JPS6152164B2 - - Google Patents

Info

Publication number
JPS6152164B2
JPS6152164B2 JP19502882A JP19502882A JPS6152164B2 JP S6152164 B2 JPS6152164 B2 JP S6152164B2 JP 19502882 A JP19502882 A JP 19502882A JP 19502882 A JP19502882 A JP 19502882A JP S6152164 B2 JPS6152164 B2 JP S6152164B2
Authority
JP
Japan
Prior art keywords
structural unit
formula
unit represented
reaction
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19502882A
Other languages
Japanese (ja)
Other versions
JPS5984907A (en
Inventor
Takahiro Hirotsu
Shunsaku Kato
Kazuhiko Sugasaka
Kunihiro Ichimura
Masako Sakuragi
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19502882A priority Critical patent/JPS5984907A/en
Publication of JPS5984907A publication Critical patent/JPS5984907A/en
Publication of JPS6152164B2 publication Critical patent/JPS6152164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、海水その他の天然水や産業排水など
から、溶存する微量の金属イオンを吸着回収する
のに好適な新規なキレート樹脂の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a novel chelate resin suitable for adsorbing and recovering trace amounts of dissolved metal ions from seawater, other natural waters, industrial wastewater, and the like.

海水中のウランのように希薄な微量の金属イオ
ンを吸着回収するには、吸着速度及び吸着容量の
大きい吸着剤が望ましく、また海水などの被処理
液及び脱着処理液に対し高い安定性を有すること
が重要である。
In order to adsorb and recover dilute trace amounts of metal ions such as uranium in seawater, an adsorbent with high adsorption rate and adsorption capacity is desirable, and also has high stability against the liquid to be treated such as seawater and the desorption treatment liquid. This is very important.

一方、ヒドロキサム酸化合物は、多くの重金属
イオンとキレート錯体を形成することが知られ、
その性質を利用して、溶媒抽出法による重金属イ
オンの定量や分離に使用され、浮選法による鉱山
排水からの重金属イオンの回収などへの応用も試
みられている。
On the other hand, hydroxamic acid compounds are known to form chelate complexes with many heavy metal ions.
Taking advantage of its properties, it is used to quantify and separate heavy metal ions by solvent extraction, and attempts are also being made to apply it to recovery of heavy metal ions from mine drainage by flotation.

ヒドロキサム酸化合物がキレート錯体を形成す
る重金属イオンは多種にわたり、例えば遷移金属
ではチタン、バナジウム、マンガン、鉄、コバル
ト、ニツケル、銅、亜鉛、ジルコニウム、ニオ
ブ、モリブデン、カドミウム、スズ、ハフニウ
ム、タングステン、水銀、ビスマス等が挙げら
れ、またランタニド系列ではプラセオジム、ネオ
ジム、サマリウム、ガドリニウム、ジスプロシウ
ム、アクチニド系列ではプロトアクチニウム、ウ
ラン、ネプツニウム、プルトニウム等が挙げられ
る。
Hydroxamic acid compounds form chelate complexes with a wide variety of heavy metal ions, including transition metals such as titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, cadmium, tin, hafnium, tungsten, and mercury. , bismuth, etc.; lanthanide series include praseodymium, neodymium, samarium, gadolinium, and dysprosium; actinide series include protactinium, uranium, neptunium, plutonium, etc.

このようなヒドロキサム酸化合物の重金属吸着
特性を活かし、例えば海水中のウランを吸着採取
したり、排水中に溶存する微量の金属イオンを吸
着回収するための吸着剤として利用するには、ヒ
ドロキサム酸化合物を安定な高分子中に導入固定
化することが必要である。
In order to take advantage of the heavy metal adsorption properties of hydroxamic acid compounds and use them as adsorbents, for example, to adsorb and collect uranium from seawater or to adsorb and recover trace amounts of metal ions dissolved in wastewater, hydroxamic acid compounds are needed. It is necessary to introduce and immobilize it into a stable polymer.

