubricating oil amount measuring device 120, the ratio evaluation device 124, and the adsorption characteristic determination unit 126, the concentration of the lubricating oil is not evaluated by measurement. It is possible to determine the deterioration of the adsorption characteristics of the adsorbent 9a.
Further, in the above boil-off gas supply / recovery device A6, the configuration in which only the first lubricating oil adsorption / removal device 9 is used has been described, but the above-mentioned adsorption characteristic determination unit 126 determines the deterioration of the adsorption characteristics of the adsorbent 9a. The above-mentioned boil-off gas supply / recovery device including the first lubricating oil adsorption / removing device 9 and the second lubricating oil adsorption / removing device 9 * provided in parallel as shown in FIGS. 4 and 5. It can also be applied to A2 and A3 (the illustration of these applications is omitted).
Even when the determination of the decrease in the adsorption characteristics of the adsorbent 9a by the adsorption characteristic determination unit 126 shown in FIG. 8 is applied to the boil-off gas supply / recovery devices A2 and A3, the adsorption characteristic determination unit 126 adsorbs the adsorbent 9a. When it is determined that the characteristics have deteriorated, the boil-off gas is charged between the first lubricating oil adsorption remover 9 and the second lubricating oil adsorption remover 9 * provided in parallel in the boil-off gas supply / recovery device A2 or A3. The switching valve 30 is controlled to switch the distribution.

さらには、ボイルオフガス供給・回収装置A6は、上述の潤滑油量測定装置120、比率評価装置124および吸着特性判定部126に加えて、前出のボイルオフ回収装置A1の残留濃度評価部10a(吸着特性判定部82aを含む)を備えるか、前出のボイルオフガス回収装置A4の吸着除去前濃度評価部10b(吸着特性判定部82bを含む)と再液化回収ライン流量計15との組合せを備えるか、および/または、前出のボイルオフガス回収装置A5の吸着除去前濃度評価部10(吸着特性判定部82を含む)と再液化回収ライン流量計15との組合せを備えてもよい。これらの場合は、残留濃度評価部10aまたは濃度評価部10による吸着除去後のボイルオフガス中の潤滑油濃度の評価結果、および/または、吸着除去前濃度評価部10bまたは濃度評価部10による吸着除去前のボイルオフガス中の潤滑油濃度と、再液化回収ライン流量計15による積算流量の評価結果との組み合わせの少なくともいずれか一つに基づき、上述した吸着特性判定部126による、圧縮機4における潤滑油の流入量の測定値の情報に加えて、吸着特性判定部82a、82bおよび/または82による、ボイルオフガスの潤滑油の吸着除去後の残留濃度および/またはボイルオフガス中の吸着除去前の潤滑油濃度の測定値の情報を反映させて、吸着剤9aの吸着特性の低下を、更に精度よく判定できる。 Further, the boil-off gas supply / recovery device A6 includes the residual concentration evaluation unit 10a (adsorption) of the boil-off recovery device A1 described above, in addition to the above-mentioned lubricating oil amount measuring device 120, ratio evaluation device 124 and adsorption characteristic determination unit 126. Whether it is equipped with a characteristic determination unit 82a) or a combination of the above-mentioned boil-off gas recovery device A4 pre-adsorption concentration evaluation unit 10b (including the adsorption characteristic determination unit 82b) and a reliquefaction recovery line flow meter 15. , And / or may include a combination of the concentration evaluation unit 10 (including the adsorption characteristic determination unit 82) before adsorption removal of the boil-off gas recovery device A5 described above and the reliquefaction recovery line flow meter 15. In these cases, the evaluation result of the lubricating oil concentration in the boil-off gas after the adsorption removal by the residual concentration evaluation unit 10a or the concentration evaluation unit 10 and / or the adsorption removal by the concentration evaluation unit 10b or the concentration evaluation unit 10 before the adsorption removal. Lubrication in the compressor 4 by the adsorption characteristic determination unit 126 described above based on at least one of the combination of the lubricating oil concentration in the previous boil-off gas and the evaluation result of the integrated flow rate by the reliquefaction recovery line flow meter 15. In addition to the information on the measured value of the inflow of oil, the residual concentration after adsorption removal of the lubricating oil of the boil-off gas and / or the lubrication before the adsorption removal in the boil-off gas by the adsorption characteristic determination units 82a, 82b and / or 82. By reflecting the information of the measured value of the oil concentration, the deterioration of the adsorption characteristics of the adsorbent 9a can be determined more accurately.

なお、上述したように、吸着剤9aによる潤滑油の吸着特性を効果的に発揮させるには、上述したように、吸着剤9aは、2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり0.1cm以上である、活性炭又はメソポーラスカーボンであることが好ましい。
このような吸着剤9aの効果に関して、以下示す実施例1,2で確認することができた。
As described above, in order to effectively exhibit the adsorption characteristics of the lubricating oil by the adsorbent 9a, the adsorbent 9a has a cumulative pore volume in the pore diameter distribution range of 2 to 10 nm. Activated carbon or mesoporous carbon, which is 0.1 cm 3 or more per 1 g of the adsorbent, is preferable.
The effect of the adsorbent 9a could be confirmed in Examples 1 and 2 shown below.