このようなヒドロキサム酸構造を固定化した高
分子としてポリアクリルヒドロキサム酸が知ら
れ、この樹脂が銅イオンなどの金属イオンに対し
て良好な吸着捕集能を有することも知られている
〔W.Kern、R.C.Schulz、Angew.Chem.、69
153(1957)、山本隆一他、工化、70(5)、152
(1967)参照)。このポリアクリルヒドロキサム酸
はポリアクリルエステルにヒドロキシルアミンを
反応させて製造されるが、その反応は必らずしも
円滑に進行するものではなく、ヒドロキサム酸が
形成されるけずのエステル部がかなり残存し、高
い吸着能を有するキレート樹脂を形成させること
は困難である。
Polyacrylic hydroxamic acid is known as a polymer with such a hydroxamic acid structure immobilized, and it is also known that this resin has good adsorption and collection ability for metal ions such as copper ions [W. Kern, RC Schulz, Angew.Chem., 69 ,
153 (1957), Ryuichi Yamamoto et al., Koka, 70 (5), 152
(1967)). This polyacrylic hydroxamic acid is produced by reacting polyacrylic ester with hydroxylamine, but the reaction does not necessarily proceed smoothly, and a considerable amount of the ester moiety remains in the residue where hydroxamic acid is formed. However, it is difficult to form a chelate resin with high adsorption capacity.

本発明者らは、このようなヒドロキサム酸基を
高分子中に導入固定化する方法の従来の問題点を
克服し、ヒドロキサム酸基をできるだけ多く、好
ましくは同一の炭素にヒドロキサム酸基を隣接状
に導入した安定なキレート樹脂を形成させる方法
について鋭意研究した結果、ジビニルベンゼンを
介して架橋されているポリスチレンにジヒドロキ
サム酸基を導入することにより、その目的を達成
しうることを見出し、本発明をなすに至つた。
The present inventors have overcome the conventional problems of such methods of introducing and immobilizing hydroxamic acid groups into polymers, and have attempted to incorporate as many hydroxamic acid groups as possible, preferably adjacently on the same carbon. As a result of intensive research on a method for forming a stable chelate resin introduced into polystyrene, it was discovered that the objective could be achieved by introducing dihydroxamic acid groups into polystyrene crosslinked via divinylbenzene, and the present invention I was able to accomplish this.

すなわち、本発明は、ジビニルベンゼンを介し
て架橋されているクロロメチル化ポリスチレンに
マロン酸ジ低級アルキルエステルを反応させて、
一般式 (式中のRは低級アルキル基である) で表わされる基を導入し、次いでこれにヒドロキ
シルアミンを反応させるか、あるいはクロロメチ
ルスチレンとマロン酸ジ低級アルキルエステルと
の反応混合物に、ジビニルベンゼンを加えて懸濁
重合し、架橋構造を有するポリスチレン誘導体を
形成させ、次いでこれにヒドロキシルアミンを反
応させることにより、 (a) 式 で表わされる構成単位、 (b) 式 で表わされる構成単位、及び (c) 式 で表わされる構成単位 から成るキレート樹脂を製造する方法を提供する
ものである。
That is, the present invention involves reacting chloromethylated polystyrene crosslinked via divinylbenzene with di-lower alkyl malonic acid ester,
general formula (R in the formula is a lower alkyl group) and then reacting it with hydroxylamine, or divinylbenzene is added to the reaction mixture of chloromethylstyrene and malonic acid di-lower alkyl ester. In addition, by carrying out suspension polymerization to form a polystyrene derivative having a crosslinked structure, and then reacting this with hydroxylamine, the formula (a) The structural unit represented by (b) Eq. The structural unit represented by and (c) formula The present invention provides a method for producing a chelate resin consisting of the structural unit represented by:

本発明方法により得られるキレート樹脂は、ポ
リスチレン系高分子化合物の芳香核に、式 で表わされるジヒドロキサム酸残基を導入したも
のであり、1個の芳香核について遊離の2個のヒ
ドロキサム酸基が存在するものである。しかもこ
の2個のヒドロキサム酸基は1個の炭素原子に結
合し、その炭素原子を介して隣接している構造で
あるから、金属イオンに対して協同的に結合する
のに好適である。また、本発明のキレート樹脂は
架橋ポリスチレン系高分子化合物から成り、極め
て安定で、耐薬品性、耐酸、耐アルカリ性及び耐
熱性に優れた高い実用的価値を有する吸着剤であ
る。
The chelate resin obtained by the method of the present invention has the formula A dihydroxamic acid residue represented by is introduced, and two free hydroxamic acid groups exist for one aromatic nucleus. Furthermore, since these two hydroxamic acid groups are bonded to one carbon atom and are adjacent to each other via that carbon atom, they are suitable for cooperatively bonding to metal ions. Further, the chelate resin of the present invention is made of a crosslinked polystyrene polymer compound, and is an extremely stable adsorbent having excellent chemical resistance, acid resistance, alkali resistance, and heat resistance, and has high practical value.