(実施例1)
2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり約0.13cmである、造粒された活性炭(石炭系)を吸着剤9aとして用意し、鉱物油系潤滑油(動粘度約46mm/s、40℃)を質量基準で約10ppm含む、31MPa(絶対圧)に加圧された液化天然ガスのボイルオフガス(温度40℃)を、上記該活性炭を充填した吸着除去器(充填長0.92m、充填断面径80mm)に流量約100kg/時で流した場合は、吸着剤9a通過後のボイルオフガス中の潤滑油の濃度は約0.1ppmの検出下限界未満となった。これは吸着剤9aが破過に達した約14日後まで安定して維持された。使用後の吸着剤9aには、形状変化は認められなかった。
(Example 1)
Granulated activated carbon (coal-based) having a cumulative pore volume in the pore diameter distribution range of 2 to 10 nm of about 0.13 cm 3 per 1 g of the adsorbent was prepared as the adsorbent 9a, and a mineral oil-based lubricating oil ( Boil-off gas (temperature 40 ° C) of liquefied natural gas pressurized to 31 MPa (absolute pressure) containing about 10 ppm of kinematic viscosity (about 46 mm 2 / s, 40 ° C) on a mass basis is adsorbed and removed by filling the activated carbon. When flowing into a vessel (filling length 0.92 m, filling cross-sectional diameter 80 mm) at a flow rate of about 100 kg / hour, the concentration of lubricating oil in the boil-off gas after passing through the adsorbent 9a is less than the lower limit of detection of about 0.1 ppm. became. This was maintained stably until about 14 days after the adsorbent 9a reached the breakthrough. No change in shape was observed in the adsorbent 9a after use.

(実施例2)
2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり約1.6cmである、造粒されたメソポーラスカーボンを吸着剤9aとして用意した。その他は実施例1と全て同一の条件で鉱物油系潤滑油含有の液化天然ガスのボイルオフガスを吸着除去器に流した場合、吸着剤9a通過後のボイルオフガス中の潤滑油の濃度は約0.1ppmの検出下限界未満となり、これは吸着剤9aが破過に達した約25日後まで安定して維持された。ただし使用後の該吸着剤には、加圧による変形がわずかに認められたものの、実際の使用には耐え得る程度であると判断された。
(Example 2)
Granulated mesoporous carbon having a cumulative pore volume in the pore diameter distribution range of 2 to 10 nm of about 1.6 cm 3 per 1 g of the adsorbent was prepared as the adsorbent 9a. When the boil-off gas of the liquefied natural gas containing the mineral oil-based lubricating oil was flowed through the adsorption remover under the same conditions as in Example 1, the concentration of the lubricating oil in the boil-off gas after passing through the adsorbent 9a was about 0. It was below the detection limit of 1 ppm, which remained stable until about 25 days after the adsorbent 9a reached breakthrough. However, although the adsorbent after use was slightly deformed by pressurization, it was judged that it could withstand actual use.

(比較例1)
2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり約0.022cmである、造粒された活性炭(ヤシ柄系)を用意し、その他は全て実施例1と同一の条件で鉱物油系潤滑油含有の液化天然ガスのボイルオフガスを吸着除去器に流した場合、吸着剤通過後のボイルオフガス中の潤滑油の濃度は、最初は約0.1ppmの検出下限界未満だったが、わずか約1時間後には流す前の濃度の約10ppmに戻った。使用後の吸着剤9aには、形状変化は認められなかった。
(Comparative Example 1)
A granulated activated carbon (palm pattern type) having a cumulative pore volume in the pore diameter distribution range of 2 to 10 nm of about 0.022 cm 3 per 1 g of the adsorbent was prepared, and all the others were the same as in Example 1. When the boil-off gas of liquefied natural gas containing mineral oil-based lubricating oil is flowed through the adsorbent remover, the concentration of the lubricating oil in the boil-off gas after passing through the adsorbent is initially less than the lower limit of about 0.1 ppm. However, after only about 1 hour, it returned to the concentration of about 10 ppm before flowing. No change in shape was observed in the adsorbent 9a after use.

(比較例2)
2~10nmの細孔径分布範囲における累積細孔容積が、吸着剤1g当たり約0.01cmである、造粒されたゼオライト13Xを用意し、その他は全て実施例1と同一の条件で鉱物油系潤滑油含有の液化天然ガスのボイルオフガスを吸着除去器に流した場合、吸着剤通過後のボイルオフガス中の潤滑油の濃度は、ゼオライト13Xに通す前の濃度の約10ppmのまま、最初から変化がなかった。使用後の吸着剤には、形状変化は認められなかった。
(Comparative Example 2)
Prepare a granulated zeolite 13X having a cumulative pore volume in the pore diameter distribution range of 2 to 10 nm of about 0.01 cm 3 per 1 g of the adsorbent, and all other mineral oils under the same conditions as in Example 1. When the boil-off gas of the liquefied natural gas containing the system lubricating oil is flowed through the adsorption remover, the concentration of the lubricating oil in the boil-off gas after passing through the adsorbent remains at about 10 ppm, which is the concentration before passing through the zeolite 13X, from the beginning. There was no change. No change in shape was observed in the adsorbent after use.

以上、本発明のボイルオフガス供給・回収装置及びボイルオフガス供給・回収方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 Although the boil-off gas supply / recovery device and the boil-off gas supply / recovery method of the present invention have been described in detail above, the present invention is not limited to the above embodiment, and various improvements and improvements can be made without departing from the gist of the present invention. Of course, you may change it.