本発明方法により上記式()で表わされるジ
ヒドロキサム酸残基を有するキレート樹脂を製造
するには、その前駆体である、一般式 (式中のRは低級アルキル基を示す) で表わされるベンジルマロン酸ジアルキルエステ
ル残基の形成方法により2通りの方法が採用でき
る。
In order to produce a chelate resin having a dihydroxamic acid residue represented by the above formula () by the method of the present invention, its precursor, the general formula (R in the formula represents a lower alkyl group) Two methods can be adopted depending on the method for forming the benzylmalonic acid dialkyl ester residue represented by the following.

第1の方法は、公知の方法で得られるクロロメ
チル化架橋ポリスチレンにマロン酸ジ低級アルキ
ルエステルを反応させて、一般式()で表わさ
れる残基を有する樹脂を製造し、ついでこれにヒ
ドロキシルアミンを反応させるものである。はじ
めのクロロメチル化架橋ポリスチレンとマロン酸
ジアルキルエステルとの反応は、脱塩化水素縮合
剤として強塩基が用いられ、とくに水素化ナトリ
ウムが好適である。マロン酸ジエステルをあらか
じめ強塩基によりそのカルバニオンとし、そのあ
とでクロロメチル化架橋ポリスチレンを反応させ
ることができる。この反応に用いられる溶媒とし
ては、極性溶媒、とくにジメチルホルムアミド、
N−メチルピロリドン、ジメチルスルホキシドな
どの非プロトン性溶媒やテトラヒドロフラン、エ
チレングリコールジメチルエーテルなどのエーテ
ル系溶媒が好ましい。反応温度は室温から溶媒の
沸点までの広い範囲で行うことができるが、とく
に50℃〜100℃が好適である。また、反応時間は
反応温度にもよるが、通常5時間から30時間の範
囲である。
The first method is to react chloromethylated crosslinked polystyrene obtained by a known method with di-lower alkyl malonic acid ester to produce a resin having a residue represented by the general formula (), and then add hydroxylamine to this resin. It causes a reaction. In the initial reaction between chloromethylated crosslinked polystyrene and malonic acid dialkyl ester, a strong base is used as a dehydrochlorination condensing agent, and sodium hydride is particularly suitable. The malonic acid diester can be converted to its carbanion with a strong base beforehand and then the chloromethylated crosslinked polystyrene can be reacted. Solvents used in this reaction include polar solvents, especially dimethylformamide,
Aprotic solvents such as N-methylpyrrolidone and dimethyl sulfoxide, and ether solvents such as tetrahydrofuran and ethylene glycol dimethyl ether are preferred. The reaction temperature can be carried out in a wide range from room temperature to the boiling point of the solvent, but 50°C to 100°C is particularly suitable. Further, the reaction time depends on the reaction temperature, but is usually in the range of 5 hours to 30 hours.

このようにして得た一般式()で表わされる
残基をもつ樹脂をヒドロキシルアミンを含む溶媒
中に懸濁し、室温から溶媒沸点までの範囲の温度
で1日〜4日間反応させる。この反応を促進させ
るためにメタノールやエタノールのアルコラート
を触媒として用いることは極めて効果的である。
また反応溶媒としては樹脂と親和性のあるものが
望ましく、メタノール、エタノール、イソプロピ
ルアルコールなどのアルコールとベンゼン、トル
エン、キシレンなどの炭化水素との混合溶媒が最
も好適である。
The thus obtained resin having a residue represented by the general formula () is suspended in a solvent containing hydroxylamine and reacted for 1 to 4 days at a temperature ranging from room temperature to the boiling point of the solvent. It is extremely effective to use methanol or ethanol alcoholate as a catalyst to promote this reaction.
The reaction solvent is preferably one that has affinity with the resin, and the most suitable is a mixed solvent of an alcohol such as methanol, ethanol, isopropyl alcohol, and a hydrocarbon such as benzene, toluene, xylene.

この方法によれば、ポリアクリル酸エステルに
ヒドロキシルアミンを反応させる場合よりもはる
かに高い反応率でエステルをヒドロキサム酸化す
ることができる。これはマロン酸のエステル基の
方がその電子吸引性効果により活性化されている
ことに基くものと推定される。
According to this method, an ester can be hydroxamed oxidized at a much higher reaction rate than when a polyacrylic ester is reacted with hydroxylamine. This is presumed to be because the ester group of malonic acid is more activated due to its electron-withdrawing effect.

一般式()で表わされる残基を持つキレート
樹脂を得る第2の方法は、はじめに、クロロメチ
ル化スチレンとマロン酸ジアルキルエステルとを
縮合させてビニルベンジルマロン酸エステルを製
造し、この重合性モノマーを公知の方法によりジ
ビニルベンゼンとともに重合させて一般式()
で表わされる残基を持つ架橋化樹脂を製造したの
ち、第1の方法と全く同様にしてヒドロキシルア
ミンを反応させるものである。
The second method for obtaining a chelate resin having a residue represented by the general formula () is to first condense chloromethylated styrene and dialkyl malonic acid ester to produce vinylbenzyl malonic ester, and then use this polymerizable monomer. is polymerized with divinylbenzene by a known method to obtain the general formula ()
After producing a crosslinked resin having a residue represented by the formula, hydroxylamine is reacted in exactly the same manner as in the first method.

ビニルベンゼンマロン酸エステルの架橋化樹脂
は、その重合条件により、他の架橋化樹脂と同様
に、さまざまな状態の多孔性を付与することがで
きる。たとえばトルエンなどのような不活性な溶
媒の存在下で懸濁重合を行なうときは、マクロポ
ーラス樹脂を形成させることができるし、あるい
はまた、アルコール類のような貧溶媒の共存下で
重合させることによりマクロレテイキユラー樹脂
を得ることができる。このように目的、用途に応
じて任意の形態の樹脂を容易に製造することが可
能である。
The crosslinked resin of vinylbenzene malonic acid ester can be provided with various states of porosity, like other crosslinked resins, depending on the polymerization conditions. For example, macroporous resins can be formed when suspension polymerization is carried out in the presence of an inert solvent such as toluene, or alternatively, polymerization can be carried out in the presence of poor solvents such as alcohols. A macroreticular resin can be obtained. In this way, it is possible to easily produce resin in any form depending on the purpose and use.

上記のような方法で得られる一般式()で表
わされるジヒドロキサム酸基を有するキレート樹
脂は、前述の各種金属イオンに対し優れた吸着能
を有し、例えば海水中に数ppb程度しか存在しな
い極めて低い濃度のウランを高い効率で吸着捕集
することができ、その他の微量な有価金属、例え
ばコバルト、ニツケル、銅、亜鉛、ストロンチウ
ムなども効率よく吸着捕集し、これらを容易に分
離回収することができるので、金属イオン吸着回
収用として極めて有用な吸着剤である。
The chelate resin having a dihydroxamic acid group represented by the general formula () obtained by the above method has an excellent adsorption ability for the various metal ions mentioned above, and for example, exists in seawater at only about a few ppb. It can adsorb and collect extremely low concentrations of uranium with high efficiency, and also efficiently adsorb and collect trace amounts of other valuable metals, such as cobalt, nickel, copper, zinc, and strontium, and easily separate and recover them. Therefore, it is an extremely useful adsorbent for adsorption and recovery of metal ions.

以下、実施例によつてさらに具体的に説明する
が、これらの説明に限定されるのではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these explanations.

実施例 1 水素化ナトリウム0.72g(0.03モル)をジメチ
ルホルムアミド70ml中に懸濁させた液に、マロン
酸ジエチルエステル5.6g(0.035モル)をジメチ
ルホルムアミド30mlに溶解させた溶液を加えて、
60℃に加温し、1時間反応させて反応を完結させ
た後、一たん室温にもどしてからジビニルベンゼ
ンで架橋したクロロメチル化ポリスチレン
(Cl:18.9%)2g(Cl:0.01モル)を加え、80
℃に加熱して24時間反応させた。反応生成物の赤
外線吸収スペクトル測定の結果、マロン酸ジエス
テル基がポリスチレン中に導入されていることが
確認された。また塩素の減少量から反応率を求め
た結果、反応率は85.9%であつた。
Example 1 A solution of 5.6 g (0.035 mol) of malonic acid diethyl ester dissolved in 30 ml of dimethylformamide was added to a solution of 0.72 g (0.03 mol) of sodium hydride suspended in 70 ml of dimethylformamide.
After heating to 60°C and completing the reaction for 1 hour, the mixture was returned to room temperature and 2 g (Cl: 0.01 mol) of chloromethylated polystyrene crosslinked with divinylbenzene (Cl: 18.9%) was added. , 80
It was heated to ℃ and allowed to react for 24 hours. As a result of infrared absorption spectrum measurement of the reaction product, it was confirmed that malonic acid diester groups were introduced into polystyrene. In addition, the reaction rate was determined from the amount of chlorine reduction, and the reaction rate was 85.9%.