1 タンク
2 ボイルオフガス供給ライン
3 熱交換器
4 圧縮機
5 分岐部
5a 分岐ユニット
6 再液化回収ライン
6a 供給口
6b 排出口
7 潤滑油除去部
8 フィルタ
9 第1潤滑油吸着除去器
第2潤滑油吸着除去器
9a 吸着剤
9a 吸着剤
10 濃度評価部
10a 残留濃度評価部
10b 吸着除去前濃度評価部
11,11a,11b 評価判定ユニット
12 減圧弁
13 気液分離槽
14 共通サンプリングライン
14a 吸着除去後サンプリングライン
14b 吸着除去前サンプリングライン
15 再液化回収ライン流量計
16 切替弁
20,21 遮断弁
30 切替弁
40 脱着機構
50 加熱器
60 減圧排気装置
70 切替弁
72 排気管
80,80a,80b 測定器
82,82a,82b 吸着特性判定部
100 採取用1次減圧弁
100a、104a 抽出溶媒注入口
101 ライン加熱器
102 採取用2次減圧弁
103 濃度評価ユニット
104 潤滑油捕集容器
105 積算流量計
105a ボイルオフガス排出口
106 送液ユニット
107 調整器
107a 投入口
107b 排出口
108 加熱器
120 潤滑油量測定装置
124 比率評価装置
126 吸着特性判定部
1 Tank 2 Boil-off gas supply line 3 Heat exchanger 4 Compressor 5 Branch 5a Branch unit 6 Reliquefaction recovery line 6a Supply port 6b Discharge port 7 Lubricating oil remover 8 Filter 9 1st Lubricating oil adsorption remover 9 * 2 Lubricating oil Adsorption remover 9a Adsorbent 9a * Adsorbent 10 Concentration evaluation unit 10a Residual concentration evaluation unit 10b Pre-adsorption concentration evaluation unit 11, 11a, 11b Evaluation judgment unit 12 Pressure reducing valve 13 Gas-liquid separation tank 14 Common sampling line 14a Adsorption Sampling line after removal 14b Sampling line before adsorption removal 15 Reliquefaction recovery line Flow meter 16 Switching valve 20, 21 Shutoff valve 30 Switching valve 40 Detachment mechanism 50 Heater 60 Pressure reducing exhaust device 70 Switching valve 72 Exhaust pipe 80, 80a, 80b Measurement Device 82, 82a, 82b Adsorption characteristic judgment unit 100 Primary pressure reducing valve for sampling 100a, 104a Extraction solvent inlet 101 Line heater 102 Secondary pressure reducing valve for sampling 103 Concentration evaluation unit 104 Lubricating oil collection container 105 Integrated flow meter 105a Boil-off gas discharge port 106 Liquid supply unit 107 Regulator 107a Input port 107b Discharge port 108 Heater 120 Lubricating oil amount measuring device 124 Ratio evaluation device 126 Adsorption characteristic judgment unit

Claims (24)