このポリマー10g(0.0982モル)を乾燥ベンゼ
ン中に約34時間浸漬した後、ヒドロキシルアミン
(0.393モル)のメタノール溶液を加え、これを氷
冷しながら金属ナトリウム7.9g(0.344モル)の
100mlメタノール溶液を加えて、さらに1時間氷
冷下に保つた後、室温にもどし、次いで70℃に加
温して2日間反応させた。
After immersing 10 g (0.0982 mol) of this polymer in dry benzene for about 34 hours, a methanol solution of hydroxylamine (0.393 mol) was added, and 7.9 g (0.344 mol) of sodium metal was added while cooling on ice.
After adding 100 ml of methanol solution and keeping the mixture under ice-cooling for an additional hour, the mixture was returned to room temperature, and then heated to 70°C and reacted for 2 days.

反応生成物は、氷冷水で洗浄した後、氷冷した
0.5NHClで処理してH+型とし、さらに洗液が中
性となるまで水洗した。次にこれをメタノール洗
浄したのち真空乾燥した。赤外線吸収スペクトル
測定の結果、エステル基は完全に反応し、ヒドロ
キサム酸の他に一部カルボン酸の生成が認められ
た。元素分析の結果ヒドロキサム酸の生成率は
56.4%であつた。
The reaction product was washed with ice-cold water and then cooled on ice.
It was treated with 0.5NHCl to form H + form, and further washed with water until the washing solution became neutral. Next, this was washed with methanol and then vacuum dried. As a result of infrared absorption spectrum measurement, the ester group was completely reacted, and in addition to hydroxamic acid, some carboxylic acid was observed to be produced. As a result of elemental analysis, the production rate of hydroxamic acid is
It was 56.4%.

実施例 2 水素化ナトリウム8.4g(0.35モル)をテトラ
ヒドロフラン125mlに加えて懸濁させた後、マロ
ン酸ジエチルエステル80g(0.5モル)を溶解し
たテトラヒドロフラン75mlの溶液を加えた。この
混合液を室温にもどした後、さらにクロロメチル
化スチレン45.75g(0.3モル)を溶解したテトラ
ヒドロフラン30mlの溶液を滴下し、重合阻止剤と
して硫黄粉末1gを添加後、約1時間放置した。
その後、70℃に加温して21時間反応を行つた。反
応終了後、テトラヒドロフランを留去し、この反
応生成濃縮液に酢酸エチル約200mlを加え、これ
を氷冷した1NHCl水溶液で数回洗浄し、さらに氷
冷水で数回洗浄した後無水硫酸マグネシウムを加
えて一夜乾燥した。次に酢酸エチルを留去してか
ら硫黄粉末1gを加え、真空蒸留して0.2mmHg、
沸点148℃〜150℃の留分としてビニルベンジルマ
ロン酸ジエチルエステルを得た。反応率は55%で
あつた。
Example 2 8.4 g (0.35 mol) of sodium hydride was added to 125 ml of tetrahydrofuran and suspended, and then a solution of 80 g (0.5 mol) of malonic acid diethyl ester in 75 ml of tetrahydrofuran was added. After the mixture was cooled to room temperature, a solution of 45.75 g (0.3 mol) of chloromethylated styrene in 30 ml of tetrahydrofuran was added dropwise, and after adding 1 g of sulfur powder as a polymerization inhibitor, it was allowed to stand for about 1 hour.
Thereafter, the mixture was heated to 70°C and reacted for 21 hours. After the reaction, tetrahydrofuran was distilled off, and about 200 ml of ethyl acetate was added to the reaction product concentrate, which was washed several times with ice-cooled 1NHCl aqueous solution, and then washed several times with ice-cold water, and then anhydrous magnesium sulfate was added. and dried overnight. Next, ethyl acetate was distilled off, 1 g of sulfur powder was added, and vacuum distillation was performed to obtain a 0.2 mmHg
Vinylbenzylmalonic acid diethyl ester was obtained as a fraction with a boiling point of 148°C to 150°C. The reaction rate was 55%.