液化ガスを貯蔵するタンクから気化した液化ガスのボイルオフガスの一部を供給先の装置に供給しながら、前記ボイルオフガスの一部を液化して回収するボイルオフガス供給・回収装置であって、
液化ガスを貯蔵するタンクと、
前記タンク内の前記液化ガスから気化したボイルオフガスを供給先の装置に導くボイルオフガス供給ラインと、
前記ボイルオフガス供給ライン内に設けられ、前記ボイルオフガスを加熱する熱交換器と、
前記ボイルオフガス供給ライン内に設けられ、前記熱交換器で加熱された前記ボイルオフガスを、潤滑油を供給しながら加圧して超臨界状態の流体にする圧縮機と、
前記圧縮機から加圧吐出された前記ボイルオフガスの一部を前記ボイルオフガス供給ラインから分岐する分岐部と、
前記分岐されたボイルオフガスを前記熱交換器で冷却し、前記ボイルオフガスの一部を再液化して前記タンクに回収するための再液化回収ラインと、
前記再液化回収ライン内の、前記分岐部と前記熱交換器の間に設けられ、前記加圧後の超臨界状態の前記ボイルオフガスに溶解して前記ボイルオフガス中に混入した前記潤滑油を該ボイルオフガスから除去する潤滑油除去部と、を備え、
前記潤滑油除去部は、前記再液化回収ラインにある前記ボイルオフガス中に混入した前記潤滑油を吸着して前記潤滑油を該ボイルオフガスから分離除去する吸着剤を内包する第1潤滑油吸着除去器を含
前記吸着剤は、2~10nmの細孔径分布範囲における累積細孔容積が、該吸着剤1g当たり0.1cm 以上である、活性炭又はメソポーラスカーボンである、ことを特徴とするボイルオフガス供給・回収装置。
A boil-off gas supply / recovery device that liquefies and recovers a part of the boil-off gas while supplying a part of the boil-off gas of the liquefied gas vaporized from the tank for storing the liquefied gas to the supply destination device.
A tank for storing liquefied gas and
A boil-off gas supply line that guides the boil-off gas vaporized from the liquefied gas in the tank to the supply destination device, and
A heat exchanger provided in the boil-off gas supply line to heat the boil-off gas,
A compressor provided in the boil-off gas supply line and pressurizing the boil-off gas heated by the heat exchanger while supplying lubricating oil to make a fluid in a supercritical state .
A branch portion that branches a part of the boil-off gas pressure-discharged from the compressor from the boil-off gas supply line, and
A reliquefaction recovery line for cooling the branched boil-off gas with the heat exchanger, reliquefying a part of the boil-off gas, and recovering the boil-off gas in the tank.
The lubricating oil provided between the branch portion and the heat exchanger in the reliquefaction recovery line , dissolved in the boil-off gas in a supercritical state after pressurization, and mixed in the boil-off gas is used. Equipped with a lubricating oil remover that removes from boil-off gas,
The lubricating oil removing unit is a first lubricating oil adsorbent removing agent containing an adsorbent that adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line and separates and removes the lubricating oil from the boil-off gas. Including the vessel
The adsorbent is an activated carbon or mesoporous carbon having a cumulative pore volume of 0.1 cm 3 or more per 1 g of the adsorbent in a pore diameter distribution range of 2 to 10 nm. Device.
前記再液化回収ライン内の、前記第1潤滑油吸着除去器と前記熱交換器の間の前記ボイルオフガス中に残留する前記潤滑油の濃度を評価する濃度評価手段を含む残留濃度評価部を備える、請求項に記載のボイルオフガス供給・回収装置。 A residual concentration evaluation unit including a concentration evaluation means for evaluating the concentration of the lubricating oil remaining in the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger in the reliquefaction recovery line is provided. , The boil-off gas supply / recovery device according to claim 1 . 前記残留濃度評価部は、前記再液化回収ライン内の前記第1潤滑油吸着除去器と前記熱交換器との間にある前記ボイルオフガスの一部をサンプリングするために、前記再液化回収ライン内の前記第1潤滑油吸着除去器と前記熱交換器との間から分岐する吸着除去後サンプリングラインを備え、
前記残留濃度評価部は、前記第1潤滑油吸着除去器と前記熱交換器との間にある前記ボイルオフガス中に残留する前記潤滑油の濃度を評価する、請求項に記載のボイルオフガス供給・回収装置。
The residual concentration evaluation unit is in the reliquefaction recovery line in order to sample a part of the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger in the reliquefaction recovery line. A sampling line after adsorption removal that branches from between the first lubricating oil adsorption remover and the heat exchanger is provided.
The boil-off gas supply according to claim 2 , wherein the residual concentration evaluation unit evaluates the concentration of the lubricating oil remaining in the boil-off gas between the first lubricating oil adsorption remover and the heat exchanger. -Recovery device.
前記再液化回収ライン内の、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中の前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備える、請求項1~のいずれか1項に記載のボイルオフガス供給・回収装置。 A pre-adsorption / removal concentration evaluation unit including a concentration evaluation means for evaluating the concentration of the lubricating oil in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in the reliquefaction recovery line is provided. , The boil-off gas supply / recovery device according to any one of claims 1 to 3 . 前記吸着除去前濃度評価部は、前記再液化回収ライン内の前記分岐部と前記第1潤滑油吸着除去器との間にある前記ボイルオフガスの一部をサンプリングするために、前記分岐部と前記第1潤滑油吸着除去器との間から分岐する吸着除去前サンプリングラインを備え、
前記吸着除去前濃度評価部は、前記ボイルオフガス中の前記吸着除去前の前記潤滑油の濃度を評価する、請求項に記載のボイルオフガス供給・回収装置。
The pre-adsorption / removal concentration evaluation unit uses the branch portion and the branch portion to sample a part of the boil-off gas between the branch portion in the reliquefaction recovery line and the first lubricating oil adsorption / remover. Equipped with a pre-adsorption sampling line that branches off from the first lubricating oil adsorption remover.
The boil-off gas supply / recovery device according to claim 4 , wherein the pre-adsorption / removal concentration evaluation unit evaluates the concentration of the lubricating oil in the boil-off gas before the adsorption / removal.
前記残留濃度評価部の他に、前記再液化回収ライン内の、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中に混入する前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備え、
前記残留濃度評価部と前記吸着除去前濃度評価部は、互いに同じ機材を共有する、請求項またはに記載のボイルオフガス供給・回収装置。
In addition to the residual concentration evaluation unit, a concentration evaluation for evaluating the concentration of the lubricating oil mixed in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in the reliquefaction recovery line. Equipped with a concentration evaluation unit before adsorption removal including means,
The boil-off gas supply / recovery device according to claim 2 or 3 , wherein the residual concentration evaluation unit and the pre-adsorption / removal concentration evaluation unit share the same equipment.
共有する前記機材は、前記潤滑油の濃度を評価する濃度評価手段を含む、請求項に記載のボイルオフガス供給・回収装置。 The boil-off gas supply / recovery device according to claim 6 , wherein the shared equipment includes a concentration evaluation means for evaluating the concentration of the lubricating oil. 前記残留濃度評価部の他に、前記再液化回収ライン内の、前記分岐部と前記第1潤滑油吸着除去器との間の前記ボイルオフガス中に混入する前記潤滑油の濃度を評価する濃度評価手段を含む吸着除去前濃度評価部を備え、
前記吸着除去前濃度評価部は、前記再液化回収ライン内の前記分岐部と前記第1潤滑油吸着除去器との間にある前記ボイルオフガスの一部をサンプリングするために、前記分岐部と前記第1潤滑油吸着除去器との間から分岐する吸着除去前サンプリングラインを備え、
前記吸着除去前濃度評価部は、前記吸着除去前サンプリングラインから分岐したボイルオフガス中の前記吸着除去前の前記潤滑油の濃度を評価し、
前記吸着除去後サンプリングラインと前記吸着除去前サンプリングラインのそれぞれは、共通の濃度評価手段に接続される共通サンプリングラインと接続されるように構成され、
前記吸着除去後サンプリングラインと前記吸着除去前サンプリングラインのそれぞれが前記共通サンプリングラインとに接続する接続部には、前記吸着除去後サンプリングラインと接続するか、前記吸着除去前サンプリングラインと接続するかを切り替える切替弁が設けられる、請求項に記載のボイルオフガス供給・回収装置。
In addition to the residual concentration evaluation unit, a concentration evaluation for evaluating the concentration of the lubricating oil mixed in the boil-off gas between the branch portion and the first lubricating oil adsorption / remover in the reliquefaction recovery line. Equipped with a concentration evaluation unit before adsorption removal including means,
The pre-adsorption / removal concentration evaluation unit uses the branch portion and the branch portion to sample a part of the boil-off gas between the branch portion in the reliquefaction recovery line and the first lubricating oil adsorption / remover. Equipped with a pre-adsorption sampling line that branches off from the first lubricating oil adsorption remover.
The pre-adsorption / removal concentration evaluation unit evaluates the concentration of the lubricating oil in the boil-off gas branched from the pre-adsorption / removal sampling line before the adsorption / removal.
Each of the sampling line after adsorption removal and the sampling line before adsorption removal is configured to be connected to a common sampling line connected to a common concentration evaluation means.
Whether the connection portion where the sampling line after adsorption removal and the sampling line before adsorption removal are connected to the common sampling line is connected to the sampling line after adsorption removal or the sampling line before adsorption removal. The boil-off gas supply / recovery device according to claim 3 , wherein a switching valve for switching between the two is provided.
前記濃度評価手段は、
採取された所定量の前記ボイルオフガス中に含まれる前記潤滑油の全量を、所定の抽出溶媒に溶解させ、ボイルオフガスを前記潤滑油が溶解した前記抽出溶媒から分離する第1処理装置と、
前記抽出溶媒を蒸発させることにより、前記抽出溶媒中の溶解した前記潤滑油を抽出する第2処理装置と、
前記ボイルオフガスと前記抽出溶媒とを除去した前記潤滑油の量を測定する測定器と、を含む、請求項のいずれか1項に記載のボイルオフガス供給・回収装置。
The concentration evaluation means is
A first treatment apparatus that dissolves the entire amount of the lubricating oil contained in the collected predetermined amount of the boil-off gas in a predetermined extraction solvent and separates the boil-off gas from the extraction solvent in which the lubricating oil is dissolved.
A second processing apparatus that extracts the dissolved lubricating oil in the extraction solvent by evaporating the extraction solvent.
The boil-off gas supply / recovery device according to any one of claims 2 to 8 , further comprising a measuring instrument for measuring the amount of the lubricating oil from which the boil-off gas and the extraction solvent have been removed.
前記第1処理装置による処理後、前記測定器による前記潤滑油の量の測定を妨害しない濃度評価用溶媒を所定量添加して、前記測定器による定量が可能な濃度域に前記潤滑油を調整する第3処理装置を備える、請求項に記載のボイルオフガス供給・回収装置。 After the treatment by the first processing apparatus, a predetermined amount of a concentration evaluation solvent that does not interfere with the measurement of the amount of the lubricating oil by the measuring instrument is added to adjust the lubricating oil to a concentration range that can be quantified by the measuring instrument. The boil-off gas supply / recovery device according to claim 9 , further comprising a third processing device. 前記濃度評価手段は、前記潤滑油を検出し定量し得る、赤外吸収分光装置、ガスクロマトグラフ装置、質量分析装置、及び前記潤滑油の質量の秤量器の内の少なくとも一つの測定機器を含む、請求項10のいずれか1項に記載のボイルオフガス供給・回収装置。 The concentration evaluation means includes at least one measuring device among an infrared absorption spectroscope, a gas chromatograph device, a mass spectrometer, and a mass weigher for the lubricating oil capable of detecting and quantifying the lubricating oil. The boil-off gas supply / recovery device according to any one of claims 2 to 10 . 前記残留濃度評価部における前記濃度評価手段により評価した前記ボイルオフガスに残留した前記潤滑油の濃度の評価結果に基づいて、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部を備える、請求項のいずれか1項に記載のボイルオフガス供給・回収装置。 Based on the evaluation result of the concentration of the lubricating oil remaining in the boil-off gas evaluated by the concentration evaluation means in the residual concentration evaluation unit, the adsorption characteristic determination unit for determining the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent. 2. The boil-off gas supply / recovery device according to any one of claims 2 , 3 , 6 to 8 , wherein the boil-off gas supply / recovery device is provided. 前記吸着除去前濃度評価部は、前記分岐部から分岐され、前記再液化回収ライン内を通る前記ボイルオフガスの積算流量を測定する再液化回収ライン流量計を備え、
前記吸着除去前濃度評価部により評価した前記潤滑油の吸着除去前濃度と、前記ボイルオフガスの積算流量の測定結果とから、前記再液化回収ライン内を通った前記潤滑油の積算量の情報を算出し、前記潤滑油の積算量の算出結果に基づいて、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部を備える、請求項のいずれか1項に記載のボイルオフガス供給・回収装置。