安定剤としてポリビニルピロリドン0.25gを水
40mlで溶解し、はげしくかきまぜながら、これに
上記のようにして得たジビニルベンジルマロン酸
ジエチルエステル7ml、ジビニルベンゼン2ml、
溶媒としてトルエン5ml及び沈殿剤数gを加え
た。重合開始剤としてアゾビスイソブチロニトリ
ル0.1gを加えてから窒素ガスで反応系をパージ
しながら80℃の温度で26時間反応させた。反応終
了後、粒状の生成物を別し水洗したのち、ソツ
クスレー抽出器を用いてアセトンで1夜洗浄し真
空乾燥した。沈殿剤を添加しない場合、ゲルポー
ラスな粒状生成物が、沈殿剤としてメチルシクロ
ヘキサン、シクロヘキサノール、ノルマルブタノ
ール等を用いた場合不透明なマクロレテイキユラ
ー型の粒状生成物が得られた。なお、これらの生
成物の赤外線吸収スペクトル測定の結果、実施例
1の場合と同様のスペクトルが得られ、架橋共重
合体であることが認められた。
Add 0.25g of polyvinylpyrrolidone to water as a stabilizer.
Dissolve in 40 ml, stir vigorously, and add 7 ml of divinylbenzylmalonic acid diethyl ester obtained as above, 2 ml of divinylbenzene,
5 ml of toluene and several grams of precipitant were added as a solvent. After adding 0.1 g of azobisisobutyronitrile as a polymerization initiator, the reaction was carried out at a temperature of 80° C. for 26 hours while purging the reaction system with nitrogen gas. After the reaction was completed, the granular product was separated and washed with water, and then washed with acetone overnight using a Soxhlet extractor and dried under vacuum. When no precipitant was added, a gel porous granular product was obtained, whereas when methylcyclohexane, cyclohexanol, n-butanol, etc. were used as a precipitant, an opaque macroreticular type granular product was obtained. In addition, as a result of infrared absorption spectrum measurement of these products, the same spectrum as in Example 1 was obtained, and it was recognized that they were crosslinked copolymers.

実施例1と同じ方法でヒドロキサム酸化をおこ
ない、ジヒドロキサム酸型キレート樹脂を得た。
Hydroxamic oxidation was carried out in the same manner as in Example 1 to obtain a dihydroxamic acid type chelate resin.

応用例 実施例1で得られたジヒドロキサム酸型キレー
ト樹脂10mlを内径3cmφのカラムに充填し、天然
過海水をSV=390hr-1、温度25±2℃で上向流
で通水した。26日間通水した後、吸着剤を水洗、
乾燥した後、ケイ光X線法で吸着された元素の定
性分析を行つた結果、ウラン以外にコバルト、ニ
ツケル、銅、亜鉛、ストロンチウムが金属として
検出され、ジヒドロキサム酸型キレート樹脂が、
第一遷移金属及びウランに対し高い選択吸着能を
有することが認められた。
Application Example 10 ml of the dihydroxamic acid type chelate resin obtained in Example 1 was packed into a column with an inner diameter of 3 cmφ, and natural supersea water was passed through the column in an upward flow at SV=390 hr −1 and temperature of 25±2° C. After passing water for 26 days, wash the adsorbent with water.
After drying, qualitative analysis of the adsorbed elements using fluorescent X-ray method revealed that in addition to uranium, cobalt, nickel, copper, zinc, and strontium were detected as metals, indicating that the dihydroxamic acid type chelate resin
It was recognized that it has a high selective adsorption ability for first transition metals and uranium.

実施例2で得られたマクロレテイキユラー型ジ
ヒドロキサム酸樹脂も、同様な条件で金属イオン
吸着性を調べた結果、上記と同様な結果を得た。
The metal ion adsorption properties of the macroreticular dihydroxamic acid resin obtained in Example 2 were also examined under the same conditions, and the same results as above were obtained.

Claims (1)

【特許請求の範囲】 1 ジビニルベンゼンを介して架橋されているク
ロロメチル化ポリスチレンにマロン酸ジ低級アル
キルエステルを反応させて、一般式 (式中のRは低級アルキル基である) で表わされる基を導入し、次いでこれにヒドロキ
シルアミンを反応させることを特徴とする、 (a) 式 で表わされる構成単位、 (b) 式 で表わされる構成単位、及び (c) 式 で表わされる構成単位 から成るキレート樹脂の製造方法。 2 クロロメチルスチレンとマロン酸ジ低級アル
キルエステルとの反応混合物に、ジビニルベンゼ
ンを加えて懸濁重合し、架橋構造を有するポリス
チレン誘導体を形成させ、次いでこれにヒドロキ
シルアミンを反応させることを特徴とする、 (a) 式 で表わされる構成単位、 (b) 式 で表わされる構成単位、及び (c) 式 で表わされる構成単位 から成るキレート樹脂の製造方法。
[Claims] 1. By reacting chloromethylated polystyrene cross-linked via divinylbenzene with di-lower alkyl malonic acid ester, the general formula (In the formula, R is a lower alkyl group) The formula (a) is characterized by introducing a group represented by the following and then reacting the group with hydroxylamine. The structural unit represented by (b) Eq. The structural unit represented by and (c) formula A method for producing a chelate resin consisting of a structural unit represented by: 2. Divinylbenzene is added to a reaction mixture of chloromethylstyrene and di-lower alkyl malonic acid ester, and suspension polymerization is carried out to form a polystyrene derivative having a crosslinked structure, which is then reacted with hydroxylamine. , (a) Eq. The structural unit represented by (b) Eq. The structural unit represented by and (c) formula A method for producing a chelate resin consisting of a structural unit represented by:
JP19502882A 1982-11-05 1982-11-05 Novel chelate resin and production thereof Granted JPS5984907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19502882A JPS5984907A (en) 1982-11-05 1982-11-05 Novel chelate resin and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19502882A JPS5984907A (en) 1982-11-05 1982-11-05 Novel chelate resin and production thereof

Publications (2)

Publication Number Publication Date
JPS5984907A JPS5984907A (en) 1984-05-16
JPS6152164B2 true JPS6152164B2 (en) 1986-11-12

Family

ID=16334327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19502882A Granted JPS5984907A (en) 1982-11-05 1982-11-05 Novel chelate resin and production thereof

Country Status (1)

Country Link
JP (1) JPS5984907A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623231B2 (en) * 1985-08-07 1994-03-30 ミヨシ油脂株式会社 Process for producing polymer having chelate forming ability
JP3661600B2 (en) * 2000-07-27 2005-06-15 住友化学株式会社 Methyl methacrylate resin composition and molded article thereof
CN111909292B (en) * 2020-08-14 2022-12-02 国药集团化学试剂有限公司 Preparation method and application of O-benzylhydroxylamine resin

Also Published As

Publication number Publication date
JPS5984907A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
Kawabata et al. Removal and recovery of organic pollutants from aquatic environment. 1. Vinylpyridine-divinylbenzene copolymer as a polymeric adsorbent for removal and recovery of phenol from aqueous solution
Adhikari et al. Synthesis and application of a highly efficient polyvinylcalix [4] arene tetraacetic acid resin for adsorptive removal of lead from aqueous solutions
EP0234319A2 (en) Method for recovering gallium
Kavakli et al. A highly efficient chelating polymer for the adsorption of uranyl and vanadyl ions at low concentrations
CN102863579B (en) Barbituric acid chelating resin and preparation method and application thereof
US20020185443A1 (en) Process for preparing heterodisperse chelating resins
US4154674A (en) Process for removing constituents from a mixture
JPS6152164B2 (en)
JPS587412A (en) Chelate resin, its preparation, and process for adsorption treatment
JPS6026130B2 (en) Production method of new polymer
JP5344607B2 (en) Separation and recovery of palladium ion adsorbent and palladium
JPS6133047B2 (en)
JP4919447B2 (en) Photoresponsive metal ion adsorbing material and metal ion recovery method
JPS6248725A (en) Novel chelate resin and production thereof
JP2987949B2 (en) Porous resin and method for producing the same
JPS6226819B2 (en)
US6375852B1 (en) Calix [4] arene polymer, method of manufacturing the same and method of separating divalent lead ion by use of the same
JPH08844B2 (en) Styrene-based three-dimensional copolymer and nitrate ion adsorbent
SU496287A1 (en) The method of producing sorbents
Alexandratos et al. Synthesis of interpenetrating polymer networks as metal ion complexing agents
JPH0230368B2 (en)
JPS6121699B2 (en)
JPH0239452B2 (en) JUKINZOKUNOKAISHUHOHO
JPS5834180B2 (en) Heavy metal scavenger and its manufacturing method
JPH0645654B2 (en) Chelate resin and manufacturing method thereof