The concentration evaluation unit before adsorption removal includes a reliquefaction recovery line flow meter that is branched from the branch portion and measures the integrated flow rate of the boil-off gas that passes through the reliquefaction recovery line.
From the pre-adsorption / removal concentration of the lubricating oil evaluated by the pre-adsorption / removal concentration evaluation unit and the measurement result of the integrated flow rate of the boil-off gas, information on the integrated amount of the lubricating oil that has passed through the reliquefaction recovery line is obtained. The item according to any one of claims 4 to 8 , further comprising an adsorption characteristic determination unit for determining the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent based on the calculation result of the integrated amount of the lubricating oil. Boil-off gas supply / recovery device.
前記圧縮機に供給される前記潤滑油の供給量を測定する潤滑油量測定装置と、
前記ボイルオフガス供給ラインから前記再液化回収ラインに供給される前記ボイルオフガスの分配比率を評価する比率評価装置と、
前記潤滑油量測定装置による前記潤滑油の供給量の測定結果と、前記比率評価装置による前記分岐比率の評価結果とから、前記吸着剤による前記潤滑油の吸着特性の低下を判定する吸着特性判定部とを備える、請求項1~13のいずれか1項に記載のボイルオフガス供給・回収装置。
A lubricating oil amount measuring device for measuring the supply amount of the lubricating oil supplied to the compressor, and
A ratio evaluation device that evaluates the distribution ratio of the boil-off gas supplied from the boil-off gas supply line to the reliquefaction recovery line, and a ratio evaluation device.
From the measurement result of the supply amount of the lubricating oil by the lubricating oil amount measuring device and the evaluation result of the branching ratio by the ratio evaluation device, the adsorption characteristic determination for determining the deterioration of the adsorption characteristic of the lubricating oil due to the adsorbent. The boil-off gas supply / recovery device according to any one of claims 1 to 13 , further comprising a unit.
前記第1潤滑油吸着除去器は、前記吸着剤の加熱により、前記吸着剤に吸着した前記潤滑油を外部に気化排気することにより前記吸着剤の吸着特性を復活させるために、前記吸着剤を加熱する加熱装置を備え、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記加熱装置による加熱により前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する、請求項1214のいずれか1項に記載のボイルオフガス供給・回収装置。
The first lubricating oil adsorbent remover uses the adsorbent in order to restore the adsorption characteristics of the adsorbent by vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to the outside by heating the adsorbent. Equipped with a heating device to heat
When the adsorption characteristic determining unit determines that the adsorption characteristic has deteriorated, the lubricating oil adsorbed on the adsorbent is vaporized and exhausted by heating by the heating device to regenerate the adsorbent . The boil-off gas supply / recovery device according to any one of the above items.
前記第1潤滑油吸着除去器は、前記吸着剤に吸着した前記潤滑油を外部に気化排気させることにより前記吸着剤の吸着特性を復活させるために、前記吸着剤の収納される空間内を減圧する減圧装置を備え、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記減圧装置による前記空間内の減圧により前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する、請求項1215のいずれか1項に記載のボイルオフガス供給・回収装置。
The first lubricating oil adsorbent remover decompresses the space in which the adsorbent is stored in order to restore the adsorption characteristics of the adsorbent by vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to the outside. Equipped with a decompression device
When the adsorption characteristic determination unit determines that the adsorption characteristic has deteriorated, the lubricating oil adsorbed on the adsorbent is vaporized and exhausted by the decompression in the space by the decompression device to regenerate the adsorbent. Item 6. The boil-off gas supply / recovery device according to any one of Items 12 to 15 .
前記第1潤滑油吸着除去器は、前記吸着剤を取替え可能に構成され、
前記吸着特性判定部が、前記吸着特性が低下したと判定した場合、前記第1潤滑油吸着除去器が、吸着特性を有する新たな潤滑油吸着除去器に取替えられるか、または前記第1潤滑油吸着除去器に内包される前記吸着剤が、吸着特性を有する新たな吸着剤に取替えられるように構成されている、請求項1214のいずれか1項に記載のボイルオフガス供給・回収装置。
The first lubricating oil adsorbent remover is configured so that the adsorbent can be replaced.
When the adsorption characteristic determination unit determines that the adsorption characteristic has deteriorated, the first lubricating oil adsorption remover is replaced with a new lubricating oil adsorption remover having adsorption characteristics, or the first lubricating oil is removed. The boil-off gas supply / recovery device according to any one of claims 12 to 14 , wherein the adsorbent contained in the adsorbent remover is configured to be replaced with a new adsorbent having adsorption characteristics.
前記再液化回収ラインには、前記分岐部と前記第1潤滑油吸着除去器との間、および前記第1潤滑油吸着除去器と前記熱交換器との間に、前記ボイルオフガスの流れを遮断する遮断弁が設けられる、請求項1~17のいずれか1項に記載のボイルオフガス供給・回収装置。 In the reliquefaction recovery line, the flow of the boil-off gas is blocked between the branch portion and the first lubricating oil adsorption remover, and between the first lubricating oil adsorption remover and the heat exchanger. The boil-off gas supply / recovery device according to any one of claims 1 to 17 , wherein a shutoff valve is provided. 前記潤滑油除去部は、前記第1潤滑油吸着除去器の他に、前記再液化回収ラインにある前記ボイルオフガス中に混入した前記潤滑油を吸着して該ボイルオフガスから分離除去する吸着剤を内包する第2潤滑油吸着除去器を含み、
前記第1潤滑油吸着除去器と前記第2潤滑油吸着除去器は、前記再液化回収ラインに並列配置されている、請求項1~18のいずれか1項に記載のボイルオフガス供給・回収装置。
In addition to the first lubricating oil adsorption remover, the lubricating oil removing unit adsorbs the lubricating oil mixed in the boil-off gas in the reliquefaction recovery line and separates and removes the lubricating oil from the boil-off gas. Includes a second lubricating oil adsorption remover to be included
The boil-off gas supply / recovery device according to any one of claims 1 to 18 , wherein the first lubricating oil adsorption remover and the second lubricating oil adsorption remover are arranged in parallel in the reliquefaction recovery line. ..
前記再液化回収ラインには、前記ボイルオフガスを、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器のいずれか一方に流すための切替弁が、並列配置された前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の前後に1対設けられている、請求項19に記載のボイルオフガス供給・回収装置。 In the reliquefaction recovery line, a switching valve for flowing the boil-off gas to either the first lubricating oil adsorption remover or the second lubricating oil adsorption remover is arranged in parallel with the first lubrication. The boil-off gas supply / recovery device according to claim 19 , which is provided in pairs before and after the oil adsorption remover and the second lubricating oil adsorption remover. 前記切替弁により、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器のいずれか一方に前記ボイルオフガスを流し、他方には、前記ボイルオフガスを流すことなく、前記吸着剤に吸着した前記潤滑油を気化排気して、前記吸着剤を再生する処理を行うように制御する、請求項20に記載のボイルオフガス供給・回収装置。 By the switching valve, the boil-off gas is flowed to either one of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover, and the other is adsorbed to the adsorbent without flowing the boil-off gas. The boil-off gas supply / recovery device according to claim 20 , wherein the lubricating oil is vaporized and exhausted to control the process of regenerating the adsorbent. 液化ガスを貯蔵するタンクから気化した液化ガスのボイルオフガスを熱交換器により加熱した後、ボイルオフガスの供給先の装置に供給するために、潤滑油を供給しながら圧縮機で加圧して超臨界状態の流体にするステップと、
加圧した前記ボイルオフガスの一部を前記装置に供給する供給ラインから分岐ラインに分岐させ、分岐した前記ボイルオフガスを、吸着剤を内包する第1潤滑油吸着除去器及び第2潤滑油吸着除去器が前記分岐ラインに並列に配列された潤滑油除去部に通過させることにより、超臨界状態の前記ボイルオフガスに溶解して前記ボイルオフガス中に混入した前記潤滑油を前記第1潤滑油吸着除去器または前記第2潤滑油吸着除去器により除去するステップであって、前記吸着剤は、2~10nmの細孔径分布範囲における累積細孔容積が、該吸着剤1g当たり0.1cm 以上である、活性炭又はメソポーラスカーボンである、ステップと、
前記潤滑油除去後の前記ボイルオフガスを前記熱交換器に通して冷却した後に再液化させて、前記タンク内に戻すステップと、を備え、
前記潤滑油除去部で前記潤滑油を前記ボイルオフガスから除去する際、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の内の一方に前記ボイルオフガスを流すことにより、前記ボイルオフガス中に混入した前記潤滑油を前記ボイルオフガスから除去し、かつ、前記第1潤滑油吸着除去器及び前記第2潤滑油吸着除去器の内の他方には、前記ボイルオフガスを流すことなく、前記潤滑油除去部の前記潤滑油の吸着特性を復活させる処理を行う、ことを特徴とする、ボイルオフガス供給・回収方法。
After heating the boil-off gas of the liquefied gas vaporized from the tank that stores the liquefied gas with a heat exchanger, pressurize it with a compressor while supplying lubricating oil to supply it to the device to which the boil-off gas is supplied. Steps to make the fluid in a critical state ,
A part of the pressurized boil-off gas is branched from the supply line supplied to the apparatus to a branch line, and the branched boil-off gas is removed by the first lubricating oil adsorption remover and the second lubricating oil adsorption remover containing an adsorbent. By passing the vessel through the lubricating oil removing section arranged in parallel with the branch line, the lubricating oil dissolved in the boil-off gas in the supercritical state and mixed in the boil-off gas is adsorbed and removed from the first lubricating oil. In the step of removing with a device or the second lubricating oil adsorbent remover, the adsorbent has a cumulative pore volume of 0.1 cm 3 or more per 1 g of the adsorbent in a pore diameter distribution range of 2 to 10 nm. , Activated carbon or mesoporous carbon, with steps ,
The boil-off gas after removing the lubricating oil is passed through the heat exchanger to be cooled, and then reliquefied and returned to the inside of the tank.
When the lubricating oil is removed from the boil-off gas by the lubricating oil removing unit, the boil-off gas is flowed through one of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover. The lubricating oil mixed in the gas is removed from the boil-off gas, and the boil-off gas is not flowed to the other of the first lubricating oil adsorption remover and the second lubricating oil adsorption remover. A boil-off gas supply / recovery method, characterized in that a process of restoring the adsorption characteristics of the lubricating oil of the lubricating oil removing portion is performed.
前記吸着剤による吸着特性を復活させる処理は、前記吸着剤に吸着した前記潤滑油を気化排気して前記吸着剤を再生する処理、あるいは、新たな吸着剤に取替える処理である、請求項22に記載のボイルオフガス供給・回収方法。 22. The process of restoring the adsorption characteristics of the adsorbent is a process of vaporizing and exhausting the lubricating oil adsorbed on the adsorbent to regenerate the adsorbent, or a process of replacing the adsorbent with a new adsorbent. The described boil-off gas supply / recovery method. 前記潤滑油を気化排気して前記吸着剤を再生する処理は、前記潤滑油が吸着した前記吸着剤を加熱すること、及び前記吸着剤を配置した周囲環境を減圧すること、の少なくとも一方を含む、請求項23に記載のボイルオフガス供給・回収方法。 The process of vaporizing and exhausting the lubricating oil to regenerate the adsorbent includes at least one of heating the adsorbent to which the lubricating oil is adsorbed and depressurizing the surrounding environment in which the adsorbent is placed. 23. The boil-off gas supply / recovery method according to claim 23 .
JP2019136365A 2019-07-24 2019-07-24 Boil-off gas supply / recovery device and boil-off gas supply / recovery method Active JP7090585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019136365A JP7090585B2 (en) 2019-07-24 2019-07-24 Boil-off gas supply / recovery device and boil-off gas supply / recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019136365A JP7090585B2 (en) 2019-07-24 2019-07-24 Boil-off gas supply / recovery device and boil-off gas supply / recovery method

Publications (2)

Publication Number Publication Date
JP2021021403A JP2021021403A (en) 2021-02-18
JP7090585B2 true JP7090585B2 (en) 2022-06-24

Family

ID=74574223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019136365A Active JP7090585B2 (en) 2019-07-24 2019-07-24 Boil-off gas supply / recovery device and boil-off gas supply / recovery method

Country Status (1)

Country Link
JP (1) JP7090585B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422087B (en) * 2021-05-07 2022-08-23 潍柴动力股份有限公司 Vehicle-mounted low-temperature liquid hydrogen fuel cell system and fuel cell heat exchange method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296286A (en) 2000-04-13 2001-10-26 Cosmo Engineering Co Ltd Residual portion analytical method in liquefied gas
JP2002219328A (en) 2001-01-24 2002-08-06 Nippon Sanso Corp Gas detoxifying apparatus
WO2005120686A1 (en) 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2018123851A (en) 2017-01-30 2018-08-09 株式会社神戸製鋼所 Boil-off gas recovery system
JP2018128039A (en) 2017-02-06 2018-08-16 株式会社神戸製鋼所 Boil-off gas recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710339B2 (en) * 1986-06-24 1995-02-08 三菱重工業株式会社 Carbon monoxide adsorbent
JP2851559B2 (en) * 1995-04-10 1999-01-27 株式会社アイ・エイチ・アイ プランテック Removal device for lubricating oil in liquefied gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296286A (en) 2000-04-13 2001-10-26 Cosmo Engineering Co Ltd Residual portion analytical method in liquefied gas
JP2002219328A (en) 2001-01-24 2002-08-06 Nippon Sanso Corp Gas detoxifying apparatus
WO2005120686A1 (en) 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2018123851A (en) 2017-01-30 2018-08-09 株式会社神戸製鋼所 Boil-off gas recovery system
JP2018128039A (en) 2017-02-06 2018-08-16 株式会社神戸製鋼所 Boil-off gas recovery system

Also Published As

Publication number Publication date
JP2021021403A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5710263B2 (en) Production and use of utility gas
US20110259044A1 (en) Method and apparatus for producing liquefied natural gas
EP0885841B1 (en) System and method for collecting and refining SF6 gas
JP7090585B2 (en) Boil-off gas supply / recovery device and boil-off gas supply / recovery method
CN101970082B (en) Gaseous hydrocarbon treating/recovering apparatus and method
JP2009099501A (en) Gas recovery device and its method
JP2018536593A (en) Method of using VOC as blanket gas for oil tank
US20120000242A1 (en) Method and apparatus for storing liquefied natural gas
WO2013177093A2 (en) Cng delivery system with cryocooler and method of supplying purified cng
US6463744B1 (en) Method and device for producing cold
AU2020216277B2 (en) Methods for removal of moisture from LNG refrigerant
JP2000262806A (en) Adsorbent regeneration method
Jiang et al. Thermodynamic design and experimental study of a condensation recovery system for VOCs
JP2007254220A (en) Carbon dioxide fixation system and method for manufacturing carbonate
KR101997355B1 (en) Carbon dioxide capture apparatus using cold heat of liquefied natural gas
CN101306259A (en) High-pressure and low-temperature condensing recovery method of volatile organic steam in oil gas
JPH04347307A (en) Method for separating carbon dioxide from exhaust gas and device thereof
CA3173974A1 (en) System and method for oil production equipment that minimizes total emissions
JP2008240835A (en) Method and system for recovering gas using adsorbent for reuse
FR2954973A1 (en) Method for liquefaction/refrigeration of working gas with helium, involves reusing negative kilocalories of part of gas recovered in liquefaction/refrigeration process for cooling refrigerater/liquefactor body
AU2016428816B2 (en) Natural gas liquefaction facility
US20220403273A1 (en) Systems and processes for heavy hydrocarbon removal
WO2024024572A1 (en) Co2 separation system
Fritz et al. Development of a Water Cryocooler System for use in the Dehumidification of a Spacecraft Cabin Atmosphere
Melideo et al. Preliminary analysis of refilling cold-adsorbed hydrogen tanks

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220614

R150 Certificate of patent or registration of utility model

Ref document number: 7090585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